
PPoorrttiinngg XX//MMoottiiff
AApppplliiccaattiioonnss ttoo QQtt

info@ics.com

www.ics.com

 ®

Scenarios and Advice for a Smooth Migration

The User Interface Company™

54 B Middlesex Turnpike
Bedford, MA 01730
617.621.0060

Integrated Computer
Solutions Incorporated

Copyright © 2004-2006 Integrated Computer Solutions, Inc. 54 B Middlesex Turnpike, Bedford, MA 01730

www.ics.com Phone: 617.621.0060

 2

Porting X/Motif Applications to Qt

®

Scenarios and Advice for a Smooth Migration

Table of Contents

Introduction... 4

Reasons for porting... 4
Evaluating the state of your application.. 4

Anatomy of an application.. 5
Hello Motif, Hello Qt.. 6

Toolkit Comparison .. 7
Widget-set comparison ... 7

Mapping of common UI objects ... 7
Menus and Options ... 8
Dialogs .. 8
Complex widgets .. 8

Layout Management ... 10
Event Handling ... 11
Look and Feel ... 12
Development environment.. 13

Language, compilers, libraries.. 13
Distribution, Installation and Documentation... 13

Interclient communication .. 14
Selection and Clipboard.. 14
Drag and Drop... 14

Automation: GUI builder.. 15
Scripting: QSA, PyQt, Tq ... 15
Testing and Inspection .. 15

I18N, Session Management and Help... 16
Internationalization ... 16
Session Management .. 16
Help... 17

Extras .. 17
Porting your application.. 17

Port or Redesign?.. 18
Gradual migration using the Qt Motif Extension ... 18
Porting Strategies for Applications... 19

Hand-written GUI ... 19
GUI-builder generated .. 19
C-based ... 19
Graphics heavy.. 19

Copyright © 2004-2006 Integrated Computer Solutions, Inc. 54 B Middlesex Turnpike, Bedford, MA 01730

www.ics.com Phone: 617.621.0060

 3

Custom widgets... 21
Get Help .. 22
Qt Training, Advanced Qt Components and Testing Tools ... 23

QicsTable™ ... 23
GraphPak™ .. 23
KD Executor™... 23
KD Tools™ .. 23
KD Gantt™ .. 24
Motif to Qt Migration Assessment ... 24

About ICS ... 25

Copyright © 2004-2006 Integrated Computer Solutions, Inc. All rights reserved. This
document may not be reproduced without written consent from Integrated Computer
Solutions, Inc. Qt is a registered trademark of Trolltech AS. QicsTable and GraphPak
are trademarks of Integrated Computer Solutions, Inc. All other trademarks are property
of their owners.

Copyright © 2004-2006 Integrated Computer Solutions, Inc. 54 B Middlesex Turnpike, Bedford, MA 01730

www.ics.com Phone: 617.621.0060

 4

Porting X/Motif Applications to Qt
®

Scenarios and Advice for a Smooth Migration

Introduction
X/Motif-based applications in general have been limited to Unix™ based platforms.
Implementation inconsistencies and vendor-specific “enhancements” made porting the
same application on variants of UNIX a time consuming and costly task. The
complexities of development environments, programmer skills set, and deployment for a
GUI-heavy large application coupled with Motif’s heavy dependence on X/Xt, prohibits
many organizations from expanding their user base to alternate platforms.

The Qt application development framework from Trolltech is gaining popularity among
developers as a full-featured, multiplatform, C++-based toolkit. It is easy to use, has a
rich set of widgets and is well documented and supported.

In this article, we will examine some common scenarios encountered when attempting to
port applications from X/Motif to Qt and offer some advice on how to make the process
smoother. We begin by identifying some reasons and possible benefits of porting to Qt.
The next chapter takes a look at the anatomy of applications built using the two toolkits
and compares the features of the two toolkits. The third chapter offers advice and
conversion strategies for different types of applications. We conclude by pointing to
resources for help.

Reasons for porting
The primary reason organizations decide to port their application to Qt is to make their
applications available on multiple platforms. Other possible reasons cited are:

• You are getting around to porting to Motif 2.1 and have a lot of older custom

widgets that will require a rewrite anyway.
• You want to write cleaner, type-safe, object-oriented code in C++ without using

static callback functions that use the typeless void *.
• Want to write custom widgets without having to go through a large manual and

writing 10000 to 20000 lines of code per widget.
• You want professional support, quick fixes and frequent releases for the toolkit.
• You are saving cost by moving to lower cost Linux boxes and have some resources

available to port to Qt and hence other platforms to expand your user/market base.

Evaluating the state of your application
There are several costs and concerns associated with porting to a new toolkit. Available
resources need to be approximated and the projected costs need to be analyzed in
conjunction with potential benefits and gains to make a successful and justifiable
transition from one toolkit to the other. If you are just starting out, you should get an
evaluation license for Qt and get familiar with the API by experimenting with some

Copyright © 2004-2006 Integrated Computer Solutions, Inc. 54 B Middlesex Turnpike, Bedford, MA 01730

www.ics.com Phone: 617.621.0060

 5

sample code and tutorials. Evaluate your existing applications and future needs based on
the following factors:

• Complexity of the existing application: Consider architectural complexity, line and

file count. Motif applications tend to be “verbose”.
• Data complexity: Sources of data. Drivers for data sources.
• Unusual device dependency: Tablets, dials and button boxes.
• Handwritten GUI code vs. Builder-generated UI code: Qt comes prepackaged with

a GUI builder but easier translation may depend on some support from your
existing Motif GUI builder.

• Available time and resources: Do you have sufficient time available for the porting
effort? Keep in mind that the current Motif application will continue to need
support and fixes during the porting. Do you need to hire additional programmers
with C++ expertise? You may need machines to build and test on other platforms.

• User expectations: You need to communicate to the users the future directions that
you are taking. Keep them in the loop and solicit feedback from them for needed
enhancements. Give them some value added features and not just a simple
conversion. It is easier to keep your existing customers than to acquire new ones.

After this initial evaluation, you should have a pretty good idea on the number of licenses
and platforms for which you need to develop. In a later chapter we will discuss strategies
best suited to specific categories of applications. First, let us look at general differences
between the two toolkits.

Anatomy of an application
Motif and Qt both have their roots in the X Window System and use the same event-
driven application model as X. This commonality, combined with similar basic widget
sets with hierarchical parent-child relationships, makes the porting viable.

The applications execute code in response to an event. The event can be caused by a
device (operated by the user), by a timer or internally from within the code. The event is
intercepted by the window manager and dispatched to the appropriate widget via the
application. The widget responds by executing some procedure and the whole cycle
repeats in an event-loop until the application is terminated.

In Motif, the application can define callback procedures and add them to the widget’s list
of procedures. These procedures are executed when the right event is triggered. Action
routines and event handlers are some of the other methods in Motif/Xt to allow finer
control of event processing.

Qt provides an alternative to the callback procedures using a signals and slots
methodology. Signals are emitted by widgets in response to an event. Slot procedures are
connected to signals in a type-safe manner. Beyond this initial connection, the objects
have no knowledge of each other.

Copyright © 2004-2006 Integrated Computer Solutions, Inc. 54 B Middlesex Turnpike, Bedford, MA 01730

www.ics.com Phone: 617.621.0060

 6

Another area where the toolkits differ is the layout management of the widgets. In Motif,
the manager widgets are used as parents. The manager widgets are responsible for the
layout of the child widgets. In Qt, layout is independent of the widgets. This flexibility
allows the programmer to create arbitrary layouts although the supported layouts are
sufficient for most uses.

The following table highlights the similarities using a very high level comparison of the
toolkit methods needed to implement a basic application.

Description Motif Qt
Intialize XtAppInitialize QApplication()
Create Widgets XmCreate<WidgetName>() Q<WidgetName>()
Event Response XtAddCallback() QObject::connect()
Show widget XtRealizeWidget() QWidget::show()
Enter the Event Loop XtAppMainLoop() QApplication::exec()

Hello Motif, Hello Qt
In the following table, minimal but complete programs to compare the basic styles of
applications using Motif and Qt are presented.

Simple Motif Program with Callbacks Simple Qt Program with Signals & Slots

void toggleChangedCB(
 XmToggleButton tb,
 int data,
 XmToggleButtonCallbackStruct *tbInfo)
{
 bool toggleVal = tbInfo->set;

 cerr << "The button state is: "
 << toggleVal << endl
 << "The app data is: "
 << data << endl;
}

int main(int argc, char **argv)
{
Widget topLevel, tb;
XtAppContext app;

 topLevel = XtAppInitialize(&app,
 "Example", NULL, 0,
 &argc, argv, NULL, NULL, 0);

 tb = XmCreateToggleButton(topLevel,
 "Hello Motif",
 NULL,
 0);

 XtAddCallback(tb,
 XmNvalueChangedCallback,
 (XtCallbackProc) toggleChangedCB,
 (XtPointer) 42);

 XtRealizeWidget(topLevel);
 XtAppMainLoop(app);
}

class SomeObj : public QObject
{
Q_OBJECT
public:
 SomeObj(int objData)
 : QObject(0, "SomeObject"),
 _objData(objData)) {};
public slots:
 void toggled(bool toggleVal);
protected:
 int _objData;
};

void SomeObj::toggled(bool toggleVal) {
 cerr << "The button state is: "
 << toggleVal << endl
 << "The app data is: "
 << _objData << endl;
};

int main(int argc, char ** argv) {
 QApplication app(argc, argv);
 QPushButton tb("Hello Qt");

 tb.setCheckable(true);
 tb.setChecked(true);
 tb.show();

 SomeObj myObject(42);

 QObject::connect(
 &tb, SIGNAL(toggled(bool)),
 &myObject, SLOT(toggled(bool))
);

 return app.exec();
}

Copyright © 2004-2006 Integrated Computer Solutions, Inc. 54 B Middlesex Turnpike, Bedford, MA 01730

www.ics.com Phone: 617.621.0060

 7

Toolkit Comparison

Widget-set comparison
The following section, offers a comparison of most of the widgets in Qt. You can use this
list as a general guide when porting your application.

Mapping of common UI objects
Functionality Motif Qt Major Differences
Text/Pixmap Label XmLabel QLabel QLabel can also display

RichText or a Movie
PushButton,
ToggleButton

XmPushButton,
XmToggleButton

QPushButton Same class offers both
kinds of functionality.
Otherwise similar.

Radio Button,
CheckBox

XmToggleButton
-XmRowColumn

QCheckBox,
QRadioButton
(QButtonGroup)

In Motif, the parent
RowColumn’s resources
dictate the behavior

Scrollbar XmScrollBar QScrollBar Very similar
Scale XmScale QSlider Very similar
List of items XmList,

XmContainer
QListView QListView can do

multicolumn, hierarchical
lists of arbitrary type.
Motif XmList is limited to
single column, linear list of
XmStrings but
XmContainer is as
powerful.

Single Line Text Field XmTextField QLineEdit QLineEdit supports
RichText, encrypted entry,
validator & built in
undo/redo

Text XmText QTextEdit Same as above, plus a
LogText mode for very
large amounts of text.

Horizontal/Vertical
Tiled Windows

XmPanedWindow QSplitter Very similar

Spin Box XmSpinBox QSpinBox Very similar

Copyright © 2004-2006 Integrated Computer Solutions, Inc. 54 B Middlesex Turnpike, Bedford, MA 01730

www.ics.com Phone: 617.621.0060

 8

Menus and Options
Functionality Motif Qt Major Differences
Horizontal Menubar XmMenuBar QMenuBar QMenuBar has several

insertItem methods
Pulldown Menu XmPulldownMenu QPopupMenu
Popup Menu XmCreatePopupMen

u
QPopupMenu

Qt provides a cleaner
abstraction using
QPopupMenu as the
common object for
pulldowns and popup

Option Menu, Combo Box XmComboBox,
XmOptionMenu

QComboBox Qt uses ComboBox for
both

Dialogs
Both toolkits provide a similar and rich set of built-in dialogs for various tasks. In Motif,
dialogs are usually created using one the numerous convenience XmCreate*Dialog
functions. Qt provides some complex dialogs that are not available in Motif, these
include, QColorDialog (to choose colors), QFontDialog (to choose fonts), QWizard (a
framework for a sequence of dialog pages) and QTabDialog (similar to QWizard but the
user is free to choose non-sequentially.) The dialogs can be modal or modeless in both
toolkits. Dialog comparison is presented in the following table:

Functionality Motif Qt
Error XmCreateErrorDialog QErrorMessage
Information XmCreateInformationDialog QMessageBox
Question XmCreateQuestionDialog QMessageBox
Warning XmCreateWarningDialog QMessageBox
Progress XmCreateWorkingDialog QProgressDialog
Simple Input XmCreatePromptDialog QInputDialog
File Chooser XmCreateFileDialog QFileDialog
Item Chooser XmCreateSelectionDialog Not Available, use QListBox
Command History XmCreateCommand Not Available
Generic/Custom XmCreateMessageDialog QDialog

Complex widgets
• Main Window: The Motif MainWindow widget provides a predefined layout that

most applications should use as suggested by the style guide. The main window
consists of a menu bar at the top, followed by a scrollable and resizable work area
(the main interface of the application), an optional command area below the work
area where the users can enter commands and a message area at the bottom to
display status messages and to provide feedback to the user. The Qt main window
widget (QMainWindow) is similar. In addition to the menu bar, it provides areas

Copyright © 2004-2006 Integrated Computer Solutions, Inc. 54 B Middlesex Turnpike, Bedford, MA 01730

www.ics.com Phone: 617.621.0060

 9

for multiple dockable toolbars (four dock areas are automatically built). Any Qt
widget can be the work area (called the central widget). A status bar at the
bottom is also included.

• OpenGL: Qt provides a cross platform GUI interface for OpenGL rendering
similar to the GLwMDrawingAreaWidgetClass in Motif. The Qt version has
higher level functionality in terms of overlay plane rendering, string and pixmap
support. A detailed description is presented in a later section.

• Table: QTable widget in Qt provides basic spreadsheet like functionality. For the
ultimate in Qt based table widget functionality and flexibility in data modeling,
ICS has a QicsTable widget. Commercial add-on packages for Motif have been
available for some time. Motif 2.0 onwards, the XmContainer widget can be
configured for use as a table.

• Iconview: QIconView widget in Qt can be used to create interactive graphical file
browser or album like applications using movable icons. XmContainer
introduced in Motif 2.0 can provide similar functionality when properly
configured.

• Workspace: The QWorkspace widget provides a Multiple Document Interface
(MDI). In such applications, the main window behaves like a mini window
manager and may contain several other widgets (usually of the same type), that
represent the document being viewed or edited. Automatic focus switching,
activation and layout management is also supported. Motif does not have anything
similar but a simple open source implementation is available from the X
contribution site.

• Tab Widget: QTabWidget is similar in functionality to The XmNotebook
(introduced in Motif 2.0) widget and provides a widget stack

• Canvas: QCanvas in Qt is a module available only with the Enterprise Edition. It
provides optimized object-based 2D graphics with support for animation, collision
detection and multiple views. The Motif drawing area is normally used to
implement such functionality but the Canvas allows you to do much more with
less code.

• Frame: Although not a complex widget, it causes a lot of confusion to beginners
trying to port the usage from Motif where the XmFrame widget is used as a
container that hosts one child inside a border drawn by the frame widget. In Qt,
the QFrame widget provides a similar frame but it is meant to be used a base class
widget. The subclass is responsible for making sure that there is enough area
around the QFrame part so that the border is not obscured by the child widget. In
Qt, the QGroupBox should be used to provide similar functionality. Alternatively,
developers can use widgets like QHBox or QVBox that are already based on
QFrame.

There are several other widgets in Qt that don’t have a direct counterpart in Motif. A few
of these are listed below:

• QDial: Similar to a slider/scale widget but round in shape with wrap around

ability.
• QLCDNumber: For stylized display of numbers.

Copyright © 2004-2006 Integrated Computer Solutions, Inc. 54 B Middlesex Turnpike, Bedford, MA 01730

www.ics.com Phone: 617.621.0060

 10

• QDateTimeEdit: These are like the spin box but specialized for date and time
editing with built-in validators.

• QToolBox: Similar to a tab widget, useful for space saving configuration dialogs.
• QToolBar, QToolButton: To create a movable panel of frequently used actions.
• QDockArea, QDockWindow: To create dockable, movable panels of widgets for

providing end user layout control in applications.
• QSplashScreen: This widget is useful for displaying an animatable graphic and

progress during application startup.
• QsvgWidget: Makes displaying SVG static and animated drawings as easy as a

bitmap image.
• SVG graphics now supported: SVG (an XML 2D graphics format) rendering

can be directed into any QPaintDevice, and can make use of hardware accelerated
rendering using Open GL.

Layout Management
In Motif, special widgets, based on XmManager widget, control the resize behavior and
the layout of children widgets. They vary in the degree of constraint they impose on the
children. In Qt, layouts are not widgets but are C++ objects that determine the size and
position of the widgets within a parent container. The children can provide size and
alignment hints that the layout can use. A few common Motif layouts along with
suggestions for porting them to Qt are listed below:

• XmBulletinBoard: This is the simplest manager widget to convert as it does not
control the size or position of its children. The absolute positions and sizes can be
specified in Qt using the setGeometry call. Qt’s GUI builder, Qt Designer, can be
also used effectively for such layouts.

• XmScrolledWindow: Use Qt’s QScrollView widget’s viewport as the parent and
add the child widget to the QScrollView widget using the addChild method.

• XmRowColumn: Use QHBoxLayout (organizes widgets in a row) or
QVBoxLayout (organizes children in a column) for simple layouts. The
QGridLayout object provides more flexibility but is a little more complex to use.
These layouts also come as convenience widgets (QHBox, QVBox and QGrid)
that include the corresponding layouts. These widgets can be easier to use when
transitioning from Motif but you lose some flexibility.

• XmPanedWindow: Use the QSplitter widget for almost identical functionality.
• XmFrame: Use QGroupBox. Do not use the QFrame widget directly.
• XmRadioBox: Use the QButtonGroup widget.
• XmForm: The XmForm widget in Motif is an extremely powerful and complex

widget that uses a constraint based approach to geometry management. Various
resources on parents and children are used to specify the layout and resize
behavior of the children.

• Experienced Motif developers know and use the XmForm widget very well and
feel crippled and frustrated when they don’t see something equivalent in Qt. Qt’s
layout management is more general and one can use it to create XmForm like
behavior but in our opinion, the better technique is to truly understand the layout

Copyright © 2004-2006 Integrated Computer Solutions, Inc. 54 B Middlesex Turnpike, Bedford, MA 01730

www.ics.com Phone: 617.621.0060

 11

behavior of your widgets and implement the overall behavior rather than focus on
one-to-one conversion. A combination of correct layouts objects and attributes on
widgets like sizePolicy, stretchFactor, minimum/maximumSize/Hint can provide
the desired result.

Some tips for layout management troubleshooting:

• Use the Designer. Experiment with various widgets and layouts and observe how
they behave. Avoid setting explicit geometry. Generate the source code to see
how you can incorporate something similar in your code.

• Use simple QWidgets with bright disparate background colors or labels for all
widgets in a layout. This makes it easy to visually spot problem areas.

• You may have to subclass certain widgets to override the sizeHint and
minimumSizeHint values to be able to resize them properly.

Event Handling
Developers have varying views of the event handling mechanisms in Motif depending
upon their experience and exposure. This is because of the three layers of toolkits (X11,
Xt & Motif) and the levels of abstraction provided by them, which can be used (often in
the same application) for event handling. This section describes the common event
handling methods in Motif applications and shows how they can be adapted to Qt’s event
handling.

Overview:

• At the basic level, each widget instance contains a translation table that maps
events to procedure names. Another table, the action table, maps procedure names
to actual procedures. When an event gets dispatched to a widget, the
corresponding action procedure is invoked.

• In Qt, events are delivered to objects derived from the base QObject class using
the QObject::event interface.

Do Nothing:

• In Motif, widget instances “inherit” built-in event handlers that take care of the
basic behavior (for example, pressing the backspace key in a text widget erases a
character).

• In Qt, the C++ inheritance model takes care of the default behavior of widget
instances/subclasses.

Behavioral Events:

• Widgets that anticipate behavior augmentation allow the programmer to add
procedures and data for certain combination of events. For example, for an
XmPushButton, the callbacks in the XmNactivateCallback list are called when the
user presses and releases the active mouse button while the pointer is inside the
widget. For most applications, use of these callback lists and procedures are
sufficient.

Copyright © 2004-2006 Integrated Computer Solutions, Inc. 54 B Middlesex Turnpike, Bedford, MA 01730

www.ics.com Phone: 617.621.0060

 12

• Qt has signals and slots. A signal is emitted when an event occurs. A slot is a
method that is called in response to a signal. A signal from an object can be
connected to a slot in any other object as long as the signature and the type is
compatible. Most built-in widgets emit signals on events that are meaningful to
their functionality. For example, a QPushButton emits a clicked signal when the
user presses and releases the active mouse button while the pointer is inside the
widget. Slots that are connected to the signals are used to add the functionality.

Finer Control:

• For finer control over event handling, the translation tables and actions procedures
can be changed or added to Motif widgets.

• Additional signals can be easily added in subclassed Qt widgets.

Direct Dispatch:
• A Motif application can register event handler procedures with the Xt event

dispatcher for a particular widget. These procedures are called before (and can
preempt) the ones in the translation table.

• The QObject::event virtual method can be overridden to bypass or to add event
handling for a widget. Most Qt widgets also have several event handling methods
that are at a higher level of abstraction and can be overridden without completely
changing the behavior of a widget through the lower level QObject::event
method. A widget can observe (and usurp) another widget’s events using the
QObject::eventFilter, QObject::installEventFilter methods.

More Control:

• Some applications also grab the keyboard, pointer, or the entire server for
specialized event handling. It is also possible to go down to the level of X11 to
peek at, extract, resend events from the event queue.

• In Qt, more control can be exercised using the available methods on the main
application object to manipulate the event loop or by installing an application-
wide event filter. Creation and dispatch of custom and non-gui events is also
possible.

Look and Feel
On the MotifZone page, there is a survey that lists New Motif Look & Feel as the most
important feature for Motif 2.4. In the past, vendors have tried to give their own unique
look to Motif (most notable, the SGI look) but user control has been limited to
manipulation of font, color and other resources.

Qt provides control over the look and feel of applications via the QStyle interface. There
are reasonable defaults for all major platforms. The QStyle interface lets the developer
define alternate visual representation of different primitives, controls and complex
widgets. Overall metrics such as thicknesses, widths, and spaces can also be controlled.
Within an application, each widget can be given a different style (not recommended), or

Copyright © 2004-2006 Integrated Computer Solutions, Inc. 54 B Middlesex Turnpike, Bedford, MA 01730

www.ics.com Phone: 617.621.0060

 13

the style of the whole application replaced by a custom style. Styles can also be installed
as plug-ins. These can then be used by applications at run time when properly configured.

Development environment

Language, compilers, libraries
If you are using KDE as your graphical desktop environment, you should know that KDE
is built upon the free version of the Qt toolkit. In addition, most distributions of Linux
include the free version of the toolkit. If you are a paying customer of Trolltech, it is
highly recommended that you get the toolkit in source format and build it for the
platforms for which you have valid licenses. You can tailor the build and installation to
suit your needs. It is customary to set the QTDIR environment variable to point to the
installed location. Do not forget to set the paths properly to avoid picking up the wrong
library or headers.

The Qt toolkit includes a build system called qmake. Qmake is a Makefile generator that
takes care of managing variations in compiler and platform dependencies. Qmake is used
to build the Qt toolkit. It also supports special constructs for meta-object file generation
using moc and code generation from user-interface files using uic.
Large X/Motif applications (and the X/Motif toolkits themselves) have traditionally been
built using Imake and its associated configuration files that are used to generate the
Makefiles to build the project. The Imake configuration files that are included with X11
are numerous and complex. Imake uses the C preprocessor under the hood and the
configuration file constructs do not allow for much processing beyond the macros and #if
statements. Despite the complexity and hard to find documentation, Imake has been
successfully used to build X11, Motif and other large products on various Unix-based
platforms with different compilers. The qmake .pro files are similar in concept to
Imakefiles. There are built-in templates for binaries, libraries, hierarchical subdirectories,
etc. that are akin to the ones in Imake .rules files. Qmake is much superior to Imake in its
processing power achieved via the many operators, functions and support for regular
expression matching.

If you don’t want the additional burden to convert existing makefiles or if you have other
non-gui based products and would like to keep using your current build system, the rules
for moc and uic can be incorporated directly into makefiles or as Imake rules.

Qt is C++ based, and works with g++ and the native C++ compiler on most variations of
Unix. The KDevelop IDE makes Qt widgets (and many KDE extension widgets)
available through its interface. A tighter integration with other IDEs is promised in
version 4.0 of Qt.

Distribution, Installation and Documentation
Trolltech makes the Qt toolkit available in source form. Many products based on Qt use a
licensing model similar to Trolltech’s and make their source code available to the buyers.
By providing the source code and build instructions to the customer, it is easier to support

Copyright © 2004-2006 Integrated Computer Solutions, Inc. 54 B Middlesex Turnpike, Bedford, MA 01730

www.ics.com Phone: 617.621.0060

 14

multiple platforms and versions as you don’t have to re-build and re-release your product
for each small variation. You also get the added benefit of better bug reporting and
suggestions for improvements.

If you prefer, you can also distribute just the executables and shared libraries for your
product if you are a paying customer for Trolltech.

Doxygen is an open-source documentation package for C++ capable of generating rich
hyperlinked documentation in a variety of formats. The documentation is generated
automatically from tags and comments embedded in the source code. It understands
signals and slots constructs and even has a front-end written in Qt to edit the
configuration file. Doxygen is available from http://www.stack.nl/~dimitri/doxygen/

Interclient communication

Selection and Clipboard
X Window supports both a Primary selection and a Clipboard selection. The Primary
selection enables availability of data as soon as it is selected. The Clipboard provides
more traditional support by making data available that has been explicitly placed in the
clipboard using a copy or a cut operation. Qt has built-in support for both kinds of
selections using the QClipboard class. The DragObject data model as described below
can be used to convert selection data during copy or paste operations.

Drag and Drop
Drag and Drop can be used to transfer data within and between applications. Although
similar in principle to copy and paste, the interaction from user’s perspective is more
direct. It could be as simple as selecting and moving text around in a document or as
complex as automatically converting between different representations of data. Motif’s
support of drag and drop is implemented on top of the selection mechanisms provided by
Xt and the X Inter-Client Communications Conventions Manual (ICCCM). Motif uses
non-visible widget-like objects (DragContext, DropSite, DropTransfer, DragIcon) to
facilitate drag and drop. Drag sources and drop sites use Atoms to specify the supported
data formats. The complexity of the drag and drop in Motif is also increased by the need
to repeat the data conversion code each time for selection, clipboard and drag & drop
transfer. The Uniform Transfer Model (UTM), in Motif 2.0 and onwards, has eased
things a bit but drag and drop remains cumbersome to support in Motif and most
applications end up just using the default support in Text and Label widgets.

Under X11, Drag and Drop support in Qt is based on the XDND protocol. It can also
handle drops made using the Motif drag and drop protocol. XDND is safer in terms of
potential data corruption and race conditions. The Qt abstraction provides a DragObject
base class that can be used to represent data. The DragObjects are independent of the
drop sites and use MIME types instead of Atoms to signify data formats. As with the
UTM in Motif, the same mechanism can be used to transfer data to the clipboard or even
for automatic translation during file IO. Desktop drag and drop is supported using the
QDesktopWidget that spans the virtual desktop or the primary screen. Left mouse button

http://www.stack.nl/%7Edimitri/doxygen/

Copyright © 2004-2006 Integrated Computer Solutions, Inc. 54 B Middlesex Turnpike, Bedford, MA 01730

www.ics.com Phone: 617.621.0060

 15

is generally used to initiate drag in Qt applications in keeping with its multiplatform
support rather than the Motif style-guide recommended middle mouse button.

Automation: GUI builder
Qt comes with a GUI builder named Qt Designer that allows you to design Qt based
applications, widgets, dialogs and other UI elements. It also lets you connect the signals
with slots and program the application behavior using a built in syntax-highlighting text
editor. The GUI description can be saved in XML format and then converted into C++
header and implementation files via a supplied generator binary (User Interface Compiler
[uic]). It is advised that you keep the generated code untouched and use the Generation
Gap pattern of subclassing to extend the behavior of the generated classes instead of
modifying the generated code. You can also add custom widgets to Qt Designer for reuse
in other applications.
Most simple applications (and applications that mostly display data in various dialogs and
forms) are much easier to convert using Qt Designer. Using editres, it is possible to write
the complete hierarchy of the widgets from a Motif application. Duplicating this
hierarchy for simple widgets is relatively straightforward using the comparisons and
features of widgets as described earlier in this article.

Scripting: QSA, PyQt, Tq
QSA (Qt Script for Applications) is another product available from Trolltech that can
make Qt-based applications scriptable. There is nothing quite like it in the Motif world.
tclMotif, Wafe, Winterp etc. don’t quite measure up. QSA has more in common with
VBA (Visual Basic for Applications) on the Windows platform. The QSA script is based
on ECMAScript and can be used to program and interact with a Qt application. The
product also comes with a simple IDE and a Dialog Framework to extend any supported
application.

PyQt, a third party product provides Python language bindings for the Qt toolkit and
allows for scripting of Qt applications. Tq is yet another product that allows Tk and Qt
event loops to coexist in a single application.

Testing and Inspection
Various commercial packages have been available for automated testing of X/Motif
based applications. These range from event level “capture and playback” to object
(widget) level interaction recording and playback (Centerline, Software Research Inc.,
XRunner). QTestLib, a recently added standard part of Qt, is an application and library
unit testing framework. KD Executor from ICS also provides an easy way to perform
thorough regression testing. QSA, described earlier, can also be used in a limited way to
automate testing.

Editres has long been a favorite tool of Xt/Motif developers due to its ready availability
and its seemingly simple yet powerful features. Most developers have used editres as a
debugging tool for application resources like color, layout, geometry, fonts etc. and to
examine and “learn” from the widget hierarchy of complex applications. When you port

Copyright © 2004-2006 Integrated Computer Solutions, Inc. 54 B Middlesex Turnpike, Bedford, MA 01730

www.ics.com Phone: 617.621.0060

 16

your application to Qt, similar functionality can be added with very little extra code by
utilizing the object-oriented nature and the natural widget hierarchy of the Qt toolkit. If
you are an Enterprise licensee, Trolltech provides a set of custom components and tools
(Qt Solutions) free of charge. One of these solutions, Object Inspector provides editres-
like functionality. In addition to the current resource (property) values, it also shows the
connection graphs for callbacks (signals and slots) and reports their activation as they
happen.

I18N, Session Management and Help

Internationalization
Most application writers incorrectly assume that internationalization involves just
converting all the strings displayed in the user interface. I18N should also include
conversion of currency, time, date and data formats as well as culture and country
appropriate icons, bitmaps and cursors. Qt provides I18N support by a combination of the
following four mechanisms:

• QString: Uses Unicode (a simple encoding for every character) for text
processing.

• QObject::tr(): For ensuring translation for all user visible string.
• Tools:

o lupdate: To extract translatable information from source files.
o linguist, a simple application for translators to convert extracted data from

lupdate.
o lrelease: to create compact binary lookup table to be used at application run-

time.
• Support for various languages using Qt’s text engine for all input (QTextEdit,

QLineEdit) and display (QLabel) controls.

There is also support for encodings other than Unicode. Localization support can be
provided by creating keywords for formats and storing them as translations. One nice
feature is that Qt Designer created GUIs automatically allow for dynamic localization, so
a developer can very easily create applications that will change their displayed language
on the fly, at run time.

Session Management
On X Windows, client applications can participate in session management by registering
themselves with the Session Manager using the X Session Manager Protocol. Client and
Session Manager communicate using the protocol to initiate requests for saving states,
terminating, checkpointing etc. Session Manager also provides for grouping of instances
of a single application and for uniquely identifying instances. Qt provides full support for
the X Session Manager by encapsulating the protocol details in the QSessionManager
class. Application state can be saved using QSettings.

In practice, we have found that although the functionality provided by the X Session
Manager is powerful, not many end users run the X session manager (or even know about

http://www.unicode.org/standard/WhatIsUnicode.html

Copyright © 2004-2006 Integrated Computer Solutions, Inc. 54 B Middlesex Turnpike, Bedford, MA 01730

www.ics.com Phone: 617.621.0060

 17

it). It is more likely that you will end up developing a simpler session management
system that is more localized for your application and is not bound to a system level
service. One such mechanism, as employed in the Viewkit toolkit, is to call an okToQuit
method on each top level window in the reverse order of their creation on termination.
When all the top level windows have returned true (and saved all the state data), the
application safely exits.

Help
Help is one area where Motif has been behind all the modern user interface toolkits.
There is not much support beyond the cumbersome help callback, the XmTrackingLocate
for context sensitive help and the recently added XmtoolTipString resource.

Users have come to expect four kinds of help in an application. The ToolTip help that
appears temporarily when the user hovers over a control, the message line help that
appears immediately in the status line at the bottom of the application when the mouse is
over a control, context sensitive help, usually a longer version of the tool tip when the
user presses the F1 key over a control and finally a full fledged index, hyperlinked
detailed help with usage guide and a search facility (usually available from the Help
menu). Qt provides support for all the above kinds of help using easy to use classes.
(QToolTip, QStatusBar and Qt Assistant)

Extras
Qt comes with support for a lot of things that are not necessarily GUI related but they
make the task of writing modern applications much easier. There are classes for I/O and
networking client and server support for various protocols, image processing and
encoding, XML/DOM parsing, date & time, SQL database and even an STL-like
template library. Additionally, there are classes for text editors that do syntax
highlighting, tree and table viewers that work with a model – view – control (MVC)
paradigm to allow multiple different views synchronized to the same data. Qt also
provides it own Java style multi-threading module. Finally, Qt has its own resource
system that basically allows anything that can be treated like a file to be compiled into
memory resident virtual file system.

Porting your application
We recommend that you find the smallest Motif-based application that you have in your
organization and attempt to port it first. Take the small application all the way from
changes in build environment to a full fledged Qt-based application written in C++. After
the conversion, add a few new features. Note down your experiences and stumbling
blocks. Ideas and concepts those were difficult to translate for a small application may
require you to learn new techniques or seek expert help.

You should try a larger application next. You will learn that there are no hard and fast
rules for the conversion process. Methods that work for one application are not

http://doc.trolltech.com/3.2/assistant.html

Copyright © 2004-2006 Integrated Computer Solutions, Inc. 54 B Middlesex Turnpike, Bedford, MA 01730

www.ics.com Phone: 617.621.0060

 18

necessarily going to work for the other. In some cases you might even end up with a
radically different set of functionality or UI for of the application. In all cases, except the
simplest, the porting process will not amount to a widget-for-widget swap.

The experimentation will allow the developers to learn faster than they would otherwise
learn from a book or from examples. Teams of developers can learn from each other and
discover Qt features and capabilities. All this work will prepare you to tackle large
applications and curb your urge to dive in and start modifying the code without a plan.

Port or Redesign?
The porting effort can have a large impact on the architecture of a complex application. It
is important that such applications be re-architected instead of employing a strategy of
widget-by-widget conversion. In a lot of cases this might mean throwing away or
rewriting large portions of the code that are not GUI specific. Instead of looking at it as
wasted effort, take the opportunity to modernize the architecture of your application.
Perhaps you can make use of concepts and features that were not available when the
application was originally written. You can now incorporate features requested by
customers that you could not provide earlier because of the rigidity of the architecture.

From our experience we have noticed that Qt almost forces you write code in an object-
oriented fashion. The signals and slots mechanism frees you from having to use static
methods and typeless data transfer. Another design aspect often talked about in GUI
development circles but seldom implemented correctly is the Model-View-Controller
(MVC) architecture. Separating the visual representation (View) from the data (Model)
has numerous advantages. There is more work upfront but gains in productivity and
cleanness of design outweigh the effort. ICS’s Table widget (qicstable) is a very good
example of the use of MVC architecture in a real widget. Qt is incorporating the
technique in few of the data-driven widgets to provide multiple views and responsive
GUIs using a common data model abstraction for future releases.

Gradual migration using the Qt Motif Extension
Qt provides some extra widgets and glue code to help ease the transition from Motif/Xt
based applications to Qt. QMotif initializes Xt and creates an application context.
QMotifWidget can be used as a wrapper for creating parent Xt/Motif widgets.
QMotifWidget behaves like a QWidget but can be used as parent for other Xt/Motif
widgets. Similarly, there is a QMotifDialog class that provides QDialog functionality for
Xt/Motif dialogs. Using these classes, you can “wrap” your Motif widgets around Qt
widgets thereby allowing you to focus on first getting the application infrastructure
converted to Qt and then tackle the widgets.

Another route to follow is to use Qt for all new functionality in the application. This can
be achieved by passing the application context of the Motif application to the QMotif
constructor. You can then create a QApplication object. Once the QApplication object is
available, Qt widgets can be created at will. This technique is good for adding Qt based
“plugins” to your Motif application and can also be used with third party applications that

Copyright © 2004-2006 Integrated Computer Solutions, Inc. 54 B Middlesex Turnpike, Bedford, MA 01730

www.ics.com Phone: 617.621.0060

 19

don’t support Qt directly. For example, in Maya (a high end 3D application) you can get
hold of the main view widget and use the XtWidgetToApplicationContext call to get the
application context, allowing you to create richer and more responsive user interfaces
than those possible with Maya’s scripting language MEL.

Porting Strategies for Applications

Hand-written GUI
Hand written GUI usually means that the layout of widgets is very dynamic. These
involve custom layout or constraints that would be hard to implement using a GUI
builder. Qt provides a layout engine that is very versatile. In addition to the many
standard layouts, custom layouts can be implemented as long as the algorithm can be
cleanly described and abstracted. If widgets are created/deleted and mapped/unmapped in
the GUI as a result of user interaction, you have to make sure that your widget hierarchy
in Qt is correctly maintained and layouts are properly parented (recall that layouts are
independent of widgets) for proper destruction of widgets.

GUI-builder generated
These kinds of applications, such as those built using BXPRO from ICS, are easier to
convert and your vendor may be able to provide you with special assistance with the
conversion process. Most GUI builders save the GUI representation in a simple format
that is easy to parse. It is not very difficult to write a script that can parse this description
and can convert it to the XML-based format that Qt can use with its GUI builder,
Designer. Some GUI builders are capable of generating source code for different kinds of
applications from the same description; you may want to contact your vendor to see if
they can add Qt as one of the formats.

C-based
If your Motif-based application is written in C, a major part of the effort required to port
it to Qt will be expended in converting the application to C++. It is recommended that
programmers take a course in object-oriented design using C++ to effectively use C++ as
an expression of object-based design rather than using the C++ compiler but retaining C-
like code. GUI toolkits are well suited for learning object-oriented principles because of
the way widget hierarchies naturally fall into an object oriented design. Event handling
and widget drawing use well known patterns from object-oriented design. Qt toolkit
comes with all the source code. It is well written and well documented code. Many
beginners utilize patterns and best practices found in the Qt source and code examples in
their own applications.

Graphics heavy
More and more applications are making heavy use of graphics and colors not just for
display of data but for the user interface as well. The increasing power and dropping costs
of high quality graphics hardware has encouraged adoption of pleasing and responsive
interfaces. At the basic level, Qt supports drawing of text, pixmaps and advanced 2D

Copyright © 2004-2006 Integrated Computer Solutions, Inc. 54 B Middlesex Turnpike, Bedford, MA 01730

www.ics.com Phone: 617.621.0060

 20

graphics primitives such as points, lines, arcs, chords, ellipses, cubic Bezier curves and
polygons. These methods can be used to draw on any supported device, a widget, a
printer, a pixmap or a picture. The functionality provided is similar to that available using
the Xlib graphics calls.

For more advanced users, Qt also provides a Canvas module. A QCanvas can contain a
number of object-based QCanvasItems that can be drawn, manipulated, animated using a
sophisticated 2D transformation coordinated system. The Canvas module is much easier
to use than the Motif XmDrawingArea and the supporting Xlib drawing calls.

The OpenGL module that is included in the professional distribution of the Qt toolkit
provides support for hardware-accelerated advanced 2D/3D graphics. The OpenGL API,
by design, is independent of the underlying windowing system or operating system. The
Qt OpenGL module provides the same windowing and operating system independence
for the GUI needed to support an OpenGL-based application on all platforms. It provides
a wrapper for the GLX extension on the X Window system, WGL on Microsoft
Windows, and AGL on the OSX system.

X/Motif users will find this module a godsend. It streamlines the calls to specify OpenGL
configurations and visuals and allows Qt pixmaps to be used for off-screen rendering.
The Qt OpenGL widget also supports efficient bit-mapped text rendering, automatic
management of overlay visuals and texture image generation

Converting a X/Motif-based OpenGL is easier if you have been using the
GLwDrawingAreaWidgetClass. The QGLWidget api is somewhat similar as shown in
the following table. The OpenGL part obviously remains unchanged.

Motif GL Widget (GLwDrawingArea) Qt GL Widget (QGLWidget)
 . . .

 Arg args[10];
 int n;
 Widget parent;
 Widget glw;
 . . .
 n = 0;
 XtSetArg(args[n], GLwNrgba, TRUE);
 n++;
 glw = XtCreateManagedWidget("glw",
 GLwDrawingAreaWidgetClass,
 parent, args, n);
 XtAddCallback(glw,
 GLwNexposeCallback, exposeCB,0);
 XtAddCallback(glw,
 GLwNresizeCallback, resizeCB, 0);
 XtAddCallback(glw,
 GLwNginitCallback, ginitCB, 0);
 // input callback
 . . .

class OGLWidget : public QGLWidget
{
 Q_OBJECT
public:
..
..
protected:
 virtual void initializeGL();
 virtual void paintGL();
 virtual void resizeGL(int w, int
h);
..
..
};

Note: the input callback and the expose
callback functionality is provided by
standard QWidget event handling.

Copyright © 2004-2006 Integrated Computer Solutions, Inc. 54 B Middlesex Turnpike, Bedford, MA 01730

www.ics.com Phone: 617.621.0060

 21

If you are using X directly instead of Motif, i.e. using XCreateWindow with visual,
depth, Colormap and EventMask information to create the OpenGL window, the design
and code can be significantly simplified by using the QGLWidget. Use the QGLFormat
class to create custom GL display formats and the three virtual methods shown in the
table above to handle all drawing and update. For portability reasons, QGLWidget uses
1.2 version of the GLX api. This means that pbuffers and the newer GLX frame buffer
configuration (FBConfig) structures available in version 1.3 are not directly supported in
a platform independent way. You will have to allocate them directly and manage sharing
and switching contexts properly. The newer graphics cards also support RGB overlay
visuals instead of the color indexed overlays. You should override the default overlay
format (which is assumed to be color index) by using the static method,
QGLFormat::defaultOverlayFormat() in this case.

Custom widgets
Writing custom widgets in Motif has always been very complex. The knowledge,
experience and code required to create a custom widget in most cases is almost not worth
the effort. The Motif widget writer’s guide says, “…Complex widgets may easily require
10,000 to 20,000 lines of source code…We do not recommend that you write all this
code from scratch…” In Qt, you use normal C++ inheritance mechanism to subclass and
extend the functionality of existing widgets.

If you have existing custom Motif widgets that you wish to port to Qt, it is recommended
that you focus on the functionality and the design rather than attempt to convert it line by
line. A custom widget in Motif normally is coded in three files, the public and private
header files and the source file. The public header file roughly corresponds to the public
API for the widget (usually the constructor and methods to modify the widget’s state and
data). The resources of the Motif widget can be converted to attributes in Qt using the
Q_PROPERTY macro. The Q_PROPERTY macro, allows one to define a resource, its
type, get/set/reset methods and whether the property is stored, usable by a GUI designer
or by a scripting engine like QSA.

The rest of the steps normally followed in the writing of a custom Motif widget’s private
header file: Defining inheritable methods, Defining Widget Class/Instance Part,
Declaring the Full Class/Instance Record is basically a way of doing C++ style
inheritance with C. You get most of this functionality for free in C++ by just using the
appropriate base class.

In Motif, custom widgets derived from Manager widgets have the added burden of
handling geometry and event requests from the children. Qt keeps the layout management
procedures separate from the widget and any widget can be made a manager widget by
adding a layout to manage its children.

The table below gives a breakdown of a typical custom widget implementation in Motif
and how Qt can be used to achieve similar functionality.

Copyright © 2004-2006 Integrated Computer Solutions, Inc. 54 B Middlesex Turnpike, Bedford, MA 01730

www.ics.com Phone: 617.621.0060

 22

Description Motif Qt
Intialize ClassInitialize, Initialize, Create widget constructor(s)
Re-render the widget Redisplay update(), repaint()
Draw the widget DrawVisual, DrawShadow paintEvent, QPainter
Optimal widget size WidgetSize, VisualSize sizeHint,
Accommodate widget Resize adjustSize
Changes in resource setValues public set/get methods
Event Handling Callbacks/actions/translations events, signals & slots
Geometry mgmt. geometry_manager QLayout
Even propagation parent_process automatic, event filter

Get Help
Porting large applications to use a new toolkit can be a daunting task. It is very likely that
you will end up making substantial changes to not just the graphical user interface but
also to the architecture of your application. Although the primary motivation for
switching to Qt is usually to support cross-platform deployment of the application,
invariably you will want to take advantage of new features offered by the toolkit and the
opportunity to do so with the redesign of the underlying architecture.

If, because of time or resource constraints, you are unable to proceed with the porting
effort on you own, ICS is more than happy to provide consulting and application
development services. ICS also offers various levels of training courses to bring your
engineering staff up to date on their GUI development and Qt skills.

Qt Training, Advanced Qt Components and Testing Tools

As Trolltech’s preferred training partner for North America, ICS provides public and
customized on-site training on Qt. See details at
http://www.ics.com/services/training/?cont=QTtraining

ICS also provides a growing selection of advanced components and testing tools for Qt.
Some of our products including:

QicsTable™
Power to easily manipulate the largest data sets and with all
of the display and print functions you need to satisfy even
the most demanding end-users, this advanced Table
component comes with a comprehensive API that makes
programming a snap. MVC architecture assures that you
application is easy to build, modify, and maintain.
Free trial at
http://www.ics.com/qt/qicstable/?cont=getqicstable

GraphPak™

A collection of powerful charts and graphs that make it easy
to visually present complex data.
Free trial at
http://www.ics.com/qt/graphpak/?detail=downloadA.html

KD Executor™

A true cross-platform testing harness that makes it easy to
fully test your Qt applications.
Free trial at
http://www.ics.com/qt/kdexecutor/?cont=download

KD Tools™

The indispensable library of widgets, containers, drawing
objects, and non-GUI classes that speed the creation of
world class applications
Free trial at
http://www.ics.com/qt/kdtools/?cont=download

Copyright © 2004-2006 Integrated Computer Solutions, Inc. 54 B Middlesex Turnpike, Bedford, MA 01730

www.ics.com Phone: 617.621.0060

 23

http://www.ics.com/services/training/?cont=QTtraining
http://www.ics.com/qt/qicstable/?cont=getqicstable
http://www.ics.com/qt/graphpak/?detail=downloadA.html
http://www.ics.com/qt/kdexecutor/?cont=download
http://www.ics.com/qt/kdtools/?cont=download

KD Gantt™

A graphics library add-on to Qt that eliminates the need to
write custom charting code by providing all of the graphics,
layout, linkage, and end user facilities needed to create Gantt
charts.
Free trial at
http://www.ics.com/qt/kdgantt/?cont=download

Motif to Qt Migration Assessment
ICS is also the world’s foremost expert in Motif! Let our
experts in Motif and Qt guide you through the migration
process.
Contact us at sales@ics.com to discuss your needs.

Copyright © 2004-2006 Integrated Computer Solutions, Inc. 54 B Middlesex Turnpike, Bedford, MA 01730

www.ics.com Phone: 617.621.0060

 24

http://www.ics.com/qt/kdgantt/?cont=download
mailto:sales@ics.com

About ICS
Driven by the belief that the success of any software application ultimately depends on
the quality of the user interface, Integrated Computer Solutions, Inc., The User Interface
Company™, of Bedford, MA, is the world’s leading provider of advanced user-interface
development tools and services for professional software engineers in the aerospace,
petrochemical, transportation, military, communications, entertainment, scientific, and
financial industries. Long recognized as the platform of choice for visually developing
mission-critical, high-performance Motif applications, ICS' BX series of GUI builders
has recently been expanded to provide a complete line of tools that accelerate
development of Java™. ICS is the largest independent supplier of add-on products to the
Qt multi-platform framework developed by Trolltech. Supporting the software
development community since 1987, ICS also provides custom UI development services,
custom UI component development, training, consulting, and project porting and
implementation services. More information about ICS can be found at
http://www.ics.com

The User Interface Company™

54 B Middlesex Turnpike
Bedford, MA 01730
617.621.0060
info@ics.com

www.ics.com

Integrated Computer
Solutions Incorporated

Copyright © 2004-2006 Integrated Computer Solutions, Inc. 54 B Middlesex Turnpike, Bedford, MA 01730

www.ics.com Phone: 617.621.0060

 25

http://www.ics.com/

	Introduction
	Reasons for porting
	Evaluating the state of your application
	Anatomy of an application
	Hello Motif, Hello Qt

	Toolkit Comparison
	Widget-set comparison
	Mapping of common UI objects
	Menus and Options
	Dialogs
	Complex widgets

	Layout Management
	Event Handling
	Look and Feel
	Development environment
	Language, compilers, libraries
	Distribution, Installation and Documentation

	Interclient communication
	Selection and Clipboard
	Drag and Drop

	Automation: GUI builder
	Scripting: QSA, PyQt, Tq
	Testing and Inspection

	I18N, Session Management and Help
	Internationalization
	Session Management
	Help

	Extras

	Porting your application
	Port or Redesign?
	Gradual migration using the Qt Motif Extension
	Porting Strategies for Applications
	Hand-written GUI
	GUI-builder generated
	C-based
	Graphics heavy
	Custom widgets

	Get Help
	Qt Training, Advanced Qt Components and Testing Tools
	QicsTable™
	GraphPak™
	KD Executor™
	KD Tools™
	KD Gantt™
	Motif to Qt Migration Assessment

	About ICS

