
chartTOC.fm Page i Thursday, January 22, 2009 11:34 AM
ChartObject Programming Guide

Integrated Computer
Solutions, Incorporated

chartTOC.fm Page ii Thursday, January 22, 2009 11:34 AM
Copyright © 1997-2009 Integrated Computer Solutions, Inc.
The ChartObject Programming Guide™ is copyrighted by Integrated Computer Solutions, Inc.,
with all rights reserved. No part of this book may be reproduced, transcribed, stored in a retrieval
system, or transmitted in any form or by any means electronic, mechanical, photocopying,
recording, or otherwise, without the prior written consent of Integrated Computer Solutions, Inc.

Integrated Computer Solutions, Inc.
54 B Middlesex Turnpike, Bedford, MA 01730
Tel: 617.621.0060
Fax: 617.621.9555
E-mail: info@ics.com

Trademarks
ChartObject Library, GraphicObject Library, View3D, and EditTable Widget Library are
trademarks of Interactive Network Technologies, Inc.
EnhancementPak, EPak PRO, EPak, Builder Xcessory, BX, BX/Ada, Builder Xcessory PRO, BX
PRO, BX/Win Software Development Kit, BX/Win SDK, Database Xcessory, DX, DatabasePak,
DBPak, ViewKit ObjectPak, VKit, ICS Motif, and Ada/Motif are trademarks of Integrated
Computer Solutions, Inc.
All other trademarks are properties of their respective owners.

Third printing
January 2009

Contents

chartTOC.fm Page iii Thursday, January 22, 2009 11:34 AM
How to Use This Manual
Overview ... xi
Introduction ..xii
Document Road Map...xiii
Notation Conventions ..xiii

Chapter 1—ChartObject Components
Overview .. 1
Introduction to ChartObject.. 2
Object Architecture... 3

Graphic Object Library Components .. 4
Coordinate System .. 4
Class Hierarchy ... 5
Object Interface ... 5
Pointer Resources .. 6
Hello World Example.. 7

DataObject .. 9
DataObject Components.. 9
Examples ... 10
Understanding Groups... 12
Linked Views .. 13
Drag and Drop ... 13
Missing Values .. 14
Creating a View... 14
Data Editing... 14
Memory Allocation ... 16
Navigating Inside a DataGroup... 16

Components of ChartObject ... 17
Creating a 2D Bar Chart Example... 18
Chart Components for 2D Plots .. 20
Chart Components for 3D Plots .. 22
Class Hierarchy ... 23
Customizing Chart Components ... 24
Transposition ... 25
Combination of Plots... 26
Combination Plot Example ... 27
Auto-scaling .. 31
Creating And Using Templates ... 31
ChartObject Programming Guide iii

chartTOC.fm Page iv Thursday, January 22, 2009 11:34 AM
Object Editing .. 32
Object Selection .. 32
Moving and Resizing Objects ... 34
Verify Callback ... 34

Built-in Resource Editor... 35
Customization of a Built-In Resource Editor.. 36
Creating Your Own Resource Editor .. 38

Setting Resources ... 40
Using Hardcoded Resources ... 41
Resource File... 41
Restricted Resources ... 42
Resource File Example ... 43

Graphic Attributes .. 45
ObjectEditor Example... 46
Editing Functions .. 49

Drag and Drop.. 50
Hardcopy .. 52

PostScript Output .. 52
CGM Output ... 54

Real-time Applications... 54
Zoom .. 57

Data Viewport ... 58
Chart Zoom Example .. 59

Customizing or Creating New Chart Types ... 63
Inserting Application’s Defined Objects... 63
Customizing an Existing Chart ... 64
Creating a New Chart Type .. 66

Chapter 2—Widget Reference
Overview .. 69
CompBase Widget Metaclass... 70

Inherited Behavior and Resources .. 70
CompBase Resources.. 70
CompBase Functions .. 71

EditObject Widget Class .. 81
Coordinate System .. 81
Object Selection .. 81
Object Editing ... 81
Object Display... 82
Input/Output .. 82
Clipboard... 82
iv ChartObject Programming Guide

chartTOC.fm Page v Thursday, January 22, 2009 11:34 AM
Locator... 82
EditObject Widget Appearance... 83
Inherited Behavior and Resources... 83
EditObject Resources .. 84
EditObject Actions .. 89
EditObject Translations ... 92
EditObject Callbacks ... 93
EditObject Functions ... 98
Macros ... 108

ObjectEditor Widget Class ... 108
Object Editor Layout ... 108
ObjectEditor Widget Appearance ... 109
Inherited Behavior and Resources... 109
ObjectEditor Resources ... 110
ObjectEditor Functions.. 116

Chapter 3—Graphic Object Reference
Overview .. 121
GraphicObject Library.. 122

Summary of Components .. 122
Graphic Object Metaclass... 123

Interactive Editing ... 123
Visual Attributes.. 123
Coordinate System .. 123
Inherited Behavior and Resources... 124
Defined Callbacks ... 130
Graphic Functions ... 131
Macros ... 131

Group Object Class... 132
Interactive Grouping.. 132
Example... 132
Group Resources ... 133
Group Functions .. 134
Macros ... 134

Image Object Class ... 135
Image Resources.. 135
Defined Functions ... 137
Macros ... 137

Line Object Class.. 138
Arrow Shape.. 138
Line Resources .. 138
ChartObject Programming Guide v

chartTOC.fm Page vi Thursday, January 22, 2009 11:34 AM
Line Callbacks... 141
Line Functions... 141
Macros... 141

MultiPoint Object Metaclass .. 142
MultiPoint Object Interactive Creation... 142
MultiPoint Object Editing... 142
Inherited Behavior and Resources .. 142

Oval Object Class... 145
Inherited Behavior and Resources .. 145
Oval Callbacks .. 145
Oval Functions .. 145
Macros... 145

Polyline Object Class ... 146
Creation ... 146
Editing... 146
Optimization.. 146
Inherited Behavior and Resources .. 146
Polyline Callbacks... 148
Polyline Functions... 149
Macros... 149

Rectangle Object Class... 149
Inherited Behavior and Resources .. 149
Rectangle Callbacks .. 151
Rectangle Functions .. 151
Macros... 151

Symbol Object Class .. 152
Symbol Editor ... 153
Symbol Resources... 153
Symbol Keywords... 156
Symbol Description Syntax .. 157
Symbol Callbacks ... 157
Symbol Functions ... 158
Macros... 158

Text Object Class ... 159
Text Resources .. 160
Text Callbacks... 163
Defined Functions ... 163
Macros... 163
vi ChartObject Programming Guide

chartTOC.fm Page vii Thursday, January 22, 2009 11:34 AM
Chapter 4—DataObject Reference
Overview .. 165
DataObject .. 166

Summary of Components .. 166
DataGroup Object Class ... 167

Inherited Behavior and Resources... 167
Callback Structure ... 169
Functions ... 171
Macros ... 172

DataGrid Object.. 173
Example... 173
Inherited Behavior and Resources... 174
Callback... 177
Functions ... 179
Macros ... 180

DataLabel Object .. 181
Example... 181
Inherited Behavior and Resources... 182
Callback... 185
Functions ... 186
Macros ... 187

DataSampled Object Class ... 188
Example... 188
Inherited Behavior and Resources... 189
Callback for Data Updates .. 191
Functions ... 193
Macros ... 195

DataSequentialSeries Object Class... 196
DataSeries Object Class.. 196

Example... 196
Inherited Behavior and Resources... 197
Callbacks ... 199
Defined Functions ... 200
Macros ... 202

DataTimeLabel Object Class.. 203
Example... 203
Inherited Behavior and Resources... 203

Chapter 5—Chart Object Reference
Overview .. 205
ChartObject Library.. 206
ChartObject Programming Guide vii

chartTOC.fm Page viii Thursday, January 22, 2009 11:34 AM
Chart Object Class.. 206
Inherited Behavior and Resources .. 207
Constraint Resources... 212
Chart Callbacks ... 213
Functions ... 215
Macros... 222

ChartWidget Widget Class... 223
Inherited Behavior and Resources .. 223
Functions ... 223

AxisObject Object Class .. 224
Axis Limits and Increments .. 224
Resources .. 224
Inherited Resources... 229
AxisObject Callbacks.. 229
Functions ... 230
Macros... 231

Legend Object Class... 231
Inherited Behavior and Resources .. 232
Macros... 234

Plot2D Object Metaclass .. 235
Inherited Behavior and Resources .. 235
Functions ... 240

Plot3D Object Metaclass .. 241
Rotation, Translation and Scaling... 241
Inherited Behavior and Resources .. 242

CellArray Object Class... 247
Data ... 248
Inherited Behavior and Resources .. 248
Inherited Resources... 249
Macros... 249

ComboPlot Object Class .. 250
Resources .. 250
Inherited Resources... 250
Functions ... 251
Macros... 252

BarLine Object Class ... 253
Data ... 253
Inherited Behavior and Resources .. 254
Inherited Resources... 255
Macros... 256
BarLine Series... 256
viii ChartObject Programming Guide

chartTOC.fm Page ix Thursday, January 22, 2009 11:34 AM
Bar3D Object .. 258
Data ... 258
Inherited Behavior and Resources... 259
Inherited Resources ... 260
Macros ... 260

HighLow Object Class.. 261
Data ... 261
Inherited Behavior and Resources... 262
Inherited Resources ... 263
Macros ... 263
HighLow Series ... 264

Histogram Object.. 265
Data ... 265
Inherited Behavior and Resources... 266
Inherited Resources ... 266
Macros ... 266
Histogram Series ... 267

Pie Object Class.. 269
Data ... 269
Inherited Behavior and Resources... 270
Inherited Resources ... 271
Functions ... 271
Macros ... 271
Pie Series ... 272

Surface3D Object ... 273
Data ... 274
Inherited Behavior and Resources... 274
Inherited Resources ... 277
Macros ... 277

XYPlot Object Class... 278
Data ... 278
Inherited Behavior and Resources... 279
Inherited Resources ... 280
Macros ... 280
PolySeries .. 281
ChartObject Programming Guide ix

chartTOC.fm Page x Thursday, January 22, 2009 11:34 AM
x ChartObject Programming Guide

preface.fm5 Page xi Thursday, January 22, 2009 11:11 AM
How to Use This Manual

Overview
This chapter includes the following sections:

• Introduction on page xii

• Document Road Map on page xiii

• Notation Conventions on page xiii
ChartObject Programming Guide xi

HOW TO USE THIS MANUAL
Introduction

preface.fm5 Page xii Thursday, January 22, 2009 11:11 AM
Introduction
Charts have become a part of everyday life in today’s multimedia society. You can’t
attend a meeting, pick up a newspaper, or watch a television news program, for more
than a few minutes, without running across a chart of some sort. Charts are especially
useful in software applications because they make complex data clearer, more
interesting, and easier to understand.

The charting needs of application developers using the X-Window/Motif user
interface has spawned a market for software tools that provide a wide range of
charting capabilities to the programmer.

The currently available charting tools address the display of charts in a window, but
have left the difficult part of interacting with the chart on the shoulders of the
application programmer.

ChartObject is designed from the ground up as an interactive charting system based
on the Model View Controller (MVC) architecture first introduced in Smalltalk. It
brings graphical interactivity to a level never before achieved in a Motif charting
package.

Interactive features like chart component editing, built-in attribute dialogs, drag and
drop, table integration, cut and paste, multiple linked views, to name a few are all
available in ChartObject.

Because ChartObject is a “true” object system, it provides for the quick creation of
highly interactive charts, but does not restrict those programmers who require a high
level of detailed tailoring in their charts. Each component of a chart is an object that
has full graphical editing semantics.

An application programmer familiar with the Motif user interface can master
ChartObject in an afternoon. The application interface to ChartObject is just the Xt
Intrinsic interface already used by thousands of X/Motif programmers.

Using ChartObject in your application development will allow you to quickly ship
highly interactive, visually pleasing applications to your customers.

Before you get started, read the following sections to acquaint yourself with the
organization and typographical conventions of this manual.
xii ChartObject Programming Guide

HOW TO USE THIS MANUAL
Document Road Map

preface.fm5 Page xiii Thursday, January 22, 2009 11:11 AM
Document Road Map
To get the most from this manual, we suggest you take the following steps:

• Use Chapter 1, Introduction to get acquainted with most major features of the
INT ChartObject library and related widgets.

• Use Chapter 2, Widget Reference to read about the EditObject class, which is
the container widget class for all graphic objects, and the ObjectEditor widget
which provides a panel for interactively editing graphic objects.

• Use Chapter 3, Graphic Object Reference to understand the Graphic class,
which provides the underlying architecture for Chart objects and to learn about
all the specific graphic objects that can be used to provide annotation to chart
plots.

• Use Chapter 4, Data Object Reference to understand how to build data objects
and group them to describe your data.

• Use Chapter 5, Chart Object Reference to get acquainted with the Chart object
and all the sub-objects created by Chart.

These five chapters can be used in any order. For first time users, we suggest that you
start with Chapter 1 to get a quick overview of the product. You can then skip most
of Chapters 2 and 3, and go directly to Chapters 4 and 5.

Notation Conventions
This guide uses the following text styles and symbols:

• Boldface indicates that the name in boldface is a reserved word such as the
name of a resource, action or function associated with a widget.

• Italics indicates that this is the name of a widget class, the name of a
push-button, the name of an argument in an argument list, or the name of a
member in a C structure.

• Monospaced indicates that this is the text of a C program.
ChartObject Programming Guide xiii

HOW TO USE THIS MANUAL
Notation Conventions

preface.fm5 Page xiv Thursday, January 22, 2009 11:11 AM
xiv ChartObject Programming Guide

intro.fm5 Page 1 Thursday, January 22, 2009 11:12 AM
ChartObject
Components 1

Overview
This chapter includes the following sections:

• Introduction to ChartObject on page 2

• Object Architecture on page 3

• DataObject on page 9

• Components of ChartObject on page 17

• Object Editing on page 32

• Built-in Resource Editor on page 34

• Setting Resources on page 40

• Graphic Attributes on page 45

• Drag and Drop on page 50

• Hardcopy on page 51

• Real-time Applications on page 54

• Zoom on page 57

• Customizing or Creating New Chart Types on page 63
ChartObject Programming Guide 1

CHARTOBJECT COMPONENTS
Introduction to ChartObject1

intro.fm5 Page 2 Thursday, January 22, 2009 11:12 AM
Introduction to ChartObject
ChartObject is a powerful object-oriented library of 2D and 3D interactive graphic
tools that enables X Windows/Motif developers and end users alike to create a wide
range of charts. ChartObject goes beyond widget technology to give users a level of
interactive real-time performance, flexibility and editing functionality unavailable in
any other charting package.

MVC
architecture

ChartObject is based on the Model-View-Controller architecture (MVC) first used in
Smalltalk. This design allows both application developers and users to construct
multiple views of the same data easily. For example, a set of data can be viewed
simultaneously as tabular rows and columns, a bar chart or as a 3D surface chart, as
shown in Figure 1:

Figure 1. Multiple Views of a Data Object
2 ChartObject Programming Guide

CHARTOBJECT COMPONENTS
Object Architecture 1

intro.fm5 Page 3 Thursday, January 22, 2009 11:12 AM
ChartObject
library

The ChartObject library includes:

• EditObject
A widget class that is the container widget handling the display and editing of
graphic objects. It implements the controller component of the MVC architec-
ture. Refer to Chapter 2—Widget Reference for a complete description of the
resources, callbacks and public functions defined by the EditObject class.

• DataObject
A library of data objects that contain a representation of the application’s data.
It implements the model component of the MVC architecture. Refer to Chap-
ter 4—DataObject Reference for a complete description of the objects con-
tained in DataObject.

• GraphicObject
A library of low level graphic objects that serves as the foundation of ChartO-
bject. Refer to Chapter 3—Graphic Object Reference for a complete descrip-
tion of the objects defined in GraphicObject.

• ChartObject
A library of high-level graphic objects, designed for charting, that implements
the view component of the MVC architecture. Refer to Chapter 5—Chart
Object Reference for a complete description of the objects defined in ChartOb-
ject.

Object Architecture

Xt Object Class The INT Graphic objects are based on the Xt Object class. The Object class is the
root of the Xt widget class hierarchy, as well as the root of the INT Graphic class
hierarchy. It supports creation, deletion and resource handling. However, it does not
support geometry, windows or event handling.

Parent widget INT Graphic objects must only be created with a parent that is an EditObject widget
or a widget whose class is derived from the EditObject class (such as an EditTable
widget, for example). The EditObject class defines the actions and callbacks that
allow the end-users to interact with the objects, including actions to select, move,
reshape, cut and paste, insert objects interactively and add or delete points. The
EditObject class also defines a number of public functions to manipulate objects
including hardcopy output to PostScript and optionally CGM, plus ASCII input and
output.
ChartObject Programming Guide 3

CHARTOBJECT COMPONENTS
Object Architecture1

intro.fm5 Page 4 Thursday, January 22, 2009 11:12 AM
Graphic Object Library Components
The Graphic object library defines the following object classes:

Coordinate System
By default, all graphic objects use the coordinate system provided by their parent
widget. The EditObject class coordinate system ranges between 0.0 and 100.0 in
both directions, with the origin at the upper left corner. Some subclasses of
EditObject, such as EditTable, redefine the default coordinate system. EditTable, for
example, defines a coordinate system that ranges between 0 and ncolumns in the
horizontal direction and between 0 and nrows in the vertical direction.

Note: The AxisObject is used by the chart class to define a new coordinate system
that matches the user coordinate system inside the plot area.

Object Class Description

Graphic The base class for all graphic objects. It defines the basic resources
and methods used by all other INT Graphic objects.

Group To group primitive objects or other groups into a single group
object

Image To display an image.

Line To draw a line between two points, with or without arrows at
the end.

MultiPoint Base class for all objects with multiple points such as a
polyline.

Oval To draw oval shaped objects.

Polyline To draw polyline or polygon objects.

Rectangle To draw rectangular objects.

Symbol To draw a user specified symbol.

Text To draw text.
4 ChartObject Programming Guide

CHARTOBJECT COMPONENTS
Class Hierarchy 1

intro.fm5 Page 5 Thursday, January 22, 2009 11:12 AM
Class Hierarchy
All graphic objects are based on a class hierarchy, where the subclasses inherit the
resources and behavior from their superclass. Figure 2 illustrates the class hierarchy
for the basic graphic objects defined in the GraphicObject library. Refer to Chapter
3—Graphic Object Reference for a complete description of resources and public
functions defined by these object classes.

Figure 2. GraphicObject Library Class Hierarchy

The Chart object and all the specialized sub-objects used to build a Chart are also
based on a similar hierarchy that is described later in this Chapter.

Object Interface
Objects in the GraphicObject library are declared as data type Object (defined in the
Xt Intrinsic.h header file) and can be created in exactly the same manner as Motif
widgets.

Using Xt
creation
functions

You can use the Xt creation functions:
Widget XtCreateWidget (String, WidgetClass, ArgList, Cardinal);
Widget XtVaCreateWidget (String, WidgetClass,...);

Additionally, each object class provides a creation convenience function is provided
by each object class.

XtObject

Graphic

Line Rectangle

Symbol

Group MultiPoint

Polyline Text Oval

Image
ChartObject Programming Guide 5

CHARTOBJECT COMPONENTS
Object Architecture1

intro.fm5 Page 6 Thursday, January 22, 2009 11:12 AM
Code For example, you can create a line object using the Xt creation function as follows:
Object line_object;
XintLine line;
line_object = (Object) XtVaCreateWidget (“line”,
 (WidgetClass)xintLineObjectClass,
parent,
 XmNline, &line, NULL);

or, using the creation function provided by the Line class:
n = 0;
XtSetArg (arg[n], XmNline, &line); n++;
line_object = XintCreateLine (parent, “line”, arg, n);

 If you use the Xt creation function you must cast the return type to Object and the
object class name to WidgetClass for ANSI style compilers.

Note: DO NOT manage objects. Managing objects causes corruption of the object
record.

Changing object
attributes

Changing object attributes can be accomplished with the Xt functions:

void XtSetValues (Widget, ArgList, Cardinal);
void XtVaSetValues (Widget,...);

For example, the following code sample changes the line style of a line object:

XtVaSetValues ((Widget) line_object,
 XmNlineStyle, XintLINE_ON_OFF_DASH, NULL);

Destroying an
object

Finally, to destroy an object you can use functions:

void XtDestroyWidget(Widget);
void XintEditObjectDestroyObject(Object);

Both functions are equivalent, but the second one is faster.

Pointer Resources
Many resources in the INT library are specified as pointers to data structures,
floating point values, or data arrays. Unless specified otherwise, an internal copy of
the data is made by the widget or object, so you don’t need to keep the memory
allocated. For example, the list of points to a polyline object is specified as an array
of points using resource XmNpointArray. You can free this array after you have
used it to create or modify a polyline object.

Functions XtSetValues and XtVaSetValues, when applied to a pointer resource,
return the pointer to the internal widget or object data. You should not modify this
data directly. This is a common error that often occurs when trying to modify a
6 ChartObject Programming Guide

CHARTOBJECT COMPONENTS
Hello World Example 1

intro.fm5 Page 7 Thursday, January 22, 2009 11:12 AM
resource.

Example The following example, which applies a horizontal translation to a rectangle object,
illustrates the problem.

Object rect_object;
XintRectangle *rectangle, new_rectangle;
...
XtVaGetValues((Widget) rect_object, XmNrectangle, &rectangle, NULL);

/* DON’T modify structure rectangle directly; copy data first...*/
new_rectangle = *rectangle;

/* apply translation */
new_rectangle.x1 += tx;
new_rectangle.x2 += tx;
XtVaSetValues((Widget) rect_object,
 XmNrectangle, &new_rectangle, NULL);
...

Hello World Example
The following example (see file TextObject.c in directory
examples/Chart) illustrates how to build a Hello World application using the
Text object:

Example include <Xint/EditObject.h>
include <Xint/Text.h>

main (argc, argv)
int argc;
char *argv[];
{
 XtAppContext app_context;
 Widget top_level;
 Widget edit;
 Object text;
 XintTextLocation text_location;

 top_level = XtAppInitialize(&app_context, “hello_world”,
 (XrmOptionDescList)NULL, 0, &argc, argv,
 NULL, NULL, 0);
ChartObject Programming Guide 7

CHARTOBJECT COMPONENTS
Object Architecture1

intro.fm5 Page 8 Thursday, January 22, 2009 11:12 AM
 /* Create an EditObject widget */
 edit = XtVaCreateManagedWidget(“edit_object”,
 xintEditObjectWidgetClass, top_level,
 XmNwidth, 400,
 XmNheight, 400,
 NULL);

 /* Create the Text object */
 text_location.x = 50;
 text_location.y = 50;
 text = (Object) XtVaCreateWidget(“Hello World”,
 (WidgetClass)xintTextObjectClass, edit,
 XmNtextLocation, &text_location,
 XmNtextAnchor, XintCENTER,
 XmNtextString, “Hello World”,
 XmNfontSize, 18,
 XmNroundEdge, True,
 XmNfillStyle, XintFILL_SOLID,
 XmNlineStyle, XintLINE_SOLID,
 NULL);

 /* Loop */
 XtRealizeWidget(top_level);
 XtAppMainLoop(app_context);
}

Figure 3 shows the output from this example:

Figure 3. Hello World Example
8 ChartObject Programming Guide

CHARTOBJECT COMPONENTS
DataObject 1

intro.fm5 Page 9 Thursday, January 22, 2009 11:12 AM
DataObject
DataObject was created specifically for use with the INT ChartObject, which allows
developers to create a wide variety of graphical data displays in the Motif
environment easily. DataObject simply provides the mechanism to “package” and
edit data, while the ChartObject provides the graphical viewing tools.

DataObject is a system of Xt intrinsic tools that provides for the retrieval, storage
and manipulation of sets or groups of data. DataObject serves as the model
component of the MVC architecture described earlier. As explained in the following
pages, treating sets of data as individual objects not only makes the MVC
architecture possible, but also provides the mechanism for a wide range of advanced
data handling and graphical display features.

DataObject Components
DataObject provides the following object classes that can be used to classify and
manipulate sets of data:

Similar to the GraphicObject classes, the data classes are all derived from the Xt
Object class. These classes can be manipulated using resources, functions, and
callbacks, just like any standard Motif/Xt object or widget. The data objects must
not be managed. Modification of the data can be accomplished using either standard
Xt resource setting mechanisms or the convenience functions provided by INT.

Examples

Object Class Description

DataGroup Allows the definition and manipulation of multiple data objects as a
single group. For example, a group may contain sampled objects,
series objects, grids, or even other groups.

DataGrid Allows the definition and manipulation of a two-dimensional array
of data values as a single object.

DataLabel Allows the definition and manipulation of a set of labels that are
used to identify visually the data in a chart or tabular view.

DataSampled Allows the definition and manipulation of a one-dimensional array
of data as a single object.

DataSeries Allows the definition and manipulation of a series of (x,y) pairs as a
single object.
ChartObject Programming Guide 9

CHARTOBJECT COMPONENTS
DataObject1

intro.fm5 Page 10 Thursday, January 22, 2009 11:12 AM
Figure 4 shows a bar chart view containing annual sales data for four metropolitan
areas:

Figure 4. Bar Chart View of Grouped DataSampled Objects

Example The following example (see file Barchart.c in directory examples/Chart)
shows the complete programming code required to produce the bar chart display
shown Figure 4:
include <Xint/EditObject.h>
include <Xint/Chart.h>

static String x_labels[] = {“Houston”, “Dallas”, “Austin”,
 “San Antonio”};
static float d1992[] = { 00.0, 30.0, 20.0, 20.0};
static float d1993[] = { 10.0, 45.0, 32.0, 30.0};
static float d1994[] = { 15.0, 25.0, 27.0, 35.0};

main(argc, argv)
 int argc;
 char *argv[];
10 ChartObject Programming Guide

CHARTOBJECT COMPONENTS
Examples 1

intro.fm5 Page 11 Thursday, January 22, 2009 11:12 AM
{
 XtAppContext app_context;
 Widget top_level;
 Widget edit;
 Object data_group;
 Object chart;
 XintGeometry chart_geometry;

 top_level = XtAppInitialize(&app_context, “test”,
(XrmOptionDescList)NULL, 0,
&argc, argv, NULL, NULL, 0);

 /* Create an EditObject widget*/

 edit = XtVaCreateManagedWidget(“edit_object”,
xintEditObjectWidgetClass,top_level,
XmNwidth, 600, XmNheight, 600,
XmNobjectEditMode, XintEDIT_ADJUST,
NULL);

 /* Create Chart object */

 chart_geometry.x1 = 0;
 chart_geometry.y1 = 0;
 chart_geometry.x2 = 100;
 chart_geometry.y2 = 100;
 chart = (Object) XtVaCreateWidget(“BarPlot”,
 (WidgetClass)xintChartObjectClass, edit,
 XmNgeometry, &chart_geometry,
 XmNchartType, XintCHART_TYPE_BAR,
 XmNchartTitle, “Yearly Sales”,
 XmNshowLegend, True,
 NULL);

 /* Create a data group */

data_group = XintCreateDataGroup(edit, “Yearly Sales”, NULL, 0);

XtVaCreateWidget(“Cities”, (WidgetClass)xintDataLabelObjectClass,
 edit,
 XmNlabelStrings, x_labels,
 XmNlabelCount, sizeof(x_labels)/sizeof(String),
 XmNlabelOrientation, XintLABEL_X,
 XmNdataGroup, data_group, NULL);

XtVaCreateWidget(“1992”, (WidgetClass)xintDataSampledObjectClass,
 edit,
 XmNdataArray, d1992,
 XmNcount, sizeof(d1992)/sizeof(float),
 XmNdataType, XintDATA_TYPE_FLOAT,
 XmNdataGroup, data_group, NULL);
ChartObject Programming Guide 11

CHARTOBJECT COMPONENTS
DataObject1

intro.fm5 Page 12 Thursday, January 22, 2009 11:12 AM
XtVaCreateWidget(“1993”, (WidgetClass)xintDataSampledObjectClass,
 edit,
 XmNdataArray, d1993,
 XmNcount, sizeof(d1993)/sizeof(float),
 XmNdataType, XintDATA_TYPE_FLOAT,
 XmNdataGroup, data_group, NULL);

XtVaCreateWidget(“1994”, (WidgetClass)xintDataSampledObjectClass,
 edit,
 XmNdataArray, d1994,
 XmNcount, sizeof(d1994)/sizeof(float),
 XmNdataType, XintDATA_TYPE_FLOAT,
 XmNdataGroup, data_group, NULL);

 /* Associate the data group with the chart object */

 XintChartAssociateData(chart, data_group);

 /* Loop forever */

 XtRealizeWidget(top_level);
 XtAppMainLoop(app_context);
}

Understanding Groups
In the previous example, that we created a group that contains multiple data objects.
The DataGroup conceptually serves as a “container” for all other data object classes.
The following diagram shows an example of parent-child relationships that could
occur between various objects in a group.

Figure 5. Example of a DataObject Group

Notice that you can have multiple instances of any data object type within the same
group. The DataLabel object provides annotation for either the entire group or for
individual objects. It accompanies the group to any destination view, and is inserted

DataGroup

DataSeries DataLabel
Data
Sampled

Data
Sampled

Data
Sampled
12 ChartObject Programming Guide

CHARTOBJECT COMPONENTS
Linked Views 1

intro.fm5 Page 13 Thursday, January 22, 2009 11:12 AM
into the view in the appropriate context (for example, as column/row annotation in
a table or as an axis label in a chart).

Linked Views
The object classes discussed above allow interlinking between multiple views of the
same data, so that any changes to one view are automatically applied to all other
connected views. For example, if the user changes data in a table view (such as
INT’s EditTable), this automatically updates the model and the model updates all
other views, such as bar charts, pie charts, and all the other INT chart types.

Drag and Drop
DataObject provides an advanced, built-in “drag and drop” feature that allows users
to select any group of data from one view, then drag the data and drop it into another
view, effectively creating a linked view as described above. For instance, the user
might highlight a range of cells in a table then drag and drop the highlighted
selection into a chart. When this happens, the data points that were dragged to the
chart are automatically inserted correctly in the appropriate view context. If the user
drags data into a bar chart, it appears as a series of bars; in a pie chart it appears as
a series of wedges, and so forth. The drag and drop function can optionally link the
views so that updates in one are automatically reflected in the other.

In addition, the data labelling follows the data from one view to the next. In a table,
the labels might appear as horizontal and vertical titles. In a chart they appear as axis
labels. When a user performs a drag-and-drop, the built-in widget mechanism
automatically creates the appropriate groups and data objects to accomplish the task.
The widget automatically maintains correct hierarchical relationships between data
elements, and attaches the appropriate label to the new view.
ChartObject Programming Guide 13

CHARTOBJECT COMPONENTS
DataObject1

intro.fm5 Page 14 Thursday, January 22, 2009 11:12 AM
Missing Values
All data objects that handle numerical values support the concept of missing or null
values. To specify that a data value is missing just insert one of the following
constants into the data array based on the data format.

Creating a View
Data objects or groups are associated with chart objects through the following
function:

void XintChartAssociateData (Object chart, Object data)

This function creates a view of the data object that is displayed by the chart object.
See Chart Object Reference section in Chapter 5 for more information on this
function.

A similar function is available to associate a data object with an EditTable widget:
Boolean XintEditTableAssociateData(Widget edit_table, Object data,

int col_start, int row_start, Boolean link)

See the EditTable manual for a complete description of this function.

Data Editing
DataObject provides editing functions that are available to both the application
programmer and the end-user. An application programmer may modify the contents
of a data object through resources (XtSetValues or XtVaSetValues) or convenience
functions. Whenever possible, it is better to update the data using the convenience
functions provided by the various data objects classes for optimization reasons.

 Constant Description

XintUNDEFINED_DOUBLE Missing value for double data format.

XintUNDEFINED_FLOAT Missing value for float data format.

XintUNDEFINED_INTEGER Missing value for integer data format.

XintUNDEFINED_LONG Missing value for long data format.

XintUNDEFINED_SHORT Missing value for short data format.
14 ChartObject Programming Guide

CHARTOBJECT COMPONENTS
Data Editing 1

intro.fm5 Page 15 Thursday, January 22, 2009 11:12 AM
Replacing a
sample in a type
float object

The following code segment shows how to replace the first sample in a DataSampled
object of type float:
float new_value;
...
XintDataSampledDataReplace (data_sampled, &new_value, 0, 1);

The end-user of an application may optionally modify data indirectly by
interactively editing a tabular or graphical view of the data. Real-time editing
features for replacing, extending or shifting the contents of a data object are also
provided. Application programmers can be notified of editing operations using the
callback XmNupdateCallback, which can be registered on each data object or at the
data group level and may override any requested editing operation. Also, resource
XmNeditable can be used to prevent a specific data object or data group from being
modified through the editing of a graphical view.

Data groups can also be modified at any time by adding or destroying data objects.
Again, if the data group is connected to a chart, the chart will automatically update
itself to take into account the changes in the data.

Inserting new
DataSampled
objects

If you need to update several data objects inside a data group that is connected to a
chart, use function XintDataBatchUpdate to freeze the propagation of updates to the
views and minimize flashing.

The following code sample illustrates how to insert two new DataSampled objects
to a data group data_group that is already connected to a chart.
/* Freeze propagation of updates for this data group */
XintDataBatchUpdate(data_group, True);

/* add the two new data_sampled objects */
XtVaCreateWidget (“new1”, (WidgetClass)
xintDataSampledObjectClass,
 edit,
 XmNdataArray, data1,
 XmNcount, count1,
 XmNdataGroup, data_group, NULL);
XtVaCreateWidget (“new2”, (WidgetClass)
xintDataSampledObjectClass,
 edit,
 XmNdataArray, data2,
 XmNcount, count2,
 XmNdataGroup, data_group, NULL);

/* allow updates */
XintDataBatchUpdate(data_group, False);
ChartObject Programming Guide 15

CHARTOBJECT COMPONENTS
DataObject1

intro.fm5 Page 16 Thursday, January 22, 2009 11:12 AM
Memory Allocation
By default, data objects make an internal copy of the data. Set resource
XmNcopyData to False, when creating the data object, if you don’t want the data
object to copy your data. In this case, the data passed to the data object should not be
deallocated so long as the data object is not destroyed.

Data resource XmNlastViewDestroy can be used to cause a data object be destroyed
automatically after it is no longer associated with a view (chart or table). If you are
using a data group, you only need to set this resource on the data group; you don’t
need to set it for the data objects belonging to the data group.

Navigating Inside a DataGroup
If you are using a DataGroup object to store your data, you don’t need to keep your
own list of the data objects belonging to the data group. Function
XintDataGroupIterate is designed to retrieve data objects from a data group.

Printing name of
all data objects

For example, the following code sample shows how to print the name of all the data
objects of type DataSeries in DataGroup data_group.
Object data_group, data_series;
...
index = 0;
while ((data_series = XintDataGroupIterate (data_group,
 xintDataSeriesObjectClass, index++)) != NULL) {
 printf(“series name = %s number = %d\n”,
 XtName((Widget) data_series), index);
}

If you specify NULL for the name of the object class, function XintDataGroupIterate
iterates through all the data objects, whatever the type.
16 ChartObject Programming Guide

CHARTOBJECT COMPONENTS
Components of ChartObject 1

intro.fm5 Page 17 Thursday, January 22, 2009 11:12 AM
Components of ChartObject
ChartObject provides the view component of the MVC architecture described
earlier. To create a chart, the application or the end-user needs to create a Chart
object. This object automatically creates a number of sub-objects to compose the
plot. For example, the chart may create Axis objects, Text objects for annotation, a
Legend object, a Plot object, Series objects, etc. The number and type of objects
created are dependent upon the chart type as described in more detail below.

Object classes The ChartObject library defines the following object classes:

Object Class Description

Chart Main object that creates and manages all the objects necessary for
building a chart.

AxisObject Provides axis annotation and coordinate transformation for the 2D
plot components.

Legend To draw a legend.

Plot2D Base class for all 2D plot classes

Plot3D Base class for all 3D plot classes.

ComboPlot Special class used as a container for multiple plots.

BarLine Plot class that displays its data as bars, stacked bars or lines.

CellArray Plot class that displays its data as colored rectangular cells.

Bar3D Plot class that displays its data as 3D bars.

HighLow Plot class that displays high-low-open-close graphs.

Histogram Plot class that displays the distribution of a set of data.

Pie Plot class that displays its data as 2D pies.

Surface3D Plot class that displays its data as a 3D surface.

XYPlot Plot class that displays its data as a 2D area, line or scatter plot.
ChartObject Programming Guide 17

CHARTOBJECT COMPONENTS
Components of ChartObject1

intro.fm5 Page 18 Thursday, January 22, 2009 11:12 AM
Creating a 2D Bar Chart Example
This example (HorizontalStackedBarChart.c in examples/Chart) shows
how to create a 2D bar chart with horizontal, stacked, contiguous bars:

Code include <Xint/EditObject.h>
include <Xint/Chart.h>
include <Xint/DataGroup.h>
include <Xint/DataSampled.h>
include <Xint/BarLine.h>

static String x_labels[] = {“Houston”, “Dallas”, “Austin”,
 “San Antonio”};

static float d1992[] = { 10.0, 20.0, 20.0, 8};
static float d1993[] = { 20.0, 35.0, 32.0, 17};
static float d1994[] = { 39.0, 41.0, 37.0, 21};

main(argc, argv)
int argc;
char *argv[];
{ XtAppContext app_context;
 Widget top_level;
 Widget edit;
 Object data_group;
 Object chart, plot;
 XintGeometry chart_geometry;

 top_level = XtAppInitialize(&app_context, “Chart Example”,
(XrmOptionDescList)NULL, 0,
&argc, argv, NULL, NULL, 0);

 /* Create an EditObject widget*/
 edit = XtVaCreateManagedWidget(“edit_object”,

xintEditObjectWidgetClass,
top_level,
XmNwidth, 400,
XmNheight, 250,

 /* make the chart editable */
 XmNobjectEditMode, XintEDIT_ADJUST,

NULL);
 /* Create Chart object */
 chart_geometry.x1 = 0;
 chart_geometry.y1 = 0;
 chart_geometry.x2 = 100;
 chart_geometry.y2 = 100;
 chart = (Object) XtVaCreateWidget(“BarPlot”,
 (WidgetClass)xintChartObjectClass, edit,
 XmNgeometry, &chart_geometry,
 XmNchartType, XintCHART_TYPE_BAR,
 XmNchartTitle, “Yearly Sales”,
 XmNshowLegend, True,
 NULL);
 /* Make horizontal,stacked bars with no space between bars */
 plot = XintChartGetComponent(chart, XintCHART_COMPONENT_PLOT);

 XtVaSetValues((Widget) plot,
 XmNbarOrientation, XintHORIZONTAL,
 XmNbarStyle, XintSTACKED,
 XmNclusterWidth, 100,
 NULL);
18 ChartObject Programming Guide

CHARTOBJECT COMPONENTS
Creating a 2D Bar Chart Example 1

intro.fm5 Page 19 Thursday, January 22, 2009 11:12 AM
/* Create a data group */
 data_group = XintCreateDataGroup(edit, “Yearly Sales”, NULL, 0);

 XtVaCreateWidget(“Cities”, (WidgetClass)xintDataLabelObjectClass,
 edit,
 XmNlabelStrings, x_labels,
 XmNlabelCount, sizeof(x_labels)/sizeof(String),
 XmNlabelOrientation, XintLABEL_X,
 XmNdataGroup, data_group, NULL);

 XtVaCreateWidget(“1992”,
 (WidgetClass)xintDataSampledObjectClass, edit,
 XmNdataArray, d1992,
 XmNcount, sizeof(d1992)/sizeof(float),
 XmNdataType, XintDATA_TYPE_FLOAT,
 XmNdataGroup, data_group, NULL);

 XtVaCreateWidget(“1993”,
 (WidgetClass)xintDataSampledObjectClass, edit,
 XmNdataArray, d1993,
 XmNcount, sizeof(d1993)/sizeof(float),
 XmNdataType, XintDATA_TYPE_FLOAT,
 XmNdataGroup, data_group, NULL);
XtVaCreateWidget(“1994”,
 (WidgetClass)xintDataSampledObjectClass, edit,
 XmNdataArray, d1994,
 XmNcount, sizeof(d1994)/sizeof(float),
 XmNdataType, XintDATA_TYPE_FLOAT,
 XmNdataGroup, data_group, NULL);
/* Associate the data group with the chart object */
 XintChartAssociateData(chart, data_group);

 /* Loop forever */
 XtRealizeWidget(top_level);
 XtAppMainLoop(app_context);
}

Figure 6 illustrates the output from this example:

Figure 6. Horizontal Stacked Bars
ChartObject Programming Guide 19

CHARTOBJECT COMPONENTS
Components of ChartObject1

intro.fm5 Page 20 Thursday, January 22, 2009 11:12 AM
Chart Components for 2D Plots
A Chart object consists of a grouping of objects created automatically by Chart.
Figure 7 illustrates the object set created by Chart for a 2D plot:

Figure 7. Components Created by Chart for a 2D Plot

In Figure 8, Plot2D is the base class for all 2D plots. Depending on the chart type
selected, it could be a BarLine object, a Pie object, a XYPlot object, and so forth.
Refer the appropriate plot section (such as BarLine or Pie) in Chapter 5—Chart
Object Reference for more detailed information about the type of series created.

Note: Series are generic objects associated with data objects.

Chart

Plot2DHorizontal Vertical
AxisLegend

Title
Axis

Footer

......

(Text Object)

Series Series Series

(Text Object)
20 ChartObject Programming Guide

CHARTOBJECT COMPONENTS
Chart Components for 2D Plots 1

intro.fm5 Page 21 Thursday, January 22, 2009 11:12 AM
Figure 8. Components of a 2D Chart

Components
created when
displaying a 2D
plot

The following table summarizes all the components that may be created inside a
Chart object when a 2D plot is displayed.

Horizontal Axis

Vertical Axis

Title

Legend

Series

Chart

 Component Object Class Description

Vertical Axis AxisObject Vertical axis associated with the plot area.

Horizontal Axis AxisObject Horizontal axis associated with the plot area.

Plot2D BarLine
CelllArray
HighLow
Histogram
Pie
XYPlot

Bar chart.
Grid of colored cells.
High-Low-Open-Close chart.
Histogram chart.
Pie chart.
Line, scattered or area charts.

Title Text Title for the chart.

Footer Text Footer for the chart.

Legend Legend Legend for the chart.

Series Graphic Object representing a data series. Type can vary
(polyline, bars, wedge, etc.) based on the Plot2D
class. Unless specified otherwise, use only
resources defined in the Graphic class to customize
attributes.
ChartObject Programming Guide 21

CHARTOBJECT COMPONENTS
Components of ChartObject1

intro.fm5 Page 22 Thursday, January 22, 2009 11:12 AM
Chart Components for 3D Plots
 Figure 9 illustrates the set of objects created by a Chart object for a 3D plot:

Figure 9. Components Created by Chart for a 3D Plot

In Figure 9, Plot3D is the base class for all 3D plots. Depending on the type of chart
selected it could be a Bar3D or a Surface object. See chart_demo.c in the demos
directory, ChartDemo1 subdirectory. Figure 10 illustrates Selection 8:

Figure 10. Components of a 3D Chart

Chart

Plot3DLegend Title Footer
(Text Object) (Text Object)

Title

Legend

Plot3D
22 ChartObject Programming Guide

CHARTOBJECT COMPONENTS
Class Hierarchy 1

intro.fm5 Page 23 Thursday, January 22, 2009 11:12 AM
Components
created when
displaying a 3D
plot

The following table summarizes all the components that can be created inside a
Chart object when a 3D plot is displayed.

Class Hierarchy
All objects comprising a Chart are based on a class hierarchy, where subclasses
inherit the resources and behavior from their superclasses. Figure 11 shows the class
hierarchy for the objects described in this section:

Figure 11. Class Inheritance Diagram

 Component Object Class Description

Plot3D Bar3D
Surface3D

Bar3D chart.
Surface chart.

Title Text Title for the chart.

Footer Text Footer for the chart.

Legend Legend Legend for the chart.

(Xt) Object

Graphic

GroupRectangle AxisObject

Legend ChartPlot2D Plot3D

Surface3DBar3DBarLine HighLow Histogram XYPlotPie

ComboPlot

CellArray
ChartObject Programming Guide 23

CHARTOBJECT COMPONENTS
Components of ChartObject1

intro.fm5 Page 24 Thursday, January 22, 2009 11:12 AM
Customizing Chart Components
All components created by a chart object can be accessed and modified to fit the
application’s requirements. Function XintChartGetComponent allows the
application to retrieve a component from a chart object.

Code The following code sample illustrates how to use this function to retrieve the ID of
the legend object of a chart object and to modify it.
Object chart, legend;
...
legend = XintChartGetComponent (chart, XintCHART_COMPONENT_LEGEND);
/* we set the legend border thickness, the # of columns and */
/* remove the fill. */
XtVaSetValue((Widget) legend, XmNlineThickness, 3,
 XmNfillStyle, XintFILL_NONE,
 XmNcolumns, 2, NULL);

Series objects, whose number and type depends on the data associated with the chart
and the chart type, cannot be retrieved with function XintChartGetComponent.
Instead, you should use function XintChartGetSeriesOfData, which requires you to
specify a data component. This function returns a list, which contains in most cases
one series. It can also contain more than one series, for example, if transposition is
set.

Code The following code sample illustrates how to change the line style of the series used
to display DataSampled object data_sampled.

Object chart, data_sampled;
Object *series_list;
int count;
...
series_list = XintChartGetSeriesOfData(chart, data_sampled, &count);
if (series_list != (Object *) NULL) {

 XtVaSetValue((Widget) series_list[0],
 XmNlineStyle, XintLINE_ON_OFF_DASH, NULL);

 /* don’t forget to free the list */
 XtFree ((char *) series_list);
}

24 ChartObject Programming Guide

CHARTOBJECT COMPONENTS
Transposition 1

intro.fm5 Page 25 Thursday, January 22, 2009 11:12 AM
Transposition
Data objects of type DataSampled are displayed using a data series. For example, a
DataSampled object in a BarLine chart is represented as a set of bars, each bar
belonging to a different group. The number of bars in a group is equal to the number
of DataSampled objects connected to the chart. For a Pie chart, each sample of the
DataSampled object is displayed as a wedge, each wedge being located in a different
pie.

Chart resource XmNtranspose can be used to transpose the data contained in
DataSampled objects. The transpose option is honored by BarLine, Pie and Bar3D
plot classes. For example, when transpose is set for a Pie, each sample of a
DataSampled object is represented as a wedge inside the same pie. In this case there
would be one pie for each DataSampled object connected to the chart.

Figure 12 illustrates transposition for a dataset containing three DataSampled
objects as described in the following table (see chart_demo.c in the demos
directory, ChartDemo1 subdirectory, selection 17):

DataSampled Name Range (start, inc.) Data Values (in thousands)

Cars 1991, 1 650, 776, 821, 910

Trucks 1991, 1 170, 184, 191, 203

Minivans 1992, 1 95, 159, 245
 (production started in 1992!)
ChartObject Programming Guide 25

CHARTOBJECT COMPONENTS
Components of ChartObject1

intro.fm5 Page 26 Thursday, January 22, 2009 11:12 AM
Figure 12. Transposition Example

Combination of Plots
Chart library allows you to combine primitive plot types to build a composite plot.
For example, Figure 13 shows a composite plot made from a HighLow and a
BarLine plot:

Figure 13. Combination Plot Example

 XmNtranspose False XmNtranspose True
26 ChartObject Programming Guide

CHARTOBJECT COMPONENTS
Combination Plot Example 1

intro.fm5 Page 27 Thursday, January 22, 2009 11:12 AM
Combining plots The mechanism to combine plots is very flexible. You first create a chart with
resource XmNchartType set to XintCHART_TYPE_COMBINATION. You then
retrieve the ID of the combo plot created and then create as many new plot types as
you want inside the combo plot object using function
XintComboPlotCreateNewPlot. If several plots have axes displayed on the same
side, the axes will automatically be stacked next to each other.

You can combine as many primitive plot types as you want. However, since 3D plot
types cannot be made transparent, you should not have more than one 3D plot in a
combination plot.

Combination Plot Example
The following code example (see file ComboPlot.c in directory
examples/Chart) illustrates how to create a combination plot composed of a
Bar plot and a HighLow plot. Figure 13 shows the output produced by the example.

include <Xint/EditObject.h>
include <Xint/Chart.h>
include <Xint/ComboPlot.h>
include <Xint/DataGroup.h>
include <Xint/DataSampled.h>
include <Xint/DataLabel.h>
include <Xint/AxisObject.h>

static int high[] =
 { 3380, 3410, 3411, 3418, 3400, 3399, 3420, 3425, 3423,
 3409, 3381, 3372, 3380, 3360, 3359, 3338, 3338, 3312,
 3310, 3311, 3324, 3348, 3399, 3410, 3412, 3450};
static int low[] =
 { 3321, 3360, 3350, 3350, 3348, 3349, 3370, 3366, 3369,
 3350, 3339, 3324, 3322, 3339, 3309, 3268, 3297, 3263,
 3256, 3264, 3268, 3286, 3325, 3361, 3378, 3390};
static int open[] =
 { 3350, 3360, 3382, 3355, 3378, 3365, 3375, 3408, 3395,
 3401, 3375, 3356, 3357, 3349, 3359, 3338, 3303, 3312,
 3274, 3292, 3289, 3288, 3339, 3389, 3397, 3398};
static int close[] =
 { 3360, 3382, 3355, 3378, 3365, 3375, 3408, 3395, 3401,
 3375, 3356, 3357, 3349, 3359, 3338, 3303, 3312, 3274,
 3292, 3289, 3288, 3339, 3389, 3397, 3398, 3450};
static int volume[] =
 {215123000, 192432123, 194145400, 189900143, 191893456,
 204143657, 196143200, 185123456, 186458099, 194312765,
 196234234, 184456567, 192334345, 196234246, 214523546,
 201234566, 190233456, 199234567, 204455678, 206778456,
 201233434, 189234356, 192324566, 189234567, 201232356,
 196234565};

static float label_position[] = {0.0, 5.0, 10.0, 15., 20.0, 25};
static char *date_strings[] =
ChartObject Programming Guide 27

CHARTOBJECT COMPONENTS
Components of ChartObject1

intro.fm5 Page 28 Thursday, January 22, 2009 11:12 AM
 {“1/2/90”, “1/9/90”, “1/16/90”, “1/23/30”,“1/30/90”, “2/6/90”};

main(argc, argv)
 int argc;
 char *argv[];
{
 XtAppContext app_context;
 Widget top_level, edit;
 Object data_group, volume_data;
 Object chart, plot, bar_plot, high_low_plot, axis;
 XintGeometry chart_geometry;

 top_level = XtAppInitialize(&app_context, “high_low_test”,
 (XrmOptionDescList)NULL, 0,
 &argc, argv, NULL, NULL, 0);

 /* Create an edit object */
 edit = XtVaCreateManagedWidget(“edit”, xintEditObjectWidgetClass,
 top_level, XmNwidth, 600, XmNheight, 300,
 NULL);

 /* Create a data group */
 data_group = XintCreateDataGroup(edit, “Dow Jones”, NULL, 0);

 XtVaCreateWidget(“High”, (WidgetClass)xintDataSampledObjectClass,
 edit,
 XmNdataArray, high,
 XmNcount, sizeof(high)/sizeof(int),
 XmNdataType, XintDATA_TYPE_INTEGER,
 XmNdataGroup, data_group, NULL);

 XtVaCreateWidget(“Low”, (WidgetClass)xintDataSampledObjectClass,
 edit,
 XmNdataArray, low,
 XmNcount, sizeof(low)/sizeof(int),
 XmNdataType, XintDATA_TYPE_INTEGER,
 XmNdataGroup, data_group, NULL);

 XtVaCreateWidget(“Open”, (WidgetClass)xintDataSampledObjectClass,
 edit,
 XmNdataArray, open,
 XmNcount, sizeof(open)/sizeof(int),
 XmNdataType, XintDATA_TYPE_INTEGER,
 XmNdataGroup, data_group, NULL);

 XtVaCreateWidget(“Close”, (WidgetClass)xintDataSampledObjectClass,
 edit,
 XmNdataArray, close,
 XmNcount, sizeof(close)/sizeof(int),
 XmNdataType, XintDATA_TYPE_INTEGER,
 XmNdataGroup, data_group, NULL);
28 ChartObject Programming Guide

CHARTOBJECT COMPONENTS
Combination Plot Example 1

intro.fm5 Page 29 Thursday, January 22, 2009 11:12 AM
 /* Create a Date label object */
 XtVaCreateWidget(“Date”, (WidgetClass)xintDataLabelObjectClass,
 edit,
 XmNlabelCount, 6,
 XmNlabelOrientation, XintLABEL_X,
 XmNlabelPositionArray, label_position,
 XmNlabelStrings, date_strings,
 XmNdataGroup, data_group, NULL);

 /* Create volume data */
 volume_data = (Object) XtVaCreateWidget(“Volume”,
 (WidgetClass)xintDataSampledObjectClass, edit,
 XmNdataArray, volume,
 XmNcount, sizeof(volume)/sizeof(int),
 XmNdataType, XintDATA_TYPE_INTEGER,
 NULL);

 /* Create a chart inside the edit object */
 chart_geometry.x1 = chart_geometry.y1 = 0;
 chart_geometry.x2 = chart_geometry.y2 = 100;
 chart = (Object) XtVaCreateWidget(“combination_chart”,
 (WidgetClass)xintChartObjectClass, edit,
 XmNgeometry, &chart_geometry,
 XmNchartType, XintCHART_TYPE_COMBINATION,
 XmNchartTitle, “Dow Jones Industrial Average”,
 NULL);

 plot = XintChartGetComponent(chart,
XintCHART_COMPONENT_PLOT);

 bar_plot = XintComboPlotCreateNewPlot(plot, XintPLOT_TYPE_BAR);
 XintChartAssociateData(bar_plot, volume_data);

 high_low_plot = XintComboPlotCreateNewPlot(plot,
 XintPLOT_TYPE_HIGH_LOW);
 XintChartAssociateData(high_low_plot, data_group);

 /* Position the axes */
 XtVaSetValues((Widget) bar_plot,
 XmNxAxisPlacement, XintPLACEMENT_NONE,
 XmNyAxisPlacement, XintPLACEMENT_RIGHT,
 NULL);

 XtVaSetValues((Widget) high_low_plot,
 XmNxAxisPlacement, XintPLACEMENT_BOTTOM,
 XmNyAxisPlacement, XintPLACEMENT_LEFT,
 NULL);

 /* Change the format of the vertical axis for the volume */
 axis = XintComboPlotGetComponent(plot,
 XintCHART_COMPONENT_VERTICAL_AXIS, 0);
 XtVaSetValues((Widget) axis, XmNannotationFormat, “%.0f”, NULL);

 XtRealizeWidget(top_level);
 XtAppMainLoop(app_context);
}

ChartObject Programming Guide 29

CHARTOBJECT COMPONENTS
Components of ChartObject1

intro.fm5 Page 30 Thursday, January 22, 2009 11:12 AM
Plot composition Plot composition is handled by the ComboPlot class, which is a special class that
manages multiple primitive plot types, such as BarLine, XYPlot, HighLow, etc.
ComboPlot function XintComboPlotCreateNewPlot allows you to create a new plot
of the type you want. Figure 14 illustrates the relationships between the various
objects created in the Combination Plot example:

Figure 14. Relationship Between Objects Created in Combination Plot Example

Chart

ComboPlot

Horizontal Axis Vertical Axis
(HighLow)

Title
(HighLow) (Text Object)

BarSeries

HighLow Plot

Horizontal Axis Vertical Axis
(BarLine)(BarLine)

HighLowSeries

BarLine Plot
30 ChartObject Programming Guide

CHARTOBJECT COMPONENTS
Auto-scaling 1

intro.fm5 Page 31 Thursday, January 22, 2009 11:12 AM
Auto-scaling
When data is associated with a chart, the range of the axes and the annotation
increments are calculated automatically based on the data. For example, if your data
ranges from 3.8 to 93.7, the Y axis will be adjusted to range from 0 to 100, with an
annotation increment set to 10. If you don’t want auto-scaling, or if you want to see
only a portion of the data (to zoom a plot for example), you can use Plot2D resources
XmN[xy]Limits, or Plot3D resources XmN[xyz]Limits to control the range of the
axes. Once you set a limit resource for a particular direction, auto-scaling will be
turned off for that direction. The limit resources are specified as a pointer to a data
structure of type XintLimits which takes the following form:
typedef struct {
 float minimum;
 float maximum;
} XintLimits;

If you want the auto-scaling to apply only to the minimum or the maximum, you can
set one of the fields to constant XintUNDEFINED_FLOAT. For example, to set the
minimum value to 0 and to let the maximum be calculated automatically you can
specify the following:
Object plot;
XintLimits y_limits;
...
y_limits.minimum = 0;
y_limits.maximum = XintUNDEFINED_FLOAT;

XtVaSetValues ((Widget) Plot, XmNyLimits, &y_limits, NULL);

Creating And Using Templates
Two functions are available which greatly reduce the effort of the application
designer in creating new charts. The first function, XintChartSaveTemplate, saves a
single chart or a list of chart objects in a disk file. The chart objects are saved in
template form, which means that only the visual attributes of the chart are saved, not
the data.

The following code sample illustrates how simple it is to save a chart object in
template form:
Object chart;
...

XintChartSaveTemplate(“template”, &chart, 1);
ChartObject Programming Guide 31

CHARTOBJECT COMPONENTS
Object Editing1

intro.fm5 Page 32 Thursday, January 22, 2009 11:12 AM
Because only the visual attributes are saved, charts are associated with new data
when they are restored in another application. They may then be modified by
convenience functions in that application. In fact, any processing that can be
performed on chart objects can be performed on the restored templates. Function
XintChartReadTemplate reads the chart objects stored in a template file created by
XintChartSaveTemplate. Using a list of data groups, it associates a data group with
each chart object from the file.

The following code shows how to restore a chart from disk.

Widget edit;
Object data_group, *list;
int object_count;
...

list = XintChartReadTemplate(edit, “template”, &data_group,
 1, &object_count);

Two other functions, XintEditObjectWriteFile and XintEditObjectReadFile, can be
used to save and restore objects. These functions read and write the entire object
description, including the associated data. They are described in the EditObject
Widget Class section of this manual.

Object Editing
The ChartObject library offers a lot of flexibility when it comes to selecting, editing
or modifying object resources interactively. The following sections cover some of
the main issues regarding object editing.

Object Selection
Any graphic object displayed in an EditObject widget can be selected. Selected
objects are highlighted using handle bars or by drawing the outline of the object
using a specified color. Graphic resource XmNhighlightMode can be used to set
how each object should be highlighted. By default, each object created is selectable.
To prevent the end-user from selecting an object, set Graphic resource
XmNsensitive to False when you create the object.

A Chart object does not normally propagate resource changes to its sub-objects. To
make a Chart object and all of its components non selectable, set resource
XmNpropagate to True each time you want the change to be applied to all the chart
components, as shown in the following code sample:
XtVaSetValues ((Widget) chart, XmNsensitive, False,

 XmNpropagate, True, NULL);
32 ChartObject Programming Guide

CHARTOBJECT COMPONENTS
Object Editing 1

intro.fm5 Page 33 Thursday, January 22, 2009 11:12 AM
The EditObject actions that control object selection are ObjectSelect,
InitAreaSelection, ExtendAreaSelection and EndAreaSelection. These actions are
connected as follows in the default EditObject translation table:

This table shows that Button1 is used to select an object. If you press the Ctrl key
while doing the selection, the object is added to the list of selected objects.
Otherwise, the current selection list is erased before the object is selected. Also, if
you drag Button1 while pressing it, all the objects contained in the rectangular area
outlined while the cursor is moved will be selected when the button is released. See
Advanced Topics section in this Chapter to see how to redefine the translation table.

EditObject callbacks XmNobjectSelectionCallback and
XmNobjectDeselectionCallback can be used by the application to determine when
an object has been selected or deselected. For objects in a group, the Group object
ID is returned as the selected object. Since a Chart is a group of objects, the
ChartObject ID will be returned when a chart sub-component is selected. Use
function XintChartGetSelectedComponent to find out the type and object ID of the
sub-component that was selected.

Example The following code segment shows how to write a selection callback that prints the
name of the selected object:
static void ObjectSelectionCallback (Widget, data, cb)
Widget widget;
XtPointer data;
XintEditObjectSelectionCallbackStruct *cb;
{
 Object selected_object;
 int code;

 if (XintIsChart(cb->object))
 selected_object = XintChartGetSelectedComponent(cb->object,
 &code);
 else
 selected_object = cb->object;

 printf(“Selected object name = %s\n”,
 XtName((Widget) cb->object));
}

 Action Default Selection Translation

Ctrl<Btn1Down> InitAreaSelection(extend) ObjectSelect(single)

None<Btn1Down> InitAreaSelection(single) ObjectSelect(single)

<PtrMoved ObjectSelect()

<Btn1Up> ObjectEditEnd()
ChartObject Programming Guide 33

CHARTOBJECT COMPONENTS
Built-in Resource Editor1

intro.fm5 Page 34 Thursday, January 22, 2009 11:12 AM
Moving and Resizing Objects
Object moving and resizing is controlled by EditObject actions ObjectEditStart,
ObjectEdit and ObjectEditEnd. These actions are connected to Button1 in the default
translation table for the EditObject class as shown in the table below:

Action ObjectEditStart supports an argument. For example, if you just want the
end-user to move objects, you can specify ObjectEditStart(move) in the translation
table. If you don’t specify an argument to action ObjectEditStart, the behavior of this
action is controlled by EditObject resource XmNobjectEditMode. The purpose of
this resource is to enable you to modify the behavior of action ObjectEditStart
without having to redefine a new translation table. By default, resource
XmNobjectEditMode is set to XintEDIT_NONE which disables all editing. To
enable full object editing, set this resource to constant XintEDIT_ADJUST. See
editobject.c in the demos directory, EditObject subdirectory.

Object editing can also be controlled on an object by object basis using resources
XmNmove and XmNshape. These resources are set to True by default. To disable
editing for a particular object, set XmNmove and/or XmNshape to False.

Verify Callback
Callback XmNverifyCallback is a callback that can be registered on any graphic
object. It is invoked whenever the object has been edited. For example, this callback
will be invoked each time an object has been moved or resized. Most classes redefine
the callback structure that is returned with this callback to provide specific
information relevant to each object class.

For chart objects, in addition to being called for the reasons described above, this
callback is also invoked when the chart type has been changed. The callback
structure returns both the old and the new chart type.

Built-in Resource Editor
Some Graphic objects, have a built-in panel that allows the end-user to edit the object
resources. The objects that have a built-in resource editor are: Text, Chart,

 Action Default Editing Translation

None <Btn1Down> ObjectEditStart()

<PtrMoved> ObjectEdit()

<Btn1Up> ObjectEditEnd()
34 ChartObject Programming Guide

CHARTOBJECT COMPONENTS
Verify Callback 1

intro.fm5 Page 35 Thursday, January 22, 2009 11:12 AM
AxisObject, BarLine, Bar3D, HighLow, Histogram, Pie, Surface3D, XYPlot,
BarSeries, LineSeries, Symbol and Legend. Figure 15 shows the built-in Chart
Editor:

Figure 15. Built-in Chart Editor

The built-in resource editor can be invoked for a specific object using public
function XintEditObjectManageResourceDialog. Action ResourceDialog (defined
by the EditObject class) is also available for the end-user to interactively edit an
object’s resources. This action is connected as follows in the default translation
table:

Note: Action ResourceDialog actually checks for a double click, so it will only
trigger on a double click of Button1.

You can disable the resource editor panel for a specific object by setting Graphic
resource XmNresourceDialog to False when creating the object. You can disable all
resource dialogs by registering callback XmNresourceDialogCallback on the
EditObject widget and setting the doit flag member of the callback structure to False,
as shown in the following code:

Code static void ResourceDialogCallback(widget, data, cb)
Widget widget;
XtPointer data;
XintEditObjectResourceDialogCallbackStruct *cb;
{

 Action Default Dialog Translation

None <Btn1Down> ResourceDialog()
ChartObject Programming Guide 35

CHARTOBJECT COMPONENTS
Built-in Resource Editor1

intro.fm5 Page 36 Thursday, January 22, 2009 11:12 AM
 cb->doit = False
}

If you need to unmanage the parent of a chart object (EditObject widget), you should
first invoke Graphic function XintGraphicUnmanageDialog on the chart to
unmanage all built-in dialogs that may be active. Failure to do so will prevent those
dialog panels from ever reappearing the next time the chart’s parent is managed
(Motif bug).

Customization of a Built-In Resource Editor
Each built-in resource editor panel can be customized to some extent. For example,
it is possible to remove an item in the panel, remove an item inside an option menu
or rename a component in the resource editor panel. The application has also the
option to provide its own custom editor panel using callback
XmNresourceDialogCallback.

Note: all objects of the same class share the same built-in editor panel. So, any
change to an object panel will automatically apply to all the other objects of the same
class.

The widget(s) used to edit a particular resource are encapsulated inside a container
widget (box). For example, an editor for a resource of type String is composed of a
box containing a label and a Text widget. Function XintResEditGetBox retrieves the
box widget ID for a particular resource.
Widget XintResEditGetBox(Object object, String resource_name,
 int num);

You can unmanage the box to prevent a particular resource from being displayed and
edited. Argument num represents the number of components for the resource and it
should be set to 1 in most cases. Some resources however, such as XmNlimits for
the AxisObject, have several components (one to edit the minimum value and one to
edit the maximum value). Setting argument num to 1will retrieve the box used to edit
the minimum value. Setting argument num to 2 retrieves the box used to edit the
maximum value.
36 ChartObject Programming Guide

CHARTOBJECT COMPONENTS
Customization of a Built-In Resource Editor 1

intro.fm5 Page 37 Thursday, January 22, 2009 11:12 AM
Most resource editors use a label widget or gadget to display the text identifying
which resource is being set (see strings “Chart Type”, “Title”, “Footer”, “Show
Legend” in Figure 15). Function XintResEditGetLabel retrieves the label ID for a
particular resource if there is one. If no label is defined, the function returns NULL.
This label ID can be used to modify the text displayed in the editor.
Widget XintResEditGetLabel(Object object, String resource_name,
 int num);

Some resources, such as XmNchartType, are edited using an option menu.
Function XintResEditGetMenuButton can be used to retrieve the ID of a particular
button in the option menu. Argument button_name is the name of the option as it is
specified in the menu. Unmanage the button ID returned by function
XintResEditGetMenuButton to remove an option from the menu.
Widget XintResEditGetMenuButton(Object object, String resource_name,

 String button_name);

The following example illustrates how to use these functions. We modify the chart
editor shown in Figure 15 as follows:
• Remove the chart footer component.
• Rename “Chart Type” to “Type”.
• Remove option “High Low” from the option menu used to select the chart

type.

Code Object chart;
 Widget button, label;
 ...
 /* Unmanage XmNchartFooter editor */
 box = XintResEditGetBox(chart, XmNchartFooter, 1);
 if (box != NULL) XtUnmanageChild(box);

/* Change name of label from “Chart Type” to “Type” */
 label = XintResEditGetLabel(chart, XmNchartType, 1);
 if (label) {
 XmString cstring;
 cstring = XmStringCreateSimple(“Type”);
 XtVaSetValues(label, XmNlabelString, cstring, NULL);
 XmStringFree(cstring);
 }

 /* Unmanage High Low option in chart type option menu */
 button = XintResEditGetMenuButton(chart, XmNchartType,“High
Low”);
 if (button) XtUnmanageChild(button);
ChartObject Programming Guide 37

CHARTOBJECT COMPONENTS
Built-in Resource Editor1

intro.fm5 Page 38 Thursday, January 22, 2009 11:12 AM
Creating Your Own Resource Editor
If the editing options provided to customize a resource editor panel are not sufficient
for your application, you may want to create your own custom panel using callback
XmNresourceDialogCallback. This callback must be registered on the parent
EditObject widget and it is called for all objects that need to be edited. It is important
that you check for the object class or the object ID so that you display your custom
panel only for the specified object class or object. For objects in a group, this
callback always returns the object ID of the top group. So if the object returned is of
class ChartObject, you should call function XintChartGetSelectedComponent to
retrieve the actual component of the chart that needs to be edited. The example below
illustrates how to redefine the resource editor panel for the Axis object class. Our
custom panel only lets the end-user edit the axis label. The complete listing of this
example can be found in file UserCustomizedResourceEditor.c, in directory
examples/Chart.

Code static void ResourceDialogCallback(widget, data, cb)
Widget widget;
XtPointer data;
XintEditObjectResourceDialogCallbackStruct *cb;
{
 static Widget my_axis_panel = NULL;
 static Widget axis_widgets[2];
 Object selected_object;
 int code;

 if (XintIsChart(cb->object))
 selected_object = XintChartGetSelectedComponent(
 cb->object, &code);
 else
 selected_object = cb->object;

 if (XintIsAxisObject(selected_object)) {

 /* Create my own panel if first time */
 if (!my_axis_panel)
 my_axis_panel = BuildAxisPanel(widget, axis_widgets);

 /* load axis panel to contain current axis state */
 LoadAxisPanel(axis_widgets, selected_object);

 /* Display my panel */
 XtManageChild(my_axis_panel);

 /* Turn off built-in panel */
 cb->doit = False;
 }
}

38 ChartObject Programming Guide

CHARTOBJECT COMPONENTS
Creating Your Own Resource Editor 1

intro.fm5 Page 39 Thursday, January 22, 2009 11:12 AM
Function BuildAxisPanel builds the dialog panel and fills the array axis_widgets
with the widget ID’s it will need later. This function uses an INT convenience
function, IntCreateDialogPanel, that creates a dialog widget with a set of buttons as
specified.

Code static Widget BuildAxisPanel(widget, axis_widget_list)
Widget widget;
Widget *axis_widget_list;
{
 Widget panel, vbox;

 panel = (Widget) IntCreateDialogPanel(XtParent(widget),
 “My Axis Editor”,
 IntOK | IntAPPLY | IntCANCEL,
 IntOK, EditAxisCallback,
 (XtPointer)axis_widget_list,
 XintVERTICAL, 5, 5, &vbox, NULL);

 /* Create text to edit axis label */
 axis_widget_list[0] = XtVaCreateManagedWidget(“axis_label”,
 xmTextWidgetClass, vbox,
 XmNcolumns, 20,
 XmNeditMode, XmSINGLE_LINE_EDIT,
 NULL);
 /* Save edit object ID. We will need it in EditAxisCallback */
 axis_widget_list[1] = widget;

 return panel;
}

Function LoadAxisPanel retrieves the resources from the specified objects and loads
the values into the panel before we manage it.

static void LoadAxisPanel(axis_widget_list, object)
Widget *axis_widget_list;
Object object;
{
 char *label_string;

 XtVaGetValues((Widget) object, XmNlabel, &label_string, NULL);

 XmTextSetString(axis_widget_list[0], label_string);
}

Finally, here is the code for callback EditAxisCallback which is the callback invoked
when the OK or APPLY button is selected from the custom menu.
ChartObject Programming Guide 39

CHARTOBJECT COMPONENTS
Setting Resources1

intro.fm5 Page 40 Thursday, January 22, 2009 11:12 AM
Code static void EditAxisCallback(widget, axis_widget_list, cb)
 Widget widget;
 Widget *axis_widget_list;
 XmAnyCallbackStruct *cb;
{
 char *axis_label;
 Object *list;
 Object object;
 int i, count;
 int code;

 if (cb->reason == IntOK || IntAPPLY) {
 axis_label = XmTextGetString(axis_widget_list[0]);

 /*
 * get the list of selected object, and apply SetValues to the
 * Axis object(s)
 */
 list = XintEditObjectSelectList(axis_widget_list[1], &count);

 for (i=0; i<count; i++) {
 if (XintIsChart(list[i])) {
 object = XintChartGetSelectedComponent(list[i], &code);
 if (XintIsAxisObject(object))
 XtVaSetValues((Widget) object, XmNlabel, axis_label, NULL);
 }
 }

 /* Cleanup */
 if (list) XtFree((char *) list);
 if (axis_label) XtFree(axis_label);
 }
}

Setting Resources
In addition to the built-in resource editor, the resources for objects in the ChartObject
library can be set by any of the methods that are available for setting resources in X.
The two most common methods are hardcoded resources and resources that are
defined in a resource file. One of the benefits in using a resource file is to customize
the interface for different end-users.
40 ChartObject Programming Guide

CHARTOBJECT COMPONENTS
Setting Resources 1

intro.fm5 Page 41 Thursday, January 22, 2009 11:12 AM
Using Hardcoded Resources
ChartObject component resources are set in the source code in much the same way
as Motif widget resources are specified. The principle difference is that the
component object ID must be retrieved through the use of the function,
XintChartGetComponent. This function returns the object ID, which is then used in
XtSetValues or XtVaSetValues to define the required resource values.

The following code segments illustrate these steps:

• Define a ChartObject by using XtCreateWidget or XtVaCreateWidget. Any of
the Chart object class resources can be defined in the function’s argument list.

 chart = (Object) XtVaCreateWidget(“BarPlot”,
 (WidgetClass)xintChartObjectClass, edit,
 XmNgeometry, &chart_geometry,
 XmNchartType, XintCHART_TYPE_BAR,
 XmNchartTitle, “Yearly Sales”,
 XmNshowLegend, True,
 NULL);

• Get the desired component from the chart.
 plot = XintChartGetComponent(chart, XintCHART_COMPONENT_PLOT);

• Define the necessary component object resources

 XtVaSetValues((Widget) plot,
 XmNbarOrientation, XintHORIZONTAL,
 XmNbarStyle, XintSTACKED,
 XmNclusterWidth, 100,
 NULL);

Resource File
A resource file provides a simple, direct means for the application designer to give
the end user control over those aspects of the look and behavior of the interface
which can be allowed to change without interfering with the function of the
application itself.

Chart object resources and chart component resources are set in the same manner as
are X resources, using instance names and/or class names. Drop the XmN prefix
from the resource names.
ChartObject Programming Guide 41

CHARTOBJECT COMPONENTS
Setting Resources1

intro.fm5 Page 42 Thursday, January 22, 2009 11:12 AM
Setting a value
to an INT
constant

To set a value to an INT constant, drop the Xint prefix from the constant and convert
the remaining term to lower case. For example:
XintPLACEMENT_LEFT becomes placement_left

Several of the hardcoded resources in the previous section could be defined by
resource file entries, as shown in the following example.
*XintChart.chartType: chart_type_bar
*XintChart.chartTitle: Yearly Sales

Chart component resources may be identified by their class name in order to specify
new values in the resource file. However, this makes changes in all occurrences of
the class. The following table lists the object name and the class name for end-user
specifiable ChartObject components.

Changing
resources for all
TextObjects

To change resources for all TextObjects use the class name:

*XintText.color: cyan
*XintText.fontFamily: helvetica

Changing only
chart title
resources

To change only the chart title’s resources use the object name:
*chart_title.color: red
*chart_title.fontFamily: helvetica

Restricted Resources
Not all ChartObject component object resources can be changed by using a resource
file. When chart creates these objects, some of their resources are set by the code.
These can be changed by using XtSetValues, but not from a resource file. Any
resources which are not set by the code are available to the end-user for
customization of the interface.

Object Name Class Name

chart_title XintText

chart_footer XintText

chart_legend XintLegend

plot_haxis
(created for 2D plots only)

XintAxisObject

plot_vaxis
(created for 2D plots only)

XintAxisObject
42 ChartObject Programming Guide

CHARTOBJECT COMPONENTS
Resource File Example 1

intro.fm5 Page 43 Thursday, January 22, 2009 11:12 AM
The following table lists some of the resources set when chart creates its components
(they cannot be changed by the end-user in a resource file):

Chart resources XmNchartTitle and XmNchartFooter can be used to set title and
footer text strings.

Resource File Example
The following example illustrates the use of a resource file to customize a chart. In
Figure 16, a simple bar chart is displayed. In Figure 17, the same bar chart is
displayed using a resource file.

Figure 16. Simple Bar Chart Without a Resource File

Object Name Resource Name

chart_title XmNfontSize
XmNfontWeight
XmNtextString

chart_footer XmNfontSize
XmNfontWeight
XmNtextString

plot_haxis XmNtickPlacement

plot_vaxis XmNtickPlacement
ChartObject Programming Guide 43

CHARTOBJECT COMPONENTS
Setting Resources1

intro.fm5 Page 44 Thursday, January 22, 2009 11:12 AM
Figure 17. Bar Chart With a Resource File

Resource file The following resource file contains all resource settings used to change the display
from the one shown in Figure 16 to the one in Figure 17:
! resource file example
!
! Chart Class
!
*chartTitle: Bar Chart
*chartFooter: Demonstrates creating \n two footer lines
*fillColor: gray85
!
! Text Class
!
*chart_title.color: red
*chart_title.fontFamily: helvetica
*chart_title.dashList: 3,,1
*chart_title.fillColor: white
*chart_title.fillStyle: fill_solid
*chart_title.roundEdge: True
*chart_footer.color: black
*chart_footer.fontFamily: times
44 ChartObject Programming Guide

CHARTOBJECT COMPONENTS
Resource File Example 1

intro.fm5 Page 45 Thursday, January 22, 2009 11:12 AM
!
! Legend Class
!
*.showLegend: True
*chart_legend.columns: 1
*chart_legend.LegendTitle: Cities
*chart_legend.font: *Helvetica*-120-*
*chart_legend.highlightMode: highlight_none
*chart_legend.marginHeight: 10
*chart_legend.marginWidth: 10
*chart_legend.color: steel blue
*chart_legend.fillColor: white
*chart_legend.fillStyle: fill_solid
*chart_legend.lineStyle: shadow_out
*chart_legend.lineThickness: 8
!
! AxisObject
!
*XintAxisObject.labelFont: *-Helvetica*-120-*
*plot_haxis.label: Texas Cities
*plot_haxis.color: black
*plot_vaxis.label: Housing Starts (000)
*plot_vaxis.color: black
!
! BarLine Class
!
*XintBarLine.drawShadow: True
*XintBarLine.inclination: 20
*XintBarLine.rotation: 10

Graphic Attributes

ObjectEditor
widget

The graphic class, which is the base class for all graphic objects, defines the
resources that control the appearance of an object, including line color, fill color,
bitmap pattern, line width, etc. There is no built-in editor for those resources.
Instead, widget class ObjectEditor is available for building a menu that can be used
to create and/or edit graphic objects interactively. The appearance of the menu
created by widget ObjectEditor can be entirely customized to fit your application’s
requirements. See Chapter 2 for a complete description of the resources and public
functions defined by class ObjectEditor.
ChartObject Programming Guide 45

CHARTOBJECT COMPONENTS
Graphic Attributes1

intro.fm5 Page 46 Thursday, January 22, 2009 11:12 AM
ObjectEditor Example
The following example (see file ObjectEditor.c in directory
examples/Chart) illustrates how to create an empty EditObject and a
ObjectEditor panel that can be used to interactively create and edit objects in the
EditObject window.
include <Xm/Form.h>
include <Xm/Frame.h>
include <Xint/EditObject.h>
include <Xint/ObjectEditor.h>
include <Xint/Text.h>
include <Xint/RoundedRect.h>
include <Xint/Rectangle.h>
include <Xint/Oval.h>
include <Xint/Line.h>
include <Xint/Polyline.h>
include <Xint/Polygon.h>
include <Xint/FreeHand.h>
include <Xint/Chart.h>

/* Define list of pixmaps used when creating the ObjectEditor widget */
static char *pixmap_names[] = {
 “50_percent_1”, “50_percent_2”, “Vertical1”, “Horizontal1”,
 “Slant_Left1”, “Slant_Right1”, “Weave2”, “Weave4”,
 “Diaper”, “Diamond2”, “Trellis1”, “Cross_Hatch”,
 “Tread2”, “Herring_Bone2”, “Zigzag2”, “Check2”, NULL};

main(argc, argv)
int argc;
char *argv[];
{
 XtAppContext app_context;
 Widget top_level;
 Widget form, frame, edit, object_editor;
 ObjectClass object_class_list[12];
 Pixmap pixmap_list[20];
 int n;

 top_level = XtAppInitialize(&app_context, “object_editor”,
 (XrmOptionDescList)NULL, 0, &argc, argv, NULL, NULL, 0);
 XtVaSetValues(top_level, XmNallowShellResize, True, NULL);

 /* Create a Form container */
 form = XtVaCreateManagedWidget(“form”, xmFormWidgetClass,
 top_level, NULL);
46 ChartObject Programming Guide

CHARTOBJECT COMPONENTS
ObjectEditor Example 1

intro.fm5 Page 47 Thursday, January 22, 2009 11:12 AM
 /* list the Object classes that we want to create interactively */
 n = 0;
 object_class_list[n] = xintRectangleObjectClass; n++;
 object_class_list[n] = xintRoundedRectObjectClass; n++;
 object_class_list[n] = xintOvalObjectClass; n++;
 object_class_list[n] = xintLineObjectClass; n++;
 object_class_list[n] = xintPolylineObjectClass; n++;
 object_class_list[n] = xintPolygonObjectClass; n++;
 object_class_list[n] = xintTextObjectClass; n++;
 object_class_list[n] = xintFreeHandObjectClass; n++;
 object_class_list[n] = xintChartObjectClass; n++;
 object_class_list[n] = NULL; n++;

 /* Build a list of bitmap patterns */
 n = 0;
 while (pixmap_names[n]) {
 pixmap_list[n] =
XintObjectEditorGetDefinedPixmap(form,
 pixmap_names[n]);
 n++;
 }
 pixmap_list[n] = XmUNSPECIFIED_PIXMAP;

 /* Create an ObjectEditor widget */
 object_editor = XtVaCreateManagedWidget(“object_editor”,
 xintObjectEditorWidgetClass, form,
 XmNorientation, XintVERTICAL,
 XmNnumColumns, 1,
 XmNobjectOrientation, XmHORIZONTAL,
 XmNobjectNumColumns, 3,
 XmNpixmapNumColumns, 4,
 XmNpixmapList, pixmap_list,
 XmNshowAttributeLabels, False,
 XmNobjectClassList, object_class_list,
 /* Form constraint resources */
 XmNleftAttachment, XmATTACH_FORM,
 XmNtopAttachment, XmATTACH_FORM,
 XmNbottomAttachment, XmATTACH_FORM,
 NULL);

 /* Create an Frame widget */
 frame = XtVaCreateManagedWidget(“frame”, xmFrameWidgetClass,
 form,
 XmNshadowType, XmSHADOW_IN,
 /* Form constraint resources */
 XmNrightAttachment, XmATTACH_FORM,
 XmNtopAttachment, XmATTACH_FORM,
 XmNbottomAttachment, XmATTACH_FORM,
 XmNleftAttachment, XmATTACH_WIDGET,
 XmNleftWidget, object_editor, NULL);
ChartObject Programming Guide 47

CHARTOBJECT COMPONENTS
Graphic Attributes1

intro.fm5 Page 48 Thursday, January 22, 2009 11:12 AM
 /* Create an EditObject widget */
 edit = XtVaCreateManagedWidget(“edit_object”,
 xintEditObjectWidgetClass, frame,
 XmNwidth, 600,
 XmNheight, 600,
 XmNobjectEditMode, XintEDIT_ADJUST, NULL);

 /* Connect the object editor to the edit object widget */
 XintObjectEditorAddEditObjectToList(object_editor, edit);

 /* Loop */
 XtRealizeWidget(top_level);
 XtAppMainLoop(app_context);
}

Figure 18 displays the output from this example:

Figure 18. ObjectEditor Example Output
48 ChartObject Programming Guide

CHARTOBJECT COMPONENTS
Editing Functions 1

intro.fm5 Page 49 Thursday, January 22, 2009 11:12 AM
Editing Functions
Some applications may want to provide some of the functionality of the
ObjectEditor widget by using their own interface. All of the controls available
through the ObjectEditor widget class can be duplicated using public functions
defined in the EditObject classes or by setting resources defined in the Graphic class.

Implementing
functionality

The following table indicates how to implement the functionality provided by the
ObjectEditor widget class.

 Functionality Function or Resource

Inserting an object interactively XintEditObjectInsert.

Cut/Copy/paste XintEditObjectCut, XintEditObjectCopy and
XintEditObjectPaste.

Group/Ungroup XintEditObjectGroup and XintEditObjectUngroup.

Back/Front XintEditObjectBack and XintEditObjectFront.

Lower/Raise XintEditObjectLower and XintEditObjectRaise.

Set colors See resources XmNcolor, XmNfillColor and XmN-
stippleColor.

Set line style See resource XmNlineThickness and
XmNlineStyle.

Set dash style See resource XmNdashList.

Set fill style See resource XmNfillStyle.

Set pixmap pattern See resource XmNfillPixmap.
ChartObject Programming Guide 49

CHARTOBJECT COMPONENTS
Drag and Drop1

intro.fm5 Page 50 Thursday, January 22, 2009 11:12 AM
Drag and Drop
ChartObject supports full Motif drag and drop functionality (Note: drag and drop is
not supported under X11R4/Motif1.1). One can drag and drop cells from a table
widget into a chart object, data from a chart object into another chart object, etc. It
is also possible to establish links using drag and drop between a table and a chart
object or between two chart objects.

EditObject action MotifStartDrag controls the drag operation. It is connected using
the following translation:
<Btn2Down>: MotifStartDrag()

There is no specific action defined for dropping objects. The drop operation is
activated automatically on a button release.

Drag and Drop operations can be disabled by setting EditObject resources
XmNallowDrag and XmNallowDrop to False. Also, callback
XmNdragDropCallback is invoked on both drag and drop operations and can be used
to selectively enable or disable either drag or drop operations.

Default behavior The following table summarizes the default behavior for drag and drop. If there is a
key sequence in the translation, it is important that the keys remain pressed until the
drag and drop operation has been completed and the button has been released.

Key Sequence

Drag Source Drop Site Description

<Btn2Down> Chart object EditObject Moves chart to specified
location.

Ctrl <Btn2Down> Chart object EditObject Copies chart to specified
location.

Ctrl Shift <Btn2Down> Chart object EditObject Copies chart to specified
location and makes a link
between the two.

<Btn2Down> Chart object Chart object Moves data from source
chart to destination chart.

Ctrl <Btn2Down> Chart object Chart object Copies data from source
chart object into destination
chart object.

Ctrl Shift <Btn2Down> Chart object Chart object Copies data from source
data object into destination
chart object. Establish a
link between the two charts.
50 ChartObject Programming Guide

CHARTOBJECT COMPONENTS
Hardcopy 1

intro.fm5 Page 51 Thursday, January 22, 2009 11:12 AM
Hardcopy
Hardcopy output functions are provided for the widgets and objects defined in the
ChartObject library. Using the supplied functions, an application can produce a file

<Btn2Down> Chart object EditTable Data contained in chart
moved to table at location
specified by pointer.

Ctrl <Btn2Down> Chart object EditTable Data contained in chart cop-
ied to table at location speci-
fied by pointer.

Ctrl Shift <Btn2Down> Chart object EditTable Data contained in chart is
copied to table at location
specified by pointer. Estab-
lishes a link between chart
and table.

<Btn2Down> Motif Text EditObject Creates a text object con-
taining the text.

<Btn2Down> Motif Text Chart object Sets Chart title to be string
contained in text widget.

<Btn2Down> Motif Text EditTable Contents of Text widget
copied into specified table
cell.

<Btn2Down> EditTable Chart object Data contained in selected
cells copied into chart object
(move option disabled for
EditTable widget).

Ctrl <Btn2Down> EditTable Chart object Data contained in selected
cells copied into chart
object.

Ctrl Shift <Btn2Down> EditTable Chart object Data contained in selected
cells copied into chart object.
Establishes link between table
and chart.

<Btn2Down> Graphic object EditObject Moves object to location
specified by pointer.

Ctrl <Btn2Down> Graphic object EditObject Copies object to location
specified by pointer.

Key Sequence
(continued)

Drag Source Drop Site Description
ChartObject Programming Guide 51

CHARTOBJECT COMPONENTS
Hardcopy1

intro.fm5 Page 52 Thursday, January 22, 2009 11:12 AM
containing a PostScript or CGM representation of a single widget (and all the
graphic objects displayed inside) or a composite of several widgets. Once the
PostScript or CGM file is generated, you can use your local print/plot utilities to
produce the hardcopy output.

All the functions related to hardcopy output are defined in the CompBase widget
class. See the CompBase reference section in Chapter 2 for a complete description
of those functions.

PostScript Output
Function XintOutputPostscript outputs a scaled monochrome or color encapsulated
PostScript description of an INT widget or a container widget such as a Form or a
RowColumn widget, containing multiple INT widgets, and of all of the graphic
objects contained inside. It produces an image preserving the relative layout of the
child widgets. In addition to INT widgets, Motif Label, Text and TextField widgets
are also recognized and output.

Function XintOutputMontagePostscript also outputs a PostScript representation of a
combination of INT widgets or classes which are derived from EditObject (see
EditTable for example). This function lets the application position each widget in the
output display manually.

Before requesting the PostScript output function, use function
XintPostScriptSetDefaults to define the characteristics (height, width, resolution) of
the page to be output. By default, widget background is not painted. To specify a
background color, use the function XintPostscriptSetBackground. The PostScript
output function will produce a multi-page output display when the scale_factor
argument in the function call is greater than one.
52 ChartObject Programming Guide

CHARTOBJECT COMPONENTS
Hardcopy 1

intro.fm5 Page 53 Thursday, January 22, 2009 11:12 AM
Layout example Figures 19 and 20 show a layout handled by the composite hardcopy output.

Figure 19. Composite Layout Example

Figure 20. Composite PostScript Output Example

Function XintOutputMontagePostscript accepts a list of EditObject based widgets,
as well as a list of coordinate specifications. This function allows the application to
specify the layout of the hardcopy output. See ChartSlideShow.c in the
ChartDemo1 subdirectory of the demos directory for a code example.

CGM Output

Chart

Form

Chart

EditTableEditTable EditObject
ChartObject Programming Guide 53

CHARTOBJECT COMPONENTS
Real-time Applications1

intro.fm5 Page 54 Thursday, January 22, 2009 11:12 AM
The CGM hardcopy output offers similar functionality to that of the PostScript
output. Function XintOutputCGM creates a CGM file containing the graphic
representation of an EditObject widget or container widget and of all the graphic
objects contained inside. Function XintOutputMontageCGM can also be used to
create a composite output of multiple EditObject widgets.

Real-time Applications
The ChartObject library is well suited to handle real-time applications that
continuously need to update one or multiple graphs. The DataObject library
provides, for each primitive data class, a set of convenience functions to modify the
data by replacing, extending or shifting the data values. The DataObject library also
provides a batching mechanism, so that multiple updates for different data elements
will result in only one redraw. Finally, the ChartObject supports a double-buffering
mechanism which allows for smooth graph updates.

Example In this example, we want to graph and update multiple sets of data. The horizontal
direction represents the time in seconds where the samples are generated. The
vertical direction represents the point amplitudes, in the application’s units. The
graph is initially empty. Points are first appended until we reach the number of points
defined in constant MAX_POINT. After that, the data is shifted so that only the last
MAX_POINT points are displayed. A complete listing of this example is available
in file ChartRealTimeApplication.c, in directory examples/Chart.

The creation of the chart is shown in the following code. We create a line graph and
set the vertical limits of the plot between -1 and 1, which is the range of the data
values. In the horizontal direction we don’t set any limits so that auto-scaling is used.
We set resource XmNxAutoRangeMode to XintUSE_MIN_MAX so that the chart
does not round-up the starting time and ending time limits for the horizontal axis.
54 ChartObject Programming Guide

CHARTOBJECT COMPONENTS
Real-time Applications 1

intro.fm5 Page 55 Thursday, January 22, 2009 11:12 AM
Code chart_geometry.x1 = 0.0;
chart_geometry.y1 = 0.0;
chart_geometry.x2 = 100.0;
chart_geometry.y2 = 100.0;

chart = (Object)XtVaCreateWidget(“chart”,
 (WidgetClass)xintChartObjectClass,
 edit,
 XmNchartTitle, “Real Time Example\nwith Data Series”,
 XmNgeometry, &chart_geometry,
 XmNchartType, XintCHART_TYPE_LINE,
 XmNfillStyle, XintFILL_NONE,
 NULL);

y_limits.minimum = -1;
y_limits.maximum = 1;
XtVaSetValues((Widget)
 XintChartGetComponent(chart, XintCHART_COMPONENT_PLOT),
 XmNxAutoRangeMode, XintUSE_MIN_MAX,
 XmNyLimits, &y_limits,
 NULL);

For the data, we will use DataSeries objects because the data points can arrive at non
constant intervals. We first create a DataGroup object since we want to display
multiple curves. We also create a DataLabel object that will be used to display the
time values on the horizontal axis. All the data objects are created with no data
initially.
 data_group = (Object)XtVaCreateWidget(“data_group”,
 (WidgetClass)xintDataGroupObjectClass,
 edit, NULL);

 /*
 * We use DataSeries to be able to position samples exactly at times
 * where it is generated. Start with no data.
 */
 for (i = 0; i < num_sets; i++)
 XtVaCreateWidget(“set”, (WidgetClass)xintDataSeriesObjectClass,
 edit,
 XmNcount, 0,
 XmNdataType, XintDATA_TYPE_FLOAT,
 XmNdataGroup, data_group,
 NULL);

/*
 * Add empty Data Label object to handle the time labels
 */
 XtVaCreateWidget(“label”,
(WidgetClass)xintDataLabelObjectClass,
 edit,
 XmNlabelCount, 0,
 XmNdataGroup, data_group,
 NULL);

 XintChartAssociateData(chart, data_group);
ChartObject Programming Guide 55

CHARTOBJECT COMPONENTS
Real-time Applications1

intro.fm5 Page 56 Thursday, January 22, 2009 11:12 AM
The update of the data is done as follows. We first update the data series using
function XintDataSeriesExtend if the number of inserted points is less that
MAX_POINT and XintDataSeriesShift otherwise. We use function
XintDataListIterate to retrieve the ID of the data series from the data group. The
update of the data label is done in a similar fashion. We only generate an annotation
every 10 points so that labels don’t overlap on the horizontal axis.

Note: We pass the label position (time value) along with the label string to the data
label update functions. Finally, the whole update sequence is surrounded by calls to
XintDataBatchUpdate so that only one redraw gets generated from all the changes
we have made to the data.

 XintDataBatchUpdate(data_group, True);

 for (i=0; i<nseries; i++) {

 data_series = XintDataListIterate(&data_group, 1,
 xintDataSeriesObjectClass, i);
 if (points_inserted < MAX_POINT)
 XintDataSeriesDataExtend(data_series, &float_time, &y[i], 1);
 else
 XintDataSeriesDataShift(data_series, &float_time, &y[i], 1);
 }

 /*
 * Update the labels (generate a label only every 10th value)
 */
 if (points_inserted % 10 == 0) {

 data_label = XintDataListIterate(&data_group, 1,
 xintDataLabelObjectClass, 0);

 sprintf(string_buffer, “%3.1f”, float_time);

 str_array[0] = string_buffer;
 if (points_inserted < MAX_POINT)
 XintDataLabelExtend(data_label, str_array, &float_time, 1);
 else
 XintDataLabelShift(data_label, str_array, &float_time, 1);
 }

 XintDataBatchUpdate(data_group, False);
56 ChartObject Programming Guide

CHARTOBJECT COMPONENTS
CGM Output 1

intro.fm5 Page 57 Thursday, January 22, 2009 11:12 AM
Zoom
Zooming a display involves the enlargement of a selected part of the data being
viewed. A simple zoom may be achieved through the use of Xwindow resizing
facilities. In some cases this will be sufficient for the user’s needs. In other cases the
user will require more control over the process in order to get a more detailed or
clearer view of a portion of the data or to maintain window size requirements.

The Chart library facilitates the creation of zoom applications by providing the
XmNareaSelectionCallback resource and the XintChartZoom convenience
function. They enable the application designer to change the data displayed in the
viewport easily.

In Figure 21, a subset of the data between 1993 and 2003 has been zoomed from the
background plot to fill the viewport in the foreground plot. The code that produced
this display follows a discussion of the viewport.

Figure 21. Chart Zoom Example
ChartObject Programming Guide 57

CHARTOBJECT COMPONENTS
Zoom1

intro.fm5 Page 58 Thursday, January 22, 2009 11:12 AM
Data Viewport
The data viewport is the visible area of the plot. The plot area is controlled by the
data range of the plot object as specified by the XmNxLimits and XmNyLimits
resources of the Plot2D and Plot3D Object Metaclasses (Plot3D also has an
XmNzLimits resource). These resources are pointers to type XintLimits, a structure
which contains the minimum and maximum data values for the given axis.

If XintLimits is NULL, autoranging is performed and the minimum and maximum data
values will be used. Either raw data values or rounded data values can be selected
through the use of the XmNxAutoRange and XmNyAutoRange resources. You can
activate autoranging of a single parameter in the XintLimits structure by setting it to
XintUNDEFINED_FLOAT. The following code segments illustrate these capabilities.

Code The XmN[xy]Limits resource is a pointer to an XintLimits structure. To assign
values, declare a variable of this type:

 /* Define the Y Axis Range */

 XintLimits yRange;

 yRange.minimum = 0.0;
 yRange.maximum = XintUNDEFINED_FLOAT;

• The next two assignment statements define the ChartObject and the PlotObject
component of the ChartObject.

 /* Create a Chart object */

 chart = (Object) XtVaCreateWidget(“BarPlot”,
 (WidgetClass)xintChartObjectClass,
 edit,
 XmNgeometry, &chart_geometry,
 XmNchartType, XintCHART_TYPE_BAR,
 XmNchartTitle, “Yearly Sales”,
 XmNshowLegend, True,
 NULL);

 /*
 * Get the plot object ID.
 */

 plot = XintChartGetComponent(chart, XintCHART_COMPONENT_PLOT);
58 ChartObject Programming Guide

CHARTOBJECT COMPONENTS
Chart Zoom Example 1

intro.fm5 Page 59 Thursday, January 22, 2009 11:12 AM
Now the axis limits for the plot can be changed. Here we have specified autoranged
x-axis limits which will be rounded to a multiple of the major increment for the
x-axis. The y-axis range is defined by yRange. The minimum value has been set to
a constant 0.0 and the maximum value has been set to
XintUNDEFINED_FLOAT for autoranging.
 XtVaSetValues((Widget) plot,
 XmNxLimits, NULL,
 XmNxAutoRange, XintROUND_MIN_MAX,
 XmNyLimits, &yRange,
 NULL);

The XintChartZoom convenience function zooms the selected area by mapping it to
the plot area. XmNxLimits and XmNyLimits are set to the range of the selected
area.

XintChartZoom(zoom_chart, cb->x, cb->y, cb->width, cb->height);

Chart Zoom Example
The following code example (see ChartZoom.c in the examples/Chart
directory) illustrates how to create a zoom application by using the XintChartZoom
convenience function:

Code include <Xm/Form.h>
include <Xm/Separator.h>
include <Xm/PushBG.h>
include <Xm/RowColumn.h>
include <Xint/Chart.h>
include <Xint/EditObject.h>

/*
 * Define PushButton controls
 */
define k_zoom 0
define k_zoom_reset 1
define k_exit 2
define k_num_controls 3
static char *control_pb_names[] = {“Zoom”, “Zoom Reset”, “Exit”};

/*
 * Create two translation tables; one as the default and the other
 * specifically for zoom actions.
 */
static char default_translations[] =
“None <Btn1Down>: TraverseCurrent() ObjectSelect(single)\
 ObjectEditStart() Locator()
SelectionCallback()\
 InitAreaSelection(single)
ResourceDialog()”;

static char zoom_translations[] =
“None <Btn1Down>: TraverseCurrent() InitAreaSelection(callback)”;
ChartObject Programming Guide 59

CHARTOBJECT COMPONENTS
Zoom1

intro.fm5 Page 60 Thursday, January 22, 2009 11:12 AM
XtTranslations default_translations_parsed;
XtTranslations zoom_translations_parsed;

/*
 * Other Global Variables
 */
Widget edit;
Object zoom_chart = NULL;

/*
 * The ZoomCallback illustrates an easy method to zoom a plot. It is
 * activated by the Btn1Down zoom button translation. To perform the
 * zoom, it calls the XintChartZoom convenience function with argument
 * values from the XintEditObjectAreaSelectionCallbackStruct.
 */
static void ZoomCallback(widget, data, cb)
 Widget widget;
 XtPointer data;
 XintEditObjectAreaSelectionCallbackStruct *cb;
{7
 Object chart = (Object) data;

 if (zoom_chart == NULL) return;

 XintChartZoom(zoom_chart, cb->x, cb->y, cb->width, cb->height);

 zoom_chart = NULL;
}

/*
 * The following code defines the callback that controls the action for
 * all of the pushbuttons.
 */
static void ControlsProc(widget, client_data, cb)
 Widget widget;
 XtPointer client_data;
 XmAnyCallbackStruct *cb;
{
 int code = (int) client_data;
 Object chart, plot;
 Object *list;
 int count;
 register int i;

 if (code == k_exit) exit (0);

 /*
 * Retrieve object list to find ID of chart
 */
 list = XintEditObjectGetList(edit, &count);

 for (i=0; i<count; i++)
 if (XintIsChart(list[i])) break;

 if (i >= count) return;

 plot = XintChartGetComponent(list[i], XintCHART_COMPONENT_PLOT);
60 ChartObject Programming Guide

CHARTOBJECT COMPONENTS
Chart Zoom Example 1

intro.fm5 Page 61 Thursday, January 22, 2009 11:12 AM
/*
 * Return if it is a 3D plot
 */
 if (XintIsPlot3D(plot)) return;

 if (code == k_zoom) {

 /*
 * Merge zoom_translations_parsed with the EditObject
 * widget’s existing translations. Zoom will be activated
 * when the end-user defines a rectangle with Button1
 */
 XtOverrideTranslations(edit, zoom_translations_parsed);

 zoom_chart = list[i];

 } else if (code == k_zoom_reset) {

 /*
 * Reset the zoom. The plot is restored to its original
 * size by autoranging each axis.
 */
 XtVaSetValues((Widget) plot, XmNxLimits, NULL, XmNyLimits,
 NULL, NULL);
 }
}

main(argc, argv)
 int argc;
 char *argv[];
{
 XtAppContext app_context;
 Widget top_level, main_form, separator, controls_box, pb;
 Object chart;
 XmString cstring;
 register int i;

 top_level = XtAppInitialize(&app_context, “Zoom Example”,
 (XrmOptionDescList)NULL, 0,
 &argc, argv, NULL, NULL, 0);

 /*
 * Parse and compile the default and zoom translation tables.
 */
 default_translations_parsed =
 XtParseTranslationTable(default_translations);
 zoom_translations_parsed =
 XtParseTranslationTable(zoom_translations);

 /*
 * Create form to contain all other widgets
 */
 main_form = XtVaCreateManagedWidget(“main_form”,
 xmFormWidgetClass, top_level,
 NULL);
ChartObject Programming Guide 61

CHARTOBJECT COMPONENTS
Zoom1

intro.fm5 Page 62 Thursday, January 22, 2009 11:12 AM
 /*
 * Create an EditObject widget
 */
 edit = XtVaCreateManagedWidget(“edit_object”,
 xintEditObjectWidgetClass,main_form,
 XmNwidth, 600,
 XmNheight, 600,
 XmNtopAttachment, XmATTACH_FORM,
 XmNleftAttachment, XmATTACH_FORM,
 XmNrightAttachment, XmATTACH_FORM,
 NULL);

 /*
 * Register callback to zoom a plot. The function is called when
 * a rectangle is selected if zoom has been activated
 */
 XtAddCallback(edit, XmNareaSelectionCallback,
 (XtCallbackProc) ZoomCallback, NULL);

 /*
 * Create a Separator widget
 */
 separator = XtVaCreateManagedWidget(“separator”,
 xmSeparatorWidgetClass, main_form,
 XmNtopAttachment, XmATTACH_WIDGET,
 XmNtopWidget, edit,
 XmNtopOffset, 20,
 XmNbottomOffset, 20,
 XmNleftAttachment, XmATTACH_FORM,
 XmNrightAttachment, XmATTACH_FORM,
 NULL);

 /*
 * Create controls box
 */
 controls_box = XtVaCreateManagedWidget(“controls_box”,
 xmRowColumnWidgetClass, main_form,
 XmNspacing, 15,
 XmNorientation, XmHORIZONTAL,
 XmNleftAttachment, XmATTACH_FORM,
 XmNrightAttachment, XmATTACH_FORM,
 XmNbottomAttachment, XmATTACH_FORM,
 XmNtopAttachment, XmATTACH_WIDGET,
 XmNtopWidget, separator,
 NULL)

 /*
 * Create control pushbuttons
 */
 for (i=0; i<k_num_controls; i++) {
 cstring = XmStringCreateSimple(control_pb_names[i]);
 pb = XtVaCreateManagedWidget(“control_buttons”,
 xmPushButtonGadgetClass, controls_box,
 XmNpushButtonEnabled, True,
 XmNmarginWidth, 4,
 XmNmarginHeight, 4,
 XmNlabelString, cstring,
 NULL);
 XtAddCallback(pb, XmNactivateCallback,
 (XtCallbackProc) ControlsProc, (XtPointer)i);
 XmStringFree(cstring);
 }
62 ChartObject Programming Guide

CHARTOBJECT COMPONENTS
Inserting Application’s Defined Objects 1

intro.fm5 Page 63 Thursday, January 22, 2009 11:12 AM
/*
 * Read chart description from file
 */
 if (!XintEditObjectReadFile(edit, “chart_zoom.obj”)) {
 fprintf(stderr, “Cannot find file chart_zoom.obj”);
 exit(1);
 }

 XtRealizeWidget(top_level);
 XtAppMainLoop(app_context);
}

Customizing or Creating New Chart Types
One of the more powerful features of the ChartObject library is the ability to
customize an existing chart type or to create new Chart types, different from the ones
provided with the library.

Both of these features are made possible because of the object oriented nature of
ChartObject, which gives the application the ability to create and insert inside a chart
any object from the GraphicObject library.

Inserting Application’s Defined Objects
Once a chart object is created, the application has the possibility of inserting its own
objects inside the chart or the plot area of the chart. This feature can be used to insert
additional labels inside chart, to annotate specific points, to insert user defined
symbols into a plot, etc. Function XintChartInsertObject can be used to insert an
object inside a Chart or a Plot2D object. It is not possible to insert objects inside a
3D plot.

Objects inserted inside a chart use the chart coordinate system, which ranges from 0
to 100, with the origin at the upper left corner. Objects inserted in a chart object are
clipped to the chart object boundaries.

Objects inserted inside a Plot2D (BarLine, XYPlot, etc.) use the user coordinates
specified by the axes attached to the plot. Objects in a plot object are clipped to the
plot boundaries. Also, objects inserted in a plot object will be destroyed when the
application changes plot type. Use the function XintChartGetComponent to get the
object ID of the plot object to use in the XintChartInsertObject function call.
ChartObject Programming Guide 63

CHARTOBJECT COMPONENTS
Customizing or Creating New Chart Types1

intro.fm5 Page 64 Thursday, January 22, 2009 11:12 AM
Example The following code sample illustrates how to insert an object inside a chart.
XintLine gline;
Object chart, line;
...
/* create a line object */
gline.start_x = gline.start_y = 0;
gline.end_x = gline.end_y = 10;
line = (Object) XtVaCreateWidget (“Line”,
 (WidgetClass)xintLineObjectClass, edit,
 XmNline, &gline,
 XmNlineThickness, 3, NULL);

/* insert line object inside a chart object */
XintChartInsertObject(chart, line);

Customizing an Existing Chart
Example The following code example illustrates how to insert an image object inside a chart

to create a shaded background. The same technique can be used to insert an image
inside a plot. The full listing of the example can be found in directory
examples/Chart, file ComboPlot.c. Figure 22 shows the output of this code
example.
 Object chart, plot, image;
 Pixel pixel_array[32];
 int ncolors = 32;
 XintRectangle rect;

...

 /*
 * We assume we have allocated 32 colors containing a continuous
 * color spectrum. We now create a pixmap of width 1 and
 * height 32. The ImageObject will automatically interpolate the
 * pixmap to fit the chart size.
 */
 pixmap = XCreatePixmap(display,
 RootWindow(display, IntScreenNumber(top_level)),
 1, ncolors,
 DefaultDepth(display,
IntScreenNumber(top_level)));

gc = XCreateGC(display, pixmap, 0, NULL);
 for (i=0; i<ncolors; i++) {
 XSetForeground(display, gc, pixel_array[ncolors-i-1]);
 XDrawPoint(display, pixmap, gc, 0, i);
 }

...
 /* Create a chart inside the edit object */
 chart_geometry.x1 = chart_geometry.y1 = 0;
 chart_geometry.x2 = chart_geometry.y2 = 100;
 chart = (Object) XtVaCreateWidget("combination_chart",
 (WidgetClass)xintChartObjectClass, edit,
 XmNgeometry, &chart_geometry,
 XmNchartType, XintCHART_TYPE_COMBINATION,
 XmNchartTitle, "Dow Jones Industrial Average",
 NULL);
...
64 ChartObject Programming Guide

CHARTOBJECT COMPONENTS
Customizing an Existing Chart 1

intro.fm5 Page 65 Thursday, January 22, 2009 11:12 AM
 /*
 * Create image object, "pixmap", as the background of the chart
 */
 rect.x1 = 0;
 rect.y1 = 0;
 rect.x2 = 100;
 rect.y2 = 100;
 image = (Object) XtVaCreateWidget("Image",
 (WidgetClass)xintImageObjectClass,
 edit,
 XmNsensitive, False,
 XmNimagePixmap, pixmap,
 XmNimageColorRecord, color_record,
 XmNrectangle, &rect,
 NULL);

 plot = XintChartGetComponent(chart, XintCHART_COMPONENT_PLOT);

 /*
 * Make plot transparent so that we can see the image
 */
 XtVaSetValues((Widget) plot, XmNfillStyle, XintFILL_NONE, NULL);

 /*
 * Insert object into to the chart and lower it
 */
 XintChartInsertObject(chart, image);
 XintEditObjectBack(edit, image);
...

Figure 22. Customized Chart
ChartObject Programming Guide 65

CHARTOBJECT COMPONENTS
Customizing or Creating New Chart Types1

intro.fm5 Page 66 Thursday, January 22, 2009 11:12 AM
Creating a New Chart Type
ChartObject has a built-in type for all of the usual kinds of charts. However, it is
flexible enough to let the application programmer easily create entirely new chart
types. The following example illustrates how to use the Line object to create a chart
representing a vector field. Figure 23 shows the output of this example. The full
listing can be found in file ChartField.c in the examples/Chart directory.

Code #include <Xint/Chart.h>
#include <Xint/EditObject.h>
#include <Xint/Line.h>
#include <math.h>

extern double drand48();

#define COUNT 1000

main(argc, argv)
 int argc;
 char *argv[];
{
 XtAppContext app_context;
 Widget top_level;
 Widget edit;
 Object chart, plot;
 XintGeometry chart_geometry;
 XintLimits limits;
 XintIncrements increment;
 Pixel pixel;
 register int i;

 top_level = XtAppInitialize(&app_context, "chart_field",
 (XrmOptionDescList)NULL, 0,
 &argc, argv, NULL, NULL, 0);

 /* Create an EditObject widget*/
 edit = XtVaCreateManagedWidget("edit_object",
 xintEditObjectWidgetClass,top_level,
 XmNwidth, 600, XmNheight, 600,
 XmNtitle, "Vector Field", NULL);

 /* Create Chart object */
 chart_geometry.x1 = 0;
 chart_geometry.y1 = 0;
 chart_geometry.x2 = 100;
 chart_geometry.y2 = 100;
 chart = (Object) XtVaCreateWidget("LinePlot",
 (WidgetClass)xintChartObjectClass, edit,
 XmNgeometry, &chart_geometry,
 XmNchartType, XintCHART_TYPE_LINE,
 XmNchartTitle, "Vector FieldPlot",
 XmNresourceDialog, False,
 NULL);

 plot = XintChartGetComponent(chart, XintCHART_COMPONENT_PLOT);
66 ChartObject Programming Guide

CHARTOBJECT COMPONENTS
Creating a New Chart Type 1

intro.fm5 Page 67 Thursday, January 22, 2009 11:12 AM
 /* Set the plot limits and increments */
 limits.minimum = 0;
 limits.maximum = 1.0;
 increment.minor_increment = .25;
 increment.major_increment = .5;
 XtVaSetValues(plot,
 XmNxLimits, &limits,
 XmNyLimits, &limits,
 XmNxIncrements, &increment,
 XmNyIncrements, &increment,
 XmNxAxisPlacement, XintPLACEMENT_TOP_BOTTOM,
 XmNyAxisPlacement, XintPLACEMENT_LEFT_RIGHT,
 XmNresourceDialog, False,
 NULL);

 srand48((long) 100);

 pixel = XintLoadColor(XtDisplay(edit), "red");

 for (i=0; i<COUNT; i++) {
 Object arrow;
 XintLine line;
 float x = drand48();
 float y = drand48();
 float size = .05;
 float angle = sin((double) 3.14 * x) + .2 * cos((double) 3.14 * y);

 line.start_x = x;
 line.start_y = y;
 line.end_x = x + size * cos((double) angle);
 line.end_y = y + size * sin((double) angle);

 /*
 * Create arrow object
 * Note: the color and the size of the arrows are the same
here,
 * but they could be set to be different for each object.
 */
 arrow = (Object) XtVaCreateWidget("arrow",
 (WidgetClass) xintLineObjectClass, edit,
 XmNlineEnd, XintEND_ARROW,
 XmNarrowStyle, XintSTICK,
 XmNarrowLength, 4,
 XmNtipAngle, 15,
 XmNline, &line,
 XmNlineThickness, 1,
 XmNsensitive, False,
 XmNcolor, pixel,
 NULL);
/*
 * Insert arrow object inside the plot
 */
 XintChartInsertObject(plot, arrow);
 }
ChartObject Programming Guide 67

CHARTOBJECT COMPONENTS
Customizing or Creating New Chart Types1

intro.fm5 Page 68 Thursday, January 22, 2009 11:12 AM
 XtRealizeWidget(top_level);
 XtAppMainLoop(app_context);
}

Figure 23. Creating a New Chart Type
68 ChartObject Programming Guide

widget.fm5 Page 69 Thursday, January 22, 2009 11:13 AM
Widget
Reference 2

Overview
This chapter includes the following sections:

• CompBase Widget Metaclass on page 70

• EditObject Widget Class on page 81

• ObjectEditor Widget Class on page 108
ChartObject Programming Guide 69

WIDGET REFERENCE
CompBase Widget Metaclass2

widget.fm5 Page 70 Thursday, January 22, 2009 11:13 AM
CompBase Widget Metaclass
CompBase is a base widget class that handles hardcopy output for its subclasses,
including EditObject and EditTable. The CompBase widget class defines a set of
functions for producing disk files containing CGM or PostScript representations of
the graphical display of a widget and of its content. CompBase also handles the
hardcopy output of the composition of multiple widgets. A composite image must be
of multiple EditObject based widgets contained within a Composite widget such as
a Motif Form or RowColumn widget.

In addition to hardcopy, CompBase provides a set of convenience functions to map
user coordinates to and from device coordinates. The CompBase widget class is a
metaclass and cannot be instantiated directly.

Inherited Behavior and Resources
The CompBase widget inherits behavior and resources from the Core, Composite
and Manager classes.
• Class pointer is xintCompBaseWidgetClass.
• Class name is XintCompBase.
• Header file is included as <Xint/CompBase.h>.

CompBase Resources
The following resources are defined by the CompBase class:

XmNfontPath

Some subclasses of CompBase and some object classes such as Text or Symbol may
require the use of scalable fonts, which are displayed using an outline font
technology provided with the INT library. Resource XmNfontPath can be used to
specify the path to the directory where the files containing the font outlines reside.
Alternatively, you can use environment variable INT_FONT_PATH to specify this
directory. If neither resource XmNfontPath nor environment variable
INT_FONT_PATH is set, the current directory will be searched.

Name Type Default

XmNfontPath char * NULL

XmNwarning int XintWARNING_POST
70 ChartObject Programming Guide

WIDGET REFERENCE
CompBase Functions 2

widget.fm5 Page 71 Thursday, January 22, 2009 11:13 AM
XmNwarning

Specifies the destination of warning messages that an INT widget might need to
display. Use one of the following defined integer constants when specifying a value
for this resource:

You can combine destinations using a logical OR or an arithmetic + operation. For
instance, specify XintWARNING_PRINT + XintWARNING_POST to have any
warning message displayed on the screen and written to stderr.

CompBase Functions
The following functions are defined for hardcopy output and coordinate system
transformations. All of these functions can be applied to any widget instance of a
class derived from the CompBase widget class (such as EditObject or EditTable). In
addition, the composite hardcopy functions can be applied to any instance of a
composite widget such as a widget instantiated from the Motif Form, or the Motif
BulletinBoard widget classes.

Resource Value Description

XintWARNING_NONE No message will be output.

XintWARNING_PRINT Message will be written to stderr.

XintWARNING_POST (default) Message will be displayed in a dialog box.

Function Description

XintCGMDrawBox To tell the CGM output whether or not to draw a box
around a CGM plot.

XintCGMGetDimensions Gets the size in inches used by a widget.

XintCGMPixelToInch Converts a size specified in pixels to a size specified in
inches.

XintCGMSetEdgeWidthMode Sets the edge width for drawing primitives in the CGM
display.

XintCGMSetLineWidthMode Sets the line width for drawing primitives in the CGM
display.

XintCGMSetVDCType Selects either real or integer output coordinates for
CGM.

XintGetWidgetSize Returns the size in pixels that a widget will occupy
when output to hardcopy.
ChartObject Programming Guide 71

WIDGET REFERENCE
CompBase Widget Metaclass2

widget.fm5 Page 72 Thursday, January 22, 2009 11:13 AM
XintCGMDrawBox

Sets a flag which tells the CGM output routines XintOutputCGM and
XintOutputMontageCGM whether or not to draw a rectangular box around the plot.
void XintCGMDrawBox (Boolean flag)

where flag is a Boolean variable that should be set to True to have the box drawn
around the plot.

XintCGMGetDimensions

Returns the dimensions (in inches) that a widget (or combination of widgets) will
occupy when mapped to a plot. You usually call this function prior to calling a CGM

XintHorizontalPixelToUser Pixel to User coordinates conversion in the
horizontal direction.

XintHorizontalUserToPixel User coordinates to Pixel conversion in the
horizontal direction.

XintOutputCGM Creates a CGM file containing the graphic representation
of a single widget or of all of the widgets that are children
of a composite widget.

XintOutputMontageCGM Creates a CGM file containing a montage composed of sev-
eral widgets.

XintOutputMontagePostscript Creates a PostScript file containing a montage com-
posed of several widgets.

XintOutputPostscript Creates a PostScript file containing the graphic repre-
sentation of a single widget or of all of the widgets that
are children of a composite widget.

XintPostscriptGet Defaults Gets the PostScript page characteristics.

XintPostscriptSetBackground Sets the background for PostScript output.

XintPostscriptSet Defaults Sets the PostScript page characteristics.

XintVerticalPixelToUser Pixel to User coordinates conversion in the
vertical direction.

XintVerticalUserToPixel User coordinates to Pixel conversion in the
vertical direction.

Function (continued) Description
72 ChartObject Programming Guide

WIDGET REFERENCE
CompBase Functions 2

widget.fm5 Page 73 Thursday, January 22, 2009 11:13 AM
hardcopy function so that you can specify the appropriate dimensions in the CGM
hardcopy function call.
void XintCGMGetDimensions (...)

XintCGMPixelToInch

Converts a size specification from pixels to inches. This function can be used to
provide the plot size specification in inches required by function
XintOutputMontageCGM.
void XintCGMPixelToInch (...)

XintCGMSetEdgeWidthMode

Controls the mode for the edge width of filled polygons in the CGM output.
void XintCGMSetEdgeWidthMode (...)

The argument mode must be specified as one of the following:

Widget widget The ID of the widget to be output.

float * width Width in inches of the widget’s extent.

float * height Height in inches of the widget’s extent.

Widget widget The ID of the widget.

int pwidth Width in pixels.

int pheight Height in pixels.

float * width Returns the width in inches.

float * height Returns the height in inches.

int mode Specify one of the values below.

Resource Value Description

XintCGM_WIDTH_MODE_A
BSOLUTE

The edge width in the CGM display is the edge width
of the primitive multiplied by the nominal line width
of the target device, usually one pixel or device coor-
dinate.

XintCGM_WIDTH_MODE_S
CALED (default)

The edge width in the CGM display is specified in the
world coordinates of the plot.
ChartObject Programming Guide 73

WIDGET REFERENCE
CompBase Widget Metaclass2

widget.fm5 Page 74 Thursday, January 22, 2009 11:13 AM
XintCGMSetLineWidthMode

Controls the mode for the line width of lines and polygons in the CGM output.

void XintCGMSetLineWidthMode (...)

The argument mode must be specified as one of the following:

XintCGMSetVDCType

Allows the application to globally select the type of CGM output file to be created.
Output coordinate data can be either real, the default, or integer. The integer type is
provided because some CGM previewers and rasterizers do not support the floating
point format.
void XintCGMSetVDCType (...)

The argument type must be specified as one of the following defined constants.

XintGetWidgetSize

Returns the size in pixels that a widget will occupy when output to hardcopy. This
function is primarily used in conjunction with functions

int mode Specify one of the values below.

Resource Value Description

XintCGM_WIDTH_MODE_
ABSOLUTE

The line width in the CGM display is the line width
of the primitive multiplied by the nominal line width
of the target device, usually one pixel or device coor-
dinate.

XintCGM_WIDTH_MODE_S
CALED (default)

The line width in the CGM display is specified in the
world coordinates of the plot.

int type Specify one of the values below.

Resource Value Description

XintCGM_VDC_TYPE_INTEGER The coordinates are output in 16 bit integer format, as
required by the CGM/PIP (Petroleum Industry Profile)
specification.

XintCGM_VDC_TYPE_REAL The coordinates are output in fixed point floating for-
mat, as required by the CGM/PIP (Petroleum Indus-
try Profile) specification. This is the default.
74 ChartObject Programming Guide

WIDGET REFERENCE
CompBase Functions 2

widget.fm5 Page 75 Thursday, January 22, 2009 11:13 AM
XintOutputMontagePostscript or XintOutputMontageCGM to position the widgets
to be output. The size returned by this function is equal to the widget size, except
when the argument is a Motif ScrolledWindow widget, in which case it will return
the full size of the child widget.
void XintGetWidgetSize (...)

XintHorizontalPixelToUser

Converts a pixel coordinate into the corresponding user coordinate using the default
horizontal coordinate system of a widget whose class is derived from the
XintCompBase widget class.
Boolean XintHorizontalPixelToUser (...)

The function returns False if pixel is outside the widget’s window.

XintHorizontalUserToPixel

Converts a user coordinate into the corresponding pixel coordinate using the default
horizontal coordinate system of a widget whose class is derived from the
XintCompBase widget class.
Boolean XintHorizontalUserToPixel (...)

The function returns False if user is outside the widget’s window.

XintOutputCGM

Writes a color CGM description of a widget or of the contents of a container widget
to a disk file. The geometry of the widgets inside a container widget is preserved.
However, widgets contained in a Motif ScrolledWindow widget are expanded to
their full size and the scrollbars are not displayed. Only widgets instances of INT

Widget widget The ID of the widget.

int * width Returns the width in pixels.

int * height Returns the height in pixels.

Widget widget The ID of the CompBase derived widget.

int pixel Specifies the horizontal window coordinate.

float * user Returns the corresponding user coordinate.

Widget widget The ID of the CompBase derived widget.

float user Specifies the horizontal user coordinate.

int * pixel Returns the corresponding window coordinate.
ChartObject Programming Guide 75

WIDGET REFERENCE
CompBase Widget Metaclass2

widget.fm5 Page 76 Thursday, January 22, 2009 11:13 AM
CompBase, Scroll, or Motif ScrolledWindow, Label, Text or TextField, or one of
their subclasses will be output.
Boolean XintOutputCGM (...)

In case of error, the function returns a warning message to the end-user (as controlled
by resource XmNwarning) and returns False. Otherwise, it returns True.
XintOutputMontageCGM

Writes a color CGM file containing a montage of several widgets into a canvas. The
canvas size and the widget positions inside the canvas are specified in pixel units.
The convenience function XintGetWidgetSize can be used to obtain the size in pixels
of each widget. The widgets in the list must be of a class derived from INT
CompBase, Scroll, or Motif ScrolledWindow, Label, Text or TextField.
Boolean XintOutputMontageCGM (...)

In case of error, the function displays a warning message (as controlled by resource
XmNwarning) to the end user and returns False; otherwise, it returns True.

XintOutputMontagePostscript

Writes a color or monochrome PostScript file containing a montage of several
widgets into a canvas. The canvas size and the widget positions inside the canvas are
specified in pixel units. Convenience function XintGetWidgetSize can be used to

Widget widget Widget for output.

char * filename Name of CGM file to be created.

float plot_width Specifies the width in inches of the CGM plot to be generated.

float plot_height Specifies the height in inches of the CGM plot to be generated.

Data Type Arg Name Description

Widget * widget_list List of widgets to output.

int * xpos_list List of x coordinates for the widgets.

int * ypos_list List of y coordinates for the widgets.

int count Number of widgets to output.

char * filename Name of CGM file to be created.

int canvas_width Width of canvas in pixels.

int canvas_height Height of canvas in pixels.

float width Width of plot in inches.

float height Height of plot in inches.
76 ChartObject Programming Guide

WIDGET REFERENCE
CompBase Functions 2

widget.fm5 Page 77 Thursday, January 22, 2009 11:13 AM
obtain the size in pixels of each widget. The widgets in the list must be from a class
derived from INT CompBase, Scroll, or Motif ScrolledWindow, Label, Text or
TextField.
Boolean XintOutputMontagePostscript (...)

When the color_model argument is specified as XintCOLOR for a monochrome
device, a grayscale display will be produced. Specification of XintMONOCHROME
sets all lines and text to black. All fill areas will be grayscale.

Widget * widget_list List of widgets to output.

int * xpos_list List of x coordinates for the widgets.

int * ypos_list List of y coordinates for the widgets.

int count Number of widgets to output.

char * filename Name of PostScript file to be created.

int canvas_width Width of canvas in pixels.

int canvas_height Height of canvas in pixels.

float scale_factor Specify a real number greater than 0 (see below).

int color_model Specify XintMONOCHROME for monochrome output or
XintCOLOR for color output.

int orientation Specify one of the values below.
ChartObject Programming Guide 77

WIDGET REFERENCE
CompBase Widget Metaclass2

widget.fm5 Page 78 Thursday, January 22, 2009 11:13 AM
The argument orientation must be specified as one of the following defined
constants:

The scale_factor argument in the function call specifies how the image inside the
widget window will be scaled when output to the PostScript file. If you specify 1,
then the image will be fitted to the page. If you specify a fractional number greater
than 0 and less than 1, then the image will be scaled to that fraction of the page. If
you specify a number greater than 1, then the image will be scaled by that number
and multiple pages, as required by the amount of scaling, will be output to the
PostScript file.

In case of error, displays a warning message to the end user (as controlled by resource
XmNwarning) and returns False; otherwise, returns True.

XintOutputPostscript

Writes a scaled monochrome or color PostScript description of an INT widget, or of
all of the widgets inside of a container widget, to a disk file. When a container widget
is specified, the geometry of the widgets inside the container widget is preserved.
However, widgets contained in a Motif ScrolledWindow widget or an INT Scroll
widget are expanded to their full size and the scrollbars are not displayed. Only
widgets that are instances of INT CompBase, Scroll, or Motif ScrolledWindow,
Label, LabelGadget, Text or TextField, or one of their subclasses will be output.
Boolean XintOutputPostscript (...)

When the color_model argument is specified as XintCOLOR for a monochrome

Resource Value Description

XintORIENTATION_PORTRAIT Image will be oriented as on screen.

XintORIENTATION_LANDSCAPE Image will be rotated 90 degrees clockwise from
the screen image.

XintORIENTATION_AUTOMATIC Image will be oriented so that the longest
dimension (height or width) will be along the
longest dimension of the page.

Widget widget Widget for output.

char * filename Name of PostScript file to be created.

float scale_factor Specify a real number greater than 0 (see below).

int color_model Specify XintMONOCHROME for monochrome out-
put or XintCOLOR for color output.

int orientation Specify one of the values below.
78 ChartObject Programming Guide

WIDGET REFERENCE
CompBase Functions 2

widget.fm5 Page 79 Thursday, January 22, 2009 11:13 AM
device, a grayscale display will be produced. Specification of XintMONOCHROME
sets all lines and text to black. All fill areas will be grayscale. The argument
orientation must be specified as one of the following:

The scale_factor argument in the function call specifies how the image inside the
widget window will be scaled when output to the PostScript file. If you specify 1,
then the image will be fitted to the page. If you specify a fractional number greater
than 0 and less than 1, then the image will be scaled to that fraction of the page. If
you specify a number greater than 1, then the image will be scaled by that number
and multiple pages, as required by the amount of scaling, will be output.

In case of error, the function displays a warning message to the end user (as
controlled by resource XmNwarning) and returns False; otherwise, it returns True.

XintPostscriptGetDefaults

Obtains the PostScript output page characteristics set by using function
XintPostscriptSetDefaults.
void XintPostscriptGetDefaults (...)

Resource Value Description

XintORIENTATION_PORTRAIT Image will be oriented as on screen.

XintORIENTATION_LANDSCAPE Image will be rotated 90 degrees clockwise from
the screen image.

XintORIENTATION_AUTOMATIC Image will be oriented so that the longest
dimension (height or width) will be along
the longest dimension of the page.

int * resolution Returns a pointer to an integer specifying the page resolution
in dots per inch.

float * page_width Returns a pointer to a floating point number specifying the
page width in inches.

float * page_height Returns a pointer to a floating point number specifying the
page height in inches.
ChartObject Programming Guide 79

WIDGET REFERENCE
CompBase Widget Metaclass2

widget.fm5 Page 80 Thursday, January 22, 2009 11:13 AM
XintPostscriptSetBackground

Sets the background color for the PostScript output. By default, the PostScript output
will not paint the background. Use this function if you want the plot background to
be painted.

void XintPostscriptSetBackground (Pixel fill_color)

where fill_color is a Pixel value. Set fill_color to XintNO_FILL to have no
background painted.

XintPostscriptSetDefaults

Sets PostScript output page characteristics used by XintOutputPostscript.

void XintPostscriptSetDefaults (...)

XintVerticalPixelToUser

Converts a pixel coordinate into the corresponding user coordinate in the default
vertical coordinate system of a widget whose class is derived from the
XintCompBase widget class.

Boolean XintVerticalPixelToUser (...)

Returns False if argument pixel is outside the widget’s boundaries.

XintVerticalUserToPixel

Converts a user coordinate into the corresponding pixel coordinate using the default
vertical coordinate system of a widget whose class is derived from the
XintCompBase widget class.
Boolean XintVerticalUserToPixel (...)

Returns False if argument user is outside the widget’s boundaries.

int resolution Specifies the page resolution in dots per inch.

float page_width Specifies the page width in inches.

float page_height Specifies the page height in inches.

Widget widget ID of the CompBase widget.

int pixel Specifies the pixel location in the vertical direction.

float * user Returns the user coordinate corresponding to argument pixel.

Widget widget ID of the CompBase widget.

float user Specifies the user location in the vertical direction.

int * pixel Returns the pixel coordinate corresponding to argument user.
80 ChartObject Programming Guide

WIDGET REFERENCE
EditObject Widget Class 2

widget.fm5 Page 81 Thursday, January 22, 2009 11:13 AM
EditObject Widget Class
The EditObject widget class provides support for displaying, editing, and
storing/retrieving graphic objects based on the Graphic object class. Any widget
class that is a subclass of the EditObject widget class inherits the ability to display,
edit, and store/retrieve graphic objects.

Display and editing capabilities of EditObject class are implemented through a
comprehensive set of actions, callbacks and convenience functions. Editing capabilities
include the ability to select one or more objects and to move, size or shape objects. A set
of convenience functions is provided for saving and restoring objects to or from an
ASCII file. A clipboard mechanism provides cut and paste functionality inside an
application or between two different applications that use EditObject widgets (or widgets
from a subclass of the EditObject widget class).

Coordinate System
The EditObject class defines a linear coordinate system that is between 0.0 and 100.0
both horizontally and vertically. You can use the functions provided in the CompBase
widget class to do transformations between pixel values and the EditObject coordinate
system.

Object Selection
Once created, you can select an object using BSelect. Handles displayed around the
edges of a selected object, or group of objects, indicate its status. Multiple selection
and grouping/ungrouping of objects is also supported.

Object Editing
Objects can be moved, sized and shaped interactively. Size and Shape operations are
identical for all rectangular Graphic objects (such as Oval and TextObj). For objects
instantiated using subclasses of the MultiPoint class (such as PolyLine and Wavelet), the
Shape operation is equivalent to a Move point operation. The Move, Size and Shape
operations are activated using BSelect Drag and terminated using BSelect Release. A
special operation, called Adjust, combines the Shape and Move operations into one action.
If the user performs BSelect Drag close to a handle, a Shape operation will be performed,
otherwise a Move operation is performed. Finally, a specific set of actions is provided to
interactively add or remove points for MultiPoint based objects.

Note: Objects can also be edited from the program, just like any other Motif
widget, using the XtSetValues or XtVaSetValues calls.
ChartObject Programming Guide 81

WIDGET REFERENCE
EditObject Widget Class2

widget.fm5 Page 82 Thursday, January 22, 2009 11:13 AM
Object Display
Objects are displayed in the order they have been created. The object created first is
drawn first, while the object created last is drawn last and thus will appear to be on
top of the other objects. A set of convenience functions allows the application to
move objects forward or backward in the display order.

Input/Output
The EditObject widget class provides a set of convenience functions to write a list of
objects into a file and to retrieve them later on. The objects in an object description
file can be read by any widget created from a subclass of the EditObject widget class.

Clipboard
A clipboard mechanism is implemented for Cut, Copy and Paste operations on
Graphic objects. The clipboard mechanism provides cut/copy/paste operations
among EditObject widgets inside the current application or between two different
applications. For example, it is possible to Cut an object from an EditObject widget
in one application and Paste it into an EditObject widget belonging to another
application.

Locator
The EditObject provides a callback and a set of actions that allow the application to
track the cursor location.
82 ChartObject Programming Guide

WIDGET REFERENCE
EditObject Widget Appearance 2

widget.fm5 Page 83 Thursday, January 22, 2009 11:13 AM
EditObject Widget Appearance
The EditObject widget is an empty rectangular window. Figure 24 shows a Chart
object and several Graphic objects created in an EditObject widget:

Figure 24. EditObject Containing a Chart and Various Graphic Objects

Inherited Behavior and Resources
The EditObject widget inherits behavior and resources from the Core, Composite,
Constraint, Manager and CompBase classes.
• Class pointer is xintEditObjectWidgetClass.
• Class name is XintEditObject.
• Header file is included as <Xint/EditObject.h>
ChartObject Programming Guide 83

WIDGET REFERENCE
EditObject Widget Class2

widget.fm5 Page 84 Thursday, January 22, 2009 11:13 AM
EditObject Resources
The following resources are defined by the EditObject widget class.

Name Type
Default

Access

XmNallowDrag Boolean
False

CSG

XmNallowDrop Boolean
False

CSG

XmNareaSelectionCallback XtCallbackList
NULL

C

XmNcopyCallback XtCallbackList
NULL

C

XmNcursorType int
XC_crosshair

CSG

XmNcutCallback XtCallbackList
NULL

C

XmNdragDropCallback XtCallbackList
NULL

C

XmNeditObjectCallback XtCallbackList
NULL

C

XmNflip Boolean
False

CSG

XmNhandleColor Pixel
“blue”

CSG

XmNhandleSize int
4

CSG

XmNinsertObjectCallback XtCallbackList
NULL

C

XmNlocatorCallback XtCallbackList
NULL

C

XmNobjectDeselectionCallback XtCallbackList
NULL

C

XmNobjectEditMode int
XintEDIT_NONE

CSG

XmNobjectSelectionCallback XtCallbackList
NULL

C

XmNpasteCallback XtCallbackList
NULL

C

84 ChartObject Programming Guide

WIDGET REFERENCE
EditObject Resources 2

widget.fm5 Page 85 Thursday, January 22, 2009 11:13 AM
XmNallowDrag

Specifies whether or not the widget can be used as a drag site for Motif drag and drop
operations. Refer to “XmNdragDropCallback” on page 86 for more information
about selectively allowing or disallowing drag operations.
XmNallowDrop

Specifies whether or not the widget can be used as a drop site for Motif drag and drop
operations. Refer to “XmNdragDropCallback” on page 86 for more information
about selectively allowing or disallowing drag operations.
XmNareaSelectionCallback

Specifies a list of callbacks that is called when a user has selected a rectangular area
in the widget window. The callback list is called by the action EndAreaSelection. The
coordinates of the selection are returned in the callback structure. Each subclass of
the EditObject widget class inherits this resource, but returns a unique callback
structure to the associated callback list. For the EditObject widget class, the callback
structure returned is XintEditObjectAreaSelectionCallbackStruct.

XmNcopyCallback

Specifies a list of callbacks that is called when function XintEditObjectCopy is
invoked. The list of selected objects is returned in the XintEditObjectCallbackStruct callback
structure. The reason sent by the callback is XintCR_COPY.

XmNcursorType

Specifies the type of cursor to display in the EditObject widget window. Specify any
valid cursor defined by the X Window System or specify
XintCROSS_HAIR_CURSOR to obtain a drawn cross hair cursor. The cross hair
cursor displays horizontal and vertical lines that intersect at the cursor location and
which extend across the EditObject widget window.

XmNpointSelectionTolerance int
4

CSG

XmNresourceDialogCallback XtCallbackList
NULL

C

XmNrubberbandCallback XtCallbackList
NULL

C

XmNselectionCallback XtCallbackList
NULL

C

Name (continued) Type
Default

Access
ChartObject Programming Guide 85

WIDGET REFERENCE
EditObject Widget Class2

widget.fm5 Page 86 Thursday, January 22, 2009 11:13 AM
XmNcutCallback

Specifies a list of callbacks that is called when function XintEditObjectCut is
invoked. The list of selected objects is returned in the XintEditObjectCallbackStruct callback
structure. The reason sent by the callback is XintCR_CUT.

XmNdragDropCallback

Specifies a list of callbacks called when application initiates a Motif drag or drop
operation. This callback will only be called if resource XmNallowDrag (for a drag)
or XmNallowDrop (for a drop) are set to True. The action controlling the drag
operation is MotifDragStart. There is no specific action for the drop operation.

XmNeditObjectCallback

Specifies a list of callbacks called when a graphic object is edited interactively.
Supported operations are object move and shape. The callback structure is
XintEditObjectCallbackStruct. Reasons returned by the callback are
XintCR_OBJECT_EDIT_START, XintCR_EDIT_OBJECT_EDIT and
XintCR_OBJECT_EDIT_END.

XmNflip

Specifies how objects based on the Graphic class that have sampled data (such as
Wavelet or LogCurve) are drawn. When this resource is set to True, the data samples
are associated with the vertical axis. When the resource is False, the data samples are
associated with the horizontal axis.

XmNhandleColor

Specifies pixel colors used to draw handle bars of Graphic object when selected.

XmNhandleSize

Specifies size in pixels of handle bars drawn when an Graphic object elected.

XmNinsertObjectCallback

Specifies a list of callbacks that is called after the completion of an object insert
operation, initiated using function XintEditObjectInsert.

XmNlocatorCallback

Specifies a list of callbacks that is called by the Locator action. This action is
typically connected to the cursor movement by the translation table. Every subclass
of the EditObject widget class inherits this resource, but some subclasses return a
unique callback structure to the associated callback list. For the EditObject widget
class, the callback structure is XintEditObjectLocatorCallbackStruct.

XmNobjectDeselectionCallback

Specifies a list of callbacks that is called when the function
86 ChartObject Programming Guide

WIDGET REFERENCE
EditObject Resources 2

widget.fm5 Page 87 Thursday, January 22, 2009 11:13 AM
XintEditObjectDeselect-Object is called or when a Graphic object is deselected in
the EditObject widget’s window. Both the deselected object and the list of objects
that remain selected are returned in the callback structure.

XmNobjectEditMode

Specifies the edit mode for the Graphic objects contained in the EditObject window.
Most basic editing operations defined on Graphic objects are handled by the editing
actions (ObjectEditStart, ObjectEdit and ObjectEditEnd). If the action
ObjectEditStart has no argument specified, then the corresponding editing operation
is defined using the resource XmNobjectEditMode. Two functions,
XintEditObjectSetEditMode and XintEditObjectGetEditMode, set and get the value
of this resource. You can specify one of the following constants for the value of this
resource:

XmNobjectSelectionCallback

Specifies a list of callbacks that is called when function XintEditObjectSelectObject is
called or when a Graphic object is selected in the widget window. Both the selected object
and the list of currently selected objects are returned in the
XintEditObjectSelectionCallbackStruct callback structure. The reason sent by the callback
is XintCR_OBJECT_SELECTION.

Resource Value Description

XintEDIT_NONE ObjectEdit actions do nothing.

XintEDIT_MOVE ObjectEdit actions implement a Move operation.

XintEDIT_SIZE ObjectEdit actions implement a Size operation.

XintEDIT_SHAPE ObjectEdit actions implement a Shape operation.

XintEDIT_ADJUST ObjectEdit actions implement an Adjust operation. Adjust
is a Shape operation if the object selection is close to a
handle bar or a Move operation if the object selection is
anywhere else inside the object.

XintEDIT_RUBBERBAND ObjectEdit actions implement a Rubberband operation.
Callback XmNrubberbandCallback is invoked continu-
ously as the pointer moves.

XintEDIT_INSERT Object Edit actions implement interactive object creation.
Do not specify this value directly, but use the function
XintEditObjectInsert instead.
ChartObject Programming Guide 87

WIDGET REFERENCE
EditObject Widget Class2

widget.fm5 Page 88 Thursday, January 22, 2009 11:13 AM
XmNpasteCallback

Specifies a list of callbacks that is called when function XintEditObjectPaste is called. The list
of selected objects is returned in the XintEditObjectEditCallbackStruct callback structure. The
reason sent by the callback is XintCR_PASTE.

XmNpointSelectionTolerance

Specifies the margin of tolerance, in pixels, for selecting an object or an object’s
point.

XmNresourceDialogCallback

Specifies a list of callbacks that is called when action ResourceDialog is invoked.
Some objects, such as Text, AxisObject or Chart have a built-in resource editor that
is activated from action ResourceDialog. Callback XmNresourceDialogCallback
can be used to prevent the built-in editor from being activated, so that the application
can provide its own resource editor. This callback can also be used by the application
to provide a resource editor for objects that don’t have a built-in one.

XmNrubberbandCallback

Specifies a list of callbacks to be called by actions ObjectEditStart, ObjectEdit and
ObjectEditMode, when the XmNobjectEditMode resource is set to
XintEDIT_RUBBERBAND. If the XmNobjectEditMode resource is set to
XintEDIT_RUBBERBAND then the corresponding action does not do anything but
invoke this callback list. It is up to the application to implement rubberbanding.

XmNselectionCallback

Specifies a list of callbacks that is called when a user selects the EditObject widget.
The coordinates of the selection are returned in the XintEditObjectCallbackStruct
callback structure. The reason sent by the callback is XintCR_SELECTION.
88 ChartObject Programming Guide

WIDGET REFERENCE
EditObject Actions 2

widget.fm5 Page 89 Thursday, January 22, 2009 11:13 AM
EditObject Actions
The following action procedures are defined by the EditObject widget and can be tied
to user inputs via a translation table.

Action Name Description

ChangeCursorMask() Changes color of cross hair cursor in increment.

DrawCursor() Draws cross hair cursor at location of mouse pointer.

EndDrawCursor() Terminates cross hair drawing operation.

InitDrawCursor() Initiates cross hair drawing operation.

TraverseCurrent() Moves focus to the current widget.

PreviousTabGroup() Move focus to the previous tab group.

NextTabGroup() Moves focus to the next tab group.

Increment(left) Scrolls left one increment (if implemented by subclass).

Increment(right) Scrolls right one increment (if implemented by subclass).

Increment(up) Scrolls up one increment (if implemented by subclass).

Increment(down) Scrolls down one increment (if implemented by subclass).

Locator() Whenever cursor moves inside widget window, calls the list of
procedures specified by XmNlocatorCallback.

MotifDragStart()) Initiates Motif drag operation and calls XmNdragDropCall-
back. Disabled if resource XmNallowDrag is False.

Page(left) Scrolls left one page (if implemented by subclass).

Page(right) Scrolls right one page (if implemented by subclass).

Page(up) Scrolls up one page (if implemented by subclass).

Page(down) Scrolls down one page (if implemented by subclass).

SelectionCallback() When button pressed inside widget window, calls list of proce-
dures specified by resource XmNselectionCallback.

InitAreaSelection(callback) Initiates selection of rectangular area in widget window. Call-
back XmNareaSelectionCallback called by action EndArea-
Selection when the selection is terminated.

InitAreaSelection(single) Initiates selection of rectangular area within which all
graphic objects included will be selected. Previously
selected objects are deselected first.

InitAreaSelection(extend) Initiates selection of rectangular area within which all
graphic objects included will be selected. The new selection
will extend the current selection.
ChartObject Programming Guide 89

WIDGET REFERENCE
EditObject Widget Class2

widget.fm5 Page 90 Thursday, January 22, 2009 11:13 AM
ExtendAreaSelection() Draws a rectangle bounding the area being selected.

EndAreaSelection() Terminates the area selection operation. Calls
XmNareaSelectionCallback or selects the Graphic objects
contained in the selection depending on the argument of the
action InitAreaSelection.

ObjectSelect(single) Selects a Graphic object. Previously selected objects are
deselected first.

ObjectSelect(extend) Selects a Graphic object and adds it to the list of selected
objects.

ObjectEditStart() Initiates an editing operation on the selected Graphic object. The
type of editing operation such as Move, Size, Shape, etc. is defined
by resource XmNobjectEditMode. Also used internally by wid-
get for creating an object interactively.

ObjectEditStart(move) Initiates Move operation on selected Graphic object.

ObjectEditStart(shape) Initiates a Shape operation. Shape allows the user to move
the points of MultiPoint based object. It is equivalent to a
Size for all other objects.

ObjectEditStart(size) Initiates a Size operation on the selected Graphic object.

ObjectEditStart(adjust) Initiates an Adjust operation on the selected object. Adjust is
a combination of Shape when the selection is close to a han-
dle bar and Move otherwise.

ObjectEditStart(rubberband) Initiates rubberband operation by calling callback
XmNrubberbandCallback continuously as pointer moves.
Actual rubberband shape must be drawn by application.

ObjectEdit() Continues the editing operation initiated by action ObjectE-
ditStart.

ObjectEditEnd() Terminates editing operation initiated by action ObjectEditStart
and calls callback XmNverifyCallback (callback defined in
Graphic class). When XmNobjectEditMode set to
XintEDIT_INSERT and object being edited is not a MultiPoint
object, terminates the insertion operation and calls XmNinser-
tObjectCallback.

ObjectEditEnd(m) Terminates the editing operation initiated by action ObjectE-
ditStart and calls callback XmNverifyCallback (callback is
defined in Graphic class). When XmNobjectEditMode is set
to XintEDIT_INSERT and the object being edited is a Multi-
Point object, terminates the insertion operation initiated by
action ObjectEditStart and calls callback XmNinsertObject-
Callback.

Action Name (continued) Description
90 ChartObject Programming Guide

WIDGET REFERENCE
EditObject Actions 2

widget.fm5 Page 91 Thursday, January 22, 2009 11:13 AM
ObjectPointAdd(b) Adds a point to a MultiPoint object. The point is inserted at
the beginning of the list.

ObjectPointAdd(e) Adds a point to a MultiPoint object. The point is inserted at
the end of the list.

ObjectPointAdd(x) Adds a point to a MultiPoint object. The point is inserted
according to its horizontal coordinate.

ObjectPointAdd(y) Adds a point to a MultiPoint object. The point is inserted
according to its vertical coordinate.

ObjectPointDelete() Deletes a point from a MultiPoint object.

ObjectCancel() Cancels an operation on an object.

ResourceDialog() Pops up a resource editor for the selected object (if the class
defines one) or let the application provide its own. This action
will only activate itself on a double click.

Transform3DStart(scale) Initiates the scaling of a 3D object.

Transform3DStart(shift) Initiates the translation of a 3D object.

Transform3DStart(rotate) Initiates the rotation of a 3D object.

Transform3D() Continues the 3D operation initiated by Transform3D.

Transform3DEnd() Terminates the 3D operation initiated by Transform3D.

Action Name (continued) Description
ChartObject Programming Guide 91

WIDGET REFERENCE
EditObject Widget Class2

widget.fm5 Page 92 Thursday, January 22, 2009 11:13 AM
EditObject Translations
The following translation table is used by an EditObject widget. These default
translations can be overridden by the end user or application programmer.

Event Sequence Actions Invoked

<EnterWindow> ManagerEnter() InitDrawCursor()

<LeaveWindow> ManagerFocus() EndDrawCursor()

<FocusIn> ManagerFocusIn()

<FocusOut> ManagerFocusOut()

Ctrl <Key>k ChangeCursorMask()

!Shift <Key> Tab PreviousTabGroup()

None <Key> Tab NextTabGroup()

!Shift <Btn1Down> TraverseCurrent() SelectionCallback()
InitAreaSelection(callback) ObjectEditEnd() Locator()

!Ctrl <Btn1Down> TraverseCurrent() SelectionCallback()
InitAreaSelection(extend) ObjectSelect(extend) Locator()

None <Btn1Down> TraverseCurrent() ObjectSelect(single) ObjectEditStart() Loca-
tor() SelectionCallback() InitAreaSelection(single) ResourceDia-
log()

 <Btn2Down> ObjectEditEnd(m) SelectionCallback() MotifDragStart()

<Btn1Up> EndAreaSelection() ObjectEditEnd()

None <Btn3Down> SelectionCallback() Transform3DStart(rotate)

Ctrl <Btn3Down> Transform3DStart(scale)

Shift <Btn3Down> Transform3DStart(shift)

<Btn3Motion> Transform3D()

None <Btn3Down> SelectionCallback() Transform3DStart(rotate)

<PtrMoved> DrawCursor() ExtendAreaSelection() ObjectEdit() Locator()
92 ChartObject Programming Guide

WIDGET REFERENCE
EditObject Callbacks 2

widget.fm5 Page 93 Thursday, January 22, 2009 11:13 AM
EditObject Callbacks
The following callbacks are defined by the EditObject widget class.

Name Structure Reason

XmNareaSelectionCallback XintEditObjectAreaSelectionCallbackStruct XintCR_AREA_SELECTION

XmNselectionCallback XintEditObjectCallbackStruct XintCR_SELECTION

XmNcopyCallback XintEditObjectEditCallbackStruct XintCR_COPY

XmNcutCallback XintEditObjectEditCallbackStruct XintCR_CUT

XmNdragDropCallback XintEditObjectDragDropCallbackStruct XintCR_DRAG
XintCR_DROP

XmNeditObjectCallback XintEditObjectCallbackStruct XintCR_OBJECT_EDIT_START
XintCR_OBJECT_EDIT
XintCR_OBJECT_EDIT_END

XmNinsertObjectCallback XintEditObjectInsertCallbackStruct XintCR_INSERT_OBJECT

XmNlocatorCallback XintEditObjectLocatorCallbackStruct XintCR_LOCATOR

XmNobjectDeselectionCallback XintEditObjectSelectionCallbackStruct XintCR_OBJECT_DESELECTION

XmNobjectSelectioCallback XintEditObjectSelectionCallbackStruct XintCR_OBJECT_SELECTION

XmNpasteCallback XintEditObjectEditCallbackStruct XintCR_PASTE

XmNresourceDialogCallback XintEditObjectResourceDialogCallbackStruct XintCR_MANAGE_RESOURCE_
DIALOG

XmNrubberbandCallback XintEditObjectRubberbandCallbackStruct XintCR_RUBBERBAND_START
XintCR_RUBBERBAND
XintCR_RUBBERBAND_END
ChartObject Programming Guide 93

WIDGET REFERENCE
EditObject Widget Class2

widget.fm5 Page 94 Thursday, January 22, 2009 11:13 AM
XintEditObjectAreaSelectionCallbackStruct

The following ordered table lists the members of the callback structure,
XintEditObjectAreaSelectionCallbackStruct, returned to each procedure in the
callback list specified by the resource XmNareaSelectionCallback.

Each subclass of the EditObject widget class defines its own callback structure for
the callback list specified as the value of the XmNareaSelectionCallback resource.
Only instances of the EditObject widget class use the area selection callback
structure described above.

XintEditObjectCallbackStruct

The following ordered table lists the members of the callback structure,
XintEditObjectCallbackStruct, returned to each procedure in the callback list specified by
the resources XmNselectionCallback and XmNeditObjectCallback.

Data Type Member Description

int reason Indicates why the callback was invoked.

XEvent * event Points to the XEvent that triggered the callback.

int x X pixel coordinate of the upper left corner of the
selected rectangle.

int y Y pixel coordinate of the upper left corner of the
selected rectangle.

int width Width in pixels of the selected rectangle.

int height Height in pixels of the selected rectangle.

Data Type Member Description

int reason Indicates why the callback was invoked.

XEvent * event Points to the XEvent that triggered the callback.

float user_x X user coordinate of the cursor location.

float user_y Y user coordinate of the cursor location.

int pixel_x X pixel coordinate of the cursor location.

int pixel_y Y pixel location of the cursor location.

Object object ID of object being edited (XmNeditObjectCallback only).
94 ChartObject Programming Guide

WIDGET REFERENCE
EditObject Callbacks 2

widget.fm5 Page 95 Thursday, January 22, 2009 11:13 AM
XintEditObjectDragDropCallbackStruct

The following ordered table lists the members of the callback structure,
XintEditObjectDragDropCallbackStruct, returned to each procedure in the callback
list specified by the resource XmNdragDropCallback.

XintEditObjectEditCallbackStruct

The following ordered table lists the members of the callback structure,
XintEditObjectEditCallbackStruct, returned to each procedure in the callback list
specified by resources XmNcopyCallback, XmNcutCallback and
XmNpasteCallback.

Data Type Member Description

int reason Indicates why the callback was invoked.

XEvent * event Points to the XEvent that triggered the callback.

Object object Graphic object being dragged or dropped to. This field
is NULL if drag or drop is not from or to a graphic
object.

int operation This field is 0 on a drag. On a drop, it can be set to
XintDROP_COPY, XintDROP_MOVE or
XintDROP_LINK. You can modify this field on a drop
to change the operation.

Atom * atoms Array of source or destination atoms supported.

int atom_count Size of array atoms.

int x,y Location of the pointer when drag/drop started.

Boolean doit Set to False to cancel the drag or drop operation.

Data Type Member Description

int reason Indicates why the callback was invoked.

XEvent * event Points to the XEvent that triggered the callback.

Object list List of objects to be edited.

int count Number of objects to be edited.
ChartObject Programming Guide 95

WIDGET REFERENCE
EditObject Widget Class2

widget.fm5 Page 96 Thursday, January 22, 2009 11:13 AM
XintEditObjectSelectionCallbackStruct

The following ordered table lists the members of the callback structure,
XintEditObjectSelectionCallbackStruct, returned to each procedure in the callback
list specified by resources XmNobjectSelectionCallback and
XmNobjectDeselectionCallback.

XintEditObjectInsertCallbackStruct

The following ordered table lists the members of the callback structure,
XintEditObjectInsertCallbackStruct, returned to each procedure in the callback list
specified by resource XmNinsertObjectCallback.

Data Type Member Description

int reason Indicates why the callback was invoked.

XEvent * event Points to the XEvent that triggered the callback.

Object object The ID of the object selected or deselected. If multiple
objects have been selected/deselected, it contains the ID of
the first object in the list. See select_list to access all the
selected/deselected objects.

Object * select_list Points to the list of objects selected/deselected in this
operation.

int select_count The number of selected/deselected objects.

Data Type Member Description

int reason Indicates why the callback was invoked.

XEvent * event Points to the XEvent that triggered the callback.

Object object The ID of the new object.

Boolean doit Set to False if you don’t want the object to be created.
96 ChartObject Programming Guide

WIDGET REFERENCE
EditObject Callbacks 2

widget.fm5 Page 97 Thursday, January 22, 2009 11:13 AM
XintEditObjectLocatorCallbackStruct

The following ordered table lists the members of the callback structure,
XintEditObjectLocatorCallbackStruct, returned to each procedure in the callback list
specified by resource XmNlocatorCallback.

Some subclasses of the EditObject widget class define their own callback structures
for the callback list specified as the value of the XmNlocatorCallback resource.
Instances of the EditObject widget class use the locator callback structure described
above.

XintEditObjectResourceDialogCallbackStruct

The following ordered table lists the members of the callback structure,
XintEditObjectResourceDialogCallbackStruct, returned to each procedure in the
callback list specified by resource XmNresourceDialogCallback.

Data Type Member Description

int reason Indicates why the callback was invoked.

XEvent * event Points to the XEvent that triggered the callback. Contains the
window coordinates of the cursor.

int pixel_x The X location of the cursor in the window coordinate sys-
tem.

int pixel_y The Y location of the cursor in the window coordinate sys-
tem.

float user_x The X location of the cursor hot spot in the user coordinate
system.

float user_y The Y location of the cursor hot spot in the user coordinate
system.

Data Type Member Description

int reason Indicates why the callback was invoked.

XEvent * event Points to the XEvent that triggered the callback. Contains the
window coordinates of the cursor.

Object object ID of the selected object.

Boolean doit Set to False to prevent the built-in resource editor from
being activated.
ChartObject Programming Guide 97

WIDGET REFERENCE
EditObject Widget Class2

widget.fm5 Page 98 Thursday, January 22, 2009 11:13 AM
XintEditObjectRubberbandCallbackStruct

The following ordered table lists the members of the callback structure,
XintEditObjectRubberbandCallbackStruct, returned to each procedure in the
callback list specified by resource XmNrubberbandCallback.

EditObject Functions
The following functions are defined for creating and manipulating an EditObject
widget.

Data Type Member Description

int reason Indicates why the callback was invoked.

XEvent * event Points to the XEvent that triggered the callback.

int start_x The X location of the cursor when the rubberband operation
started.

int start_y The Y location of the cursor when the rubberband operation
started.

int x_offset The offset between the current location of the pointer and
the original X location.

int y_offset The offset between the current location of the pointer and
the original Y location.

Function Description

XintCreateEditObject Creates an EditObject widget.

XintDrawCursorFromData Causes cross hair cursor to be drawn at specified location in
EditObject’s window.

XintEditObjectBack Moves current object behind other objects in widget.

XintEditObjectCopy Copies the selected objects into the clipboard.

XintEditObjectCurrent Returns the last object selected.

XintEditObjectCut Copies all selected objects into clipboard and destroys
them.

XintEditObjectDeselectAll Deselects all currently selected objects.

XintEditObjectDeselectObject Removes the specified object from the selected list.

XintEditObjectDestroyObject Fast destroy function for objects.

XintEditObjectFreeze Controls the update of an EditObject display.
98 ChartObject Programming Guide

WIDGET REFERENCE
EditObject Functions 2

widget.fm5 Page 99 Thursday, January 22, 2009 11:13 AM
XintEditObjectFront Moves current object to front of other objects in widget.

XintEditObjectGetIntersectList Returns a list containing all of the objects that are children
of the EditObject widget and intersect a specified rectangle.

XintEditObjectGetList Returns a list containing all of the objects that are children
of the specified EditObject widget.

XintEditObjectGroup Groups the selected objects.

XintEditObjectInsert Creates and inserts an object interactively.

XintEditObjectLower Moves current object one place down in stacking order.

XintEditObjectManageResource-
Dialog

Manages resource editor panel of specific object, if one is
available.

XintEditObjectMove Allows interactive movement of the selected object.

XintEditObjectNew Destroys all objects belonging the EditObject widget.

XintEditObjectOpen Manages a dialog that allows the loading of an ASCII
object description file.

XintEditObjectPaste Pastes objects in clipboard into EditObject widget.

XintEditObjectRaise Moves current object one place up in stacking order.

XintEditObjectReadFile Reads an ASCII file containing a description of objects and
places them into the EditObject widget.

XintEditObjectSave Saves all objects of EditObject widget into ASCII file.

XintEditObjectSaveAs Manages a dialog box that prompts for the name of a file to
store an ASCII description of the objects of an EditObject
widget.

XintEditObjectSelectAll Selects all Graphic objects of EditObject widget.

XintEditObjectSelectList Returns list of the selected objects.

XintEditObjectSelectObject Adds an object to the list of selected objects.

XintEditObjectSetEditMode Sets the value of resource XmNobjectEditMode.

XintEditObjectSize Allows interactive sizing of currently selected object.

XintEditObjectUngroup Ungroups the currently selected group object.

XintEditObjectWriteFile Saves all objects of EditObject widget into ASCII file.

Function (continued) Description
ChartObject Programming Guide 99

WIDGET REFERENCE
EditObject Widget Class2

widget.fm5 Page 100 Thursday, January 22, 2009 11:13 AM
XintCreateEditObject

Creates an unmanaged EditObject widget.

Widget XintCreateEditObject (...)

XintDrawCursorFromData

Causes the cross hair cursor to be drawn at a specified location in an EditObject
widget. This function has an effect only when the value of resource
XmNcursorType is XintCROSS_HAIR_CURSOR.

void XintDrawCursorFromData (...)

XintEditObjectBack

Changes the stacking order of a widget so that the specified object becomes last in
the display list. If argument object is NULL, the function will be applied to the
currently selected object.

void XintEditObjectBack (Widget widget, Object object)

widget ID of an EditObject widget

object ID of the object to move to the back.

XintEditObjectCopy

Places all the selected Graphic objects of an EditObject widget into the clipboard.
Objects on the clipboard can be pasted back into any EditObject widget using
function XintEditObjectPaste.
void XintEditObjectCopy (Widget widget)

widget ID of an EditObject widget.

Widget parent Parent of new EditObject widget.

char * name Name of new EditObject widget.

ArgList arglist List of resource/value items.

Cardinal argcount Number of items in arglist.

Widget widget EditObject widget ID

float user_x The horizontal location of where the cursor is to be drawn.

float user_y The vertical location of where the cursor is to be drawn.
100 ChartObject Programming Guide

WIDGET REFERENCE
EditObject Functions 2

widget.fm5 Page 101 Thursday, January 22, 2009 11:13 AM
XintEditObjectCurrent

Returns the currently selected object of an EditObject widget.

Object XintEditObjectCurrent (Widget widget)

widget The ID of an EditObject widget.

XintEditObjectCut

Places the selected objects into the clipboard and then destroys them. Objects on the
clipboard may be pasted into any EditObject widget using function
XintEditObjectPaste.

void XintEditObjectCut (Widget widget)

widget The ID of an EditObject widget.

XintEditObjectDeselectAll

Deselects all the selected objects of an EditObject widget.

void XintEditObjectDeselectAll (Widget widget)

widget The ID of an EditObject widget.

XintEditObjectDeselectObject

Allows the application programmer to remove a Graphic object from the list of
selected objects.

void XintEditObjectDeselectObject (Widget widget,
 Object object)

widget The ID of an EditObject widget

object The ID of the object to remove from the selected list.

XintEditObjectDestroyObject

Destroys an object, and is identical functionally to XtDestroyWidget except that it is
faster.
void XintEditObjectDestroyObject (Object object)

object The ID of the object to destroy.
ChartObject Programming Guide 101

WIDGET REFERENCE
EditObject Widget Class2

widget.fm5 Page 102 Thursday, January 22, 2009 11:13 AM
XintEditObjectFreeze

Controls the update of an EditObject display. When this function is called with
argument state set to True, the display will not be updated until the function is called
again with state set to False. Typically used when changes are made to multiple
objects to minimize flashing on the screen.

void XintEditObjectFreeze (...)

XintEditObjectFront

Changes the stacking order of a widget so that the specified object becomes first in
the display list. If argument object is NULL, the function will be applied to the
currently selected object.

void XintEditObjectFront (Widget widget, Object object)

widget The ID of an EditObject widget

object The ID of the object to move to the front.

XintEditObjectGetIntersectList

Returns a list of all of the objects within the specified rectangle that are children of
an EditObject widget. This includes objects that are only partially inside the defined
area.

Object* XintEditObjectGetIntersectList (...)

If the specified EditObject widget has no Graphic objects as children or if the
intersection of the specified rectangle and the EditObject widget is empty, then
NULL is returned. The list returned must be freed by the application when it has
finished with it.

Widget widget EditObject widget ID.

Boolean state True to freeze, False to update the display.

Widget edit_object EditObject widget ID.

int x X value of upper left corner of intersection rectangle, in pixels.

int y Y value of upper left corner of intersection rectangle, in pixels.

int width Width of intersection rectangle, in pixels.

int height Height of intersection rectangle, in pixels.

int * count Returned count of objects in list.
102 ChartObject Programming Guide

WIDGET REFERENCE
EditObject Functions 2

widget.fm5 Page 103 Thursday, January 22, 2009 11:13 AM
XintEditObjectGetList

Returns a list of all of the objects that are children of an EditObject widget.

Object* XintEditObjectGetList (...)

If the specified EditObject widget has no Graphic objects as children, then NULL is
returned. The list returned must be freed by the application when it has finished with
it.

XintEditObjectGroup

Groups selected objects into a Group object. Attributes set on a group propagate to
the group children. Groups can be nested without limit.
Object XintEditObjectGroup (Widget widget)

where widget is the ID of an EditObject widget. The function returns the ID of the
new Group object.

XintEditObjectInsert

Allows the interactive insertion of a Graphic object into a widget whose class is
based on EditObject. This function sets the resource XmNobjectEditMode to
XintEDIT_INSERT and uses actions ObjectEditStart, ObjectEdit and
ObjectEditEnd. When using the default translation table, an object is inserted
interactively using BSelect Click and BSelect Drag. MultiPoint based objects are
inserted using BSelect Click and BTransfer Click for the last point. Once the object
is inserted, the original value of resource XmNobjectEditMode is restored.
void XintEditObjectInsert (...)

Widget widget EditObject widget ID.

int * count Returned count of objects in the list.

Widget widget Specifies the ID of the EditObject widget.

ObjectClass class Specifies the class of the Graphic object to be created.

ArgList arglist List of resources to be applied to Graphic object created.

Cardinal argcount Number of items in arglist.
ChartObject Programming Guide 103

WIDGET REFERENCE
EditObject Widget Class2

widget.fm5 Page 104 Thursday, January 22, 2009 11:13 AM
Note: Do not specify resources in arglist that have to do with the location and size
of the object to be created since those will be set by the end user. The creation of a
Graphic object does not occur until the user specifies the object interactively.
Resources specified using an address must remain allocated until the object is
created. For example, all float values that are specified should be declared static.
For the same reason, the ID of the new object is not returned by function
XintEditObjectInsert. Callback XmNinsertObjectCallback will return the ID of the
object when it is created.

XintEditObjectLower

Changes the display order of the specified object by moving it behind the object that
it was immediately in front of. If object is NULL, the function will be applied to the
currently selected object.
void XintEditObjectLower (...)

XintEditObjectManageResourceDialog

Manages the resource editor panel of the specific object if there is one available.
Examples of objects that have a built-in resource editor are: Text, Chart, AxisObject,
Symbol.
void XintEditObjectManageResourceDialog (...)

XintEditObjectMove

Allows the end-user to move a selected object from a Move menu item. When this
function is called, the pointer is warped to the center of the selected object. As the
end-user performs Drag, the object outline moves along with the pointer. A BSelect
will place the object at the current location and terminate the move operation.
void XintEditObjectMove (Widget widget)

where widget is the ID of an EditObject widget.

Widget widget EditObject widget ID.

Object object ID of the object to lower.

Widget widget EditObject widget ID.

Object object ID of the object for which to manage the dialog panel.
104 ChartObject Programming Guide

WIDGET REFERENCE
EditObject Functions 2

widget.fm5 Page 105 Thursday, January 22, 2009 11:13 AM
XintEditObjectNew
Destroys all Graphic objects belonging to an EditObject widget.

void XintEditObjectNew (Widget widget)

widget ID of an EditObject widget.

XintEditObjectOpen
Manages a dialog box that allows the selection of a object description file. After the
file is selected, the objects will be created inside the EditObject widget specified as
argument.

void XintEditObjectOpen (Widget widget)

widget ID of an EditObject widget.

XintEditObjectPaste

Pastes all Graphic objects saved in clipboard into specified EditObject widget.
void XintEditObjectPaste (Widget widget)

widget ID of an EditObject widget.

XintEditObjectRaise
Changes the stacking order of the specified object by moving it one place up in the
display list. If argument object is set to NULL, the function will be applied to the
currently selected object.

void XintEditObjectRaise (...)

XintEditObjectReadFile
Reads an object description file and creates the objects in the specified EditObject
widget. Depending on which include file is added, this function will be redefined to
use a file loader that is “aware” of the type of file it needs to load. For instance, if
<Xint/Chart.h> is included the function is redefined to use a “Chart aware” file
loader.

void XintEditObjectReadFile (...)

Returns False if it cannot open filename or if filename does not contain a valid object
description.

Widget widget EditObject widget ID.

Object object ID of the object to raise.

Widget widget EditObject widget ID.

char * filename Name of the file containing the object description.
ChartObject Programming Guide 105

WIDGET REFERENCE
EditObject Widget Class2

widget.fm5 Page 106 Thursday, January 22, 2009 11:13 AM
XintEditObjectSave

Saves the Graphic objects contained in the specified EditObject widget into a file that
was previously specified in XintEditObjectOpen. Use function
XintEditObjectSaveAs or function XintEditObjectWriteFile if you want to specify a
different filename.

void XintEditObjectSave (Widget widget)

widget ID of an EditObject widget.

XintEditObjectSaveAs

Manages a dialog box that prompts for the name of a file where the Graphic objects
contained in the specified EditObject widget are saved.
void XintEditObjectSaveAs (Widget widget)

widget ID of an EditObject widget.

XintEditObjectSelectAll

Selects all the objects defined in the specified EditObject widget.
void XintEditObjectSelectAll (Widget widget)

widget ID of an EditObject widget.

XintEditObjectSelectList

Returns the list of selected Graphic objects in the specified EditObject widget.
Object * XintEditObjectSelectList (...)

The application should free the returned list using function XtFree, after it is no
longer needed, if the number of selected objects was not zero.

XintEditObjectSelectObject

Adds specified object to the list of selected objects of an EditObject widget.

void XintEditObjectSelectObject (...)

Widget widget EditObject widget ID.

int * count Number of objects returned in the list.

Widget widget EditObject widget ID.

Object object ID of the object to select.
106 ChartObject Programming Guide

WIDGET REFERENCE
EditObject Functions 2

widget.fm5 Page 107 Thursday, January 22, 2009 11:13 AM
XintEditObjectSetEditMode

Sets the value of resource XmNobjectEditMode.
void XintEditObjectSetEditMode (...)

XintEditObjectSize

Allows the end user to size a selected object from a Size menu item. When this
function is called, the pointer is warped to the center of the selected object. As the
end user moves the pointer, the new shape of the object is outlined. A BSelect Drag
will size the object as specified and a BSelect Up will terminate the operation.

void XintEditObjectSize (Widget widget)

widget ID of an EditObject widget.

XintEditObjectUngroup

Ungroups currently selected group object in the specified EditObject widget.
void XintEditObjectUngroup (Widget widget)

widget ID of an EditObject widget.

XintEditObjectWriteFile

Saves the Graphic object belonging to the specified EditObject widget into a file. The
object description file can later be read back using macro XintEditObjectReadFile.

Boolean XintEditObjectWriteFile (...)

Returns False if it failed to open the specified file.

Widget widget EditObject widget ID.

int edit_mode New value of resource XmNobjectEditMode.

Widget widget The ID of the EditObject widget.

char * filename The name of the file where the Graphic object description is
saved.

char * mode The fopen style mode indicating how to open the file.
ChartObject Programming Guide 107

WIDGET REFERENCE
ObjectEditor Widget Class2

widget.fm5 Page 108 Thursday, January 22, 2009 11:13 AM
Macros
Macro XintEditObjectReadFile reads an object description file and creates the
objects in the specified EditObject widget. Depending on which include file is added,
this macro will be redefined to use a file loader that is “aware” of the type of file it
needs to load. For instance, if <Xint/Chart.h> is included the macro is
redefined to use a “Chart aware” file loader.

Boolean XintEditObjectReadFile (...)

This function returns False if it cannot open filename or if filename does not contain
a valid object description.

ObjectEditor Widget Class
ObjectEditor is a widget class that can be used to build panels designed to create and
edit Graphic objects interactively. This widget can be customized so that the
application can select which objects can be created and which menus are available.
The application has also control over the layout of the different sub-menus that make
up the widget.

ObjectEditor is provided for convenience only. It is highly configurable and should
be flexible enough to be used by most applications. However, if this is not the case,
all of its behavior can be easily duplicated using the EditObject class convenience
functions and Graphic object resources.

Object Editor Layout
The ObjectEditor widget is built upon several groups of components, including a
group of push buttons used to perform actions on the objects, a group of pulldown
menus used to edit the attributes of the selected objects, a group of push buttons to
create objects interactively, a group of pulldown menus to edit the object colors and
a group of push buttons to set a bitmap pattern on the selected objects.

Each group is created inside a Motif RowColumn widget. Resources are available to
specify the content of each group and to position the elements of the group, rowwise
or columnwise. Also, using resource XmNeditList, the application can control
which groups of components are displayed.

Widget widget The ID of the EditObject widget.

char * filename The name of the file containing the object description.
108 ChartObject Programming Guide

WIDGET REFERENCE
ObjectEditor Widget Appearance 2

widget.fm5 Page 109 Thursday, January 22, 2009 11:13 AM
ObjectEditor Widget Appearance
The ObjectEditor widget appears as rectangular window containing a number of
push buttons, option menus and bitmap selectors. Figure 25 shows an example of an
ObjectEditor widget configured as a dialog box:

.

Figure 25. ObjectEditor Widget Configured as a Dialog Box

Inherited Behavior and Resources
The ObjectEditor widget inherits behavior and resources from the Core, Composite,
Constraint and Motif Manager classes:

• Class pointer is xintObjectEditorWidgetClass

• Class name is XintObjectEditor

• Header file is included as <Xint/ObjectEditor.h>

Action group Attribute

ColorObject group

Pixmap group

group

group
ChartObject Programming Guide 109

WIDGET REFERENCE
ObjectEditor Widget Class2

widget.fm5 Page 110 Thursday, January 22, 2009 11:13 AM
ObjectEditor Resources
The following resources are defined by the ObjectEditor widget class.

Name Type
Default

Access

XmNactionList String *
dynamic

CSG

XmNactionNumColumns short
5

CSG

XmNactionOrientation unsigned char
XintHORIZONTAL

CSG

XmNattributeList String *
dynamic

CSG

XmNattributeNumColumns short
1

CSG

XmNattributeOrientation unsigned char
XintVERTICAL

CSG

XmNcolorAttributeList String *
dynamic

CSG

XmNcolorList String *
dynamic

CSG

XmNcolorNumColumns short
1

CSG

XmNcolorOrientation unsigned char
XintVERTICAL

CSG

XmNeditList String *
dynamic

CSG

XmNeditObjects Widget *
NULL

CSG

XmNnumColumns short
2

CSG

XmNnumEditObjects int
0

CSG

XmNobjectClassList ObjectClass *
dynamic

CSG

XmNorientation unsigned char
XintVERTICAL

CSG
110 ChartObject Programming Guide

WIDGET REFERENCE
ObjectEditor Resources 2

widget.fm5 Page 111 Thursday, January 22, 2009 11:13 AM
XmNactionList

Specifies a NULL terminated list of strings containing the name of the actions that
can be performed on objects. For each action that you specify, a push button will be
created inside the Action group. Specify any or all of the actions listed below:

Default is a NULL terminated list containing all the actions listed above.

XmNpixmapList Pixmap *
NULL

CSG

XmNpixmapNumColumns short
dynamic

CSG

XmNpixmapOrientation unsigned char
XintVERTICAL

CSG

XmNshowAttributeLabels Boolean
True

CSG

XintGROUP Creates a Push Button that groups all the selected objects.

XintUNGROUP Creates a Push Button that ungroups all the selected groups.

XintRAISE Creates a Push Button that raises one place the selected objects in the
display list.

XintLOWER Creates a Push Button that lowers one place the selected objects in the
display list.

XintFRONT Creates a Push Button that raises the selected objects to the front of
the display list.

XintBACK Creates a Push Button that lowers the selected objects at the end of
the display list.

XintCUT Creates a Push Button that removes the selected objects and places
them in the cut and paste buffer.

XintCOPY Creates a Push Button that places the selected objects in the cut and
paste buffer.

XintPASTE Creates a Push Button that pastes any object in the cut and paste
buffer.

Name (continued) Type
Default

Access
ChartObject Programming Guide 111

WIDGET REFERENCE
ObjectEditor Widget Class2

widget.fm5 Page 112 Thursday, January 22, 2009 11:13 AM
XmNactionNumColumns
XmNactionOrientation
Specifies orientation (XintVERTICAL or XintHORIZONTAL) and number of
columns (or rows if directions is set to XintHORIZONTAL) in the row column
widget created to display the action push buttons (Action group).

XmNattributeList

Specifies a NULL terminated list of strings containing the name of the attributes that
can be edited. A pulldown menu, placed inside the attribute group, will be created to
edit each of the attributes specified in the list. Specify any or all of the attributes listed
below:

Default is a NULL terminated list containing all the listed attributes.

XmNattributeNumColumns
XmNattributeOrientation

Specifies orientation (XintVERTICAL or XintHORIZONTAL) and the number of
columns (or rows if directions is set to XintHORIZONTAL) in the row column
widget that is created to display the attribute pulldown menus (Attribute group).

XmNcolorAttributeList

Specifies a NULL terminated list of strings containing a list of color attributes that
can be edited. A pulldown menu, placed inside the color group, will be created to edit
each attributes specified in list. Specify any or all of the attributes listed below:

Default is a NULL terminated list containing all the listed color attributes.

XmNcolorList

Specifies a NULL terminated list of color names that will be used in the color editor

XintFILL_STYLE Creates pulldown menu to edit fill style of selected objects.

XintLINE_STYLE Creates pulldown menu to edit line style of selected objects.

XintLINE_WIDTH Creates pulldown menu to edit line width of selected objects.

XintDASH_TYPE Creates pulldown menu to edit line dash style of selected objects.

XintLINE_ENDS Creates pulldown menu to edit line end style (for arrows) of the selected
line objects.

XintFILL_COLOR Creates pulldown menu to edit fill color of selected objects.

XintPATTERN_COLOR Creates pulldown menu to edit pattern color of selected objects.

XintLINE_COLOR Creates pulldown menu to edit line color of selected objects.
112 ChartObject Programming Guide

WIDGET REFERENCE
ObjectEditor Resources 2

widget.fm5 Page 113 Thursday, January 22, 2009 11:13 AM
pulldown menus.

XmNcolorNumColumns
XmNcolorOrientation

Specifies the orientation (XintVERTICAL or XintHORIZONTAL) and the number
of columns (or rows if directions is set to XintHORIZONTAL) in the row column
widget that is created to display the pulldown menu used to edit the color attributes
listed in resource XmNcolorAttributeList (Color group).

XmNeditList

Specifies a NULL terminated list of strings containing the names of the group of
editors that are created inside the ObjectEditor widget. Specify any or all of the
names listed below:

Default is a NULL terminated list containing all the items listed above.

XmNeditObjects

Specifies a list of EditObject widgets which can be edited using the ObjectEditor widget.
The size of this list is specified using resource XmNnumEditObjects. See also
convenience function XintObjectEditorAddEditObjectToList which can be used to add
widgets to this list.

XintACTION_EDITOR Creates Action group that contains set of push buttons used
to perform actions on the objects.

XintOBJECT_EDITOR Creates Object group that contains set of push buttons
used to create objects interactively.

XintCOLOR_EDITOR Creates Color group that contains set of pulldown menus used to
edit the object colors.

XintATTRIBUTE_EDITOR Creates Attribute group that contains set of pulldown
menus used to edit the object attributes.

XintPIXMAP_EDITOR Creates Pixmap group that contains set of push buttons
used to assign a fill pattern to the objects.
ChartObject Programming Guide 113

WIDGET REFERENCE
ObjectEditor Widget Class2

widget.fm5 Page 114 Thursday, January 22, 2009 11:13 AM
XmNnumColumns

Specifies the number of columns (or rows if resource XmNorientation is set to
XintHORIZONTAL) in the RowColumn widget used to layout the different sets of
editors that compose the ObjectEditor widget.

XmNnumEditObjects

Specifies the size of the widget list specified with resource XmNeditObjects.

XmNobjectClassList

Specifies a NULL terminated list of object class names for which objects can be
created interactively. For each class specified, a push button displaying a graphic
representation of the object will be created inside the Object group. You can specify
a list containing any or all of the classes listed below:

Refer to “Graphic Object Library Components” on page 4 for more information on
each object class. The set of push buttons listed in the previous table will only be
created if attribute XintOBJECT is listed in resource XmNeditList.

xintChartObjectClass To create a Chart object interactively.

xintFreeHandObjectClass To create a Polyline for which points are sampled along
the cursor path during creation.

xintLineObjectClass To create a Line object interactively.

xintOvalObjectClass To create an Oval object interactively.

xintPolygonObjectClass To create a closed Polyline object interactively.

xintPolylineObjectClass To create a Polyline object interactively.

xintRectangleObjectClass To create a Rectangle object interactively.

xintRoundedRectObjectClass To create a Rounded Rectangle object interactively.

xintScaledTextObjectClass To create a scalable Text object interactively.

xintSymbolObjectClass To create a Symbol object interactively.

xintTextObjectClass To create a fixed Text object interactively.
114 ChartObject Programming Guide

WIDGET REFERENCE
ObjectEditor Resources 2

widget.fm5 Page 115 Thursday, January 22, 2009 11:13 AM
XmNorientation

Specifies the orientation (XintVERTICAL or XintHORIZONTAL) of the
RowColumn widget used to lay out the different set of editors that compose the
ObjectEditor widget. The number of columns or rows is specified using resource
XmNnumColumns.

XmNpixmapList

Specifies a list of pixmaps of depth 1 used to create a set of push buttons that can be
used to edit an object bitmap pattern. The list must be terminated with constant
XmUNSPECIFIED_PIXMAP. The ObjectEditor has a list of predefined patterns of
size 32x32 which can be accessed using function
XintObjectEditorGetDefinedPixmap defined in the Defined Functions section
below.

XmNpixmapNumColumns
XmNpixmapOrientation

Specifies the number of columns and the orientation of the RowColumn widget that
contains the array of push buttons that are used for pattern selection (Pixmap group).
This set of buttons will only be created if attribute XintPIXMAPS is listed in
resource XmNeditList.

XmNshowAttributeLabels

Specifies whether a label describing the attribute is displayed in front of the option menus
used to edit the object attributes (see resource XmNattributeList).
ChartObject Programming Guide 115

WIDGET REFERENCE
ObjectEditor Widget Class2

widget.fm5 Page 116 Thursday, January 22, 2009 11:13 AM
ObjectEditor Functions
The following functions are defined by the ObjectEditor widget class.

XintCreateObjectEditor

Creates an unmanaged ObjectEditor widget.
Widget XintCreateObjectEditor (...)

XintObjectEditorGetDefinedPixmap

Returns the ID of a pixmap of depth 1 from the specified name.
Pixmap XintObjectEditorGetDefinedPixmap (...)

Function Name Description

XintCreateObjectEditor Creates an ObjectEditor widget.

XintObjectEditorGetDefinedPixmap Returns a pixmap id from a specified name.

XintObjectEditorAddEditObjectToList Adds a widget to the list of EditObject wid-
gets associated with an ObjectEditor widget.

XintObjectEditorRemoveEditObject From-
List

Removes a widget from the list of EditObject wid-
gets managed by an ObjectEditor widget.

Widget parent Parent of new ObjectEditor widget.

char * name Name of new ObjectEditor widget.

ArgList arglist List of resource/value items.

Cardinal argcount Number of items in arglist.

Widget widget ID of any Motif or INT widget.

char * name Name of the pixmap. Use one of the name in the list below.
116 ChartObject Programming Guide

WIDGET REFERENCE
ObjectEditor Functions 2

widget.fm5 Page 117 Thursday, January 22, 2009 11:13 AM
Pixmaps names The following table lists the pixmap names recognized by function
XintObjectEditorGetDefinedPixmap:

“Solid” “Clear” “25_percent_1” “25_percent_2”

“25_percent_3” “25_percent_4” “50_percent_1” “50_percent_2”

“75_percent” “Vertical” “Vertical1” “Vertical2”

“Vertical3” “Horizontal” “Horizontal1” “Horizontal2”

“Horizontal3” “Slant_Left” “Slant_Left1” “Slant_Left2”

“Star_Left1” “Star_Left2” “Star_Right1” “Star_Right2”

“Slant_Right” “Slant_Right1” “Slant_Right2” “Zigzag”

“Zigzag1” “Zigzag2” “Tread” “Tread1”

“Tread2” “Trellis” “Trellis1” “Trellis2”

“Weave1” “Weave2” “Weave3” “Weave4”

“12_5_percent_1” “12_5_percent_2” “12_5_percent_3” “12_5_percent_4”

“12_5_percent_5” “12_5_percent_6” “12_5_percent_7” “12_5_percent_8”

“Sandstone” “Siltstone” “Shale” “Limestone”

“Dolomite” “Chert” “Basement” “Check1”

“Check2” “Check3” “Wicker1” “Wicker2”

“Wicker3” “Cross_Hatch” “Diamond1” “Diamond2”

“Diamond3” “Lattice1” “Lattice2” “Lattice3”

“Lattice4” “Lattice5” “Lattice6” “Lattice7”

“Herring_Bone1” “Herring_Bone2” “Plaid1” “Plaid2”

“Plaid3” “Plaid4” “Imbrication1” “Imbrication2”

“Imbrication3” “Imbrication4” “Diaper” “Parquet1”

“Parquet2” “Horizontal_Bar1” “Horizontal_Bar2” “Horizontal_Bar3”

“Horizontal_Bar4” “Horizontal_Bar5” “Horizontal_Bar6” “Horizontal_Bar7”

“Horizontal_Bar8” “Horizontal_Bar9” “Horizontal_Bar10” “Vertical_Bar1”

“Vertical_Bar2” “Vertical_Bar3” “Vertical_Bar4” “Vertical_Bar5”

“Vertical_Bar6” “Vertical_Bar7” “Vertical_Bar8” “Vertical_Bar9”
ChartObject Programming Guide 117

WIDGET REFERENCE
ObjectEditor Widget Class2

widget.fm5 Page 118 Thursday, January 22, 2009 11:13 AM
Figure 26 illustrates the default patterns, as listed in the table. If you don’t find the
right pixmap in the list, you can always create your own using the proper X library
functions.

Figure 26. Default Patterns
118 ChartObject Programming Guide

WIDGET REFERENCE
ObjectEditor Functions 2

widget.fm5 Page 119 Thursday, January 22, 2009 11:13 AM
XintObjectEditorAddEditObjectToList

Adds an EditObject widget to resource list XmNeditObjects, which contains the list
of widgets managed by the ObjectEditor widget. This function also increments the
object count maintained in resource XmNnumEditObjects.

void XintObjectEditorAddEditObjectToList (...)

XintObjectEditorRemoveEditObjectFromList

A convenience function that removes an EditObject widget from the resource list
XmNeditObjects, which contains the list of widgets managed by the ObjectEditor
widget. This function also decrements the object count maintained in resource
XmNnumEditObjects.
void XintObjectEditorRemoveEditObjectFromList (...)

Widget widget ID of the ObjectEditor widget.

Widget edit_object ID of an EditObject widget where we want to create
or edit objects interactively using the ObjectEditor
widget.

Widget widget ID of the ObjectEditor widget.

Widget eo ID of the EditObject widget to be removed from the list.
ChartObject Programming Guide 119

WIDGET REFERENCE
ObjectEditor Widget Class2

widget.fm5 Page 120 Thursday, January 22, 2009 11:13 AM
120 ChartObject Programming Guide

graph.fm5 Page 121 Thursday, January 22, 2009 11:19 AM
Graphic Object
Reference 3

Overview
This chapter includes the following sections:

• GraphicObject Library on page 122

• Graphic Object Metaclass on page 123

• Group Object Class on page 132

• Image Object Class on page 135

• Line Object Class on page 138

• MultiPoint Object Metaclass on page 142

• Oval Object Class on page 145

• Polyline Object Class on page 146

• Rectangle Object Class on page 149

• Symbol Object Class on page 152

• Text Object Class on page 159
ChartObject Programming Guide 121

GRAPHIC OBJECT REFERENCE
GraphicObject Library3

graph.fm5 Page 122 Thursday, January 22, 2009 11:19 AM
GraphicObject Library
The INT GraphicObject library is a very powerful structured graphic object library.
Objects can be selected, moved, resized and grouped together. A full cut and paste
functionality is also available, including the ability to cut and paste objects from one
application to another. Objects can also be saved and retrieved from a file or a string.

Note: This library provides some of the building blocks for the Chart object and
also can be used directly as a stand-alone graphic library or to provide annotation to
a Chart display.

Summary of Components
The GraphicObject library defines the following object classes:

Class Description

Graphic Base class for all graphic objects. It defines the basic resources and meth-
ods used by all other INT Graphic objects.

Group Groups primitive objects or other groups into a single group object.

Image Displays an image.

Line Draws a line between two points, with or without arrows at the end.

MultiPoint Base class for all objects with multiple points such as a polyline.

Oval Draws oval shaped objects.

Polyline Draws polyline or polygon objects.

Rectangle Draws rectangular objects.

Symbol Draws a user specified symbol.

Text Draws text.
122 ChartObject Programming Guide

GRAPHIC OBJECT REFERENCE
Graphic Object Metaclass 3

graph.fm5 Page 123 Thursday, January 22, 2009 11:19 AM
Graphic Object Metaclass
The Graphic class defines the basic methods that apply to all INT Graphic objects,
including methods to display, select, move and resize objects. Additional methods
include hardcopy output for Postscript and CGM, group and ungroup, cut and paste,
and file import and export. Most methods defined in the Graphic class are accessible
through actions or functions defined in the EditObject widget class. Do not
instantiate the Graphic object class directly.

Interactive Editing
Interactive editing of an object is defined by specifying a translation table on the
parent widget. The EditObject widget class defines a comprehensive set of actions
for object editing. Examples of actions include ObjectSelect, ObjectEdit,
ObjectAddPoint and ObjectDeletePoint. The Graphic class defines a set of
resources, including XmNsensitive, XmNshape and XmNmove to selectively
enable or disable any editing action on a Graphic object.

Visual Attributes
The Graphic class defines all the basic graphic attributes necessary to describe the
appearance an object, including line color, size and style. Other resources are
available to describe the fill style, fill color, and pattern. The bitmap pattern can be
specified from a pixmap or from a file containing a bitmap definition.

Coordinate System
Each object class defines a specific resource or set of resources that describe the
geometry of the object. The coordinate system used to describe the object geometry
is normally the one defined by its parent. Two resources, XmNverticalAxis and
XmNhorizontalAxis, can be used to specify a different coordinate system
vertically, horizontally or both.
ChartObject Programming Guide 123

GRAPHIC OBJECT REFERENCE
Graphic Object Metaclass3

graph.fm5 Page 124 Thursday, January 22, 2009 11:19 AM
Inherited Behavior and Resources
The Graphic object class inherits behavior and resources from the Xt Object class:

• Class pointer is xintGraphicObjectClass

• Class name is XintGraphic

• Header file is included as <Xint/Graphic.h>

Resources The following resources are defined by the Graphic object class.

Name Type
Default Access

XmNclipGrid Boolean
False

CSG

XmNcolor Pixel
foreground

CSG

XmNdashList char *
NULL

CSG

XmNdisplayName Boolean
False

CSG

XmNfillColor Pixel
background

CSG

XmNfillFilename char *
NULL

CSG

XmNfillPixmap Pixmap
NULL

CSG

XmNfillStyle int
XintFILL_NONE

CSG

XmNfont char *
“Helvetica*120*”

CSG

XmNgroup Object
NULL

CSG

XmNhighlightMode int
XintHIGHLIGHT_HANDLE

CSG

XmNhorizontalAxis Widget
NULL

CSG

XmNlineStyle int
XintLINE_SOLID

CSG
124 ChartObject Programming Guide

GRAPHIC OBJECT REFERENCE
Inherited Behavior and Resources 3

graph.fm5 Page 125 Thursday, January 22, 2009 11:19 AM
XmNclipGrid

Specifies whether the object will be clipped to the Grid boundaries if its parent is a
Grid widget or a widget which class is derived from Grid.

XmNcolor

Specifies the color (as a pixel value) used to draw the Graphic object edges.

XmNdashList

Specifies a string containing an X Window-style dash pattern. This resource will be
used when resource XmNlineStyle is set to XintLINE_ON_OFF_DASH or
XintLINE_DOUBLE_DASH.

XmNlineThickness int
1

CSG

XmNmove Boolean
True

CSG

XmNmoveDirection int
XintMOVE_ANY

CSG

XmNname char *
NULL

CSG

XmNresourceDialog Boolean
True

CSG

XmNsensitive Boolean
True

CSG

XmNshape Boolean
True

CSG

XmNstippleColor Pixel
foreground

CSG

XmNuserData XtPointer
NULL

CSG

XmNverifyCallback XtCallbackList
NULL

C

XmNverticalAxis Widget
NULL

CSG

XmNvisible Boolean
True

CSG

Name (continued)
Type

Default Access
ChartObject Programming Guide 125

GRAPHIC OBJECT REFERENCE
Graphic Object Metaclass3

graph.fm5 Page 126 Thursday, January 22, 2009 11:19 AM
XmNdisplayName

Specifies whether the Graphic object name (from resource XmNname) will be
drawn.

XmNfillColor

Specifies the pixel color used to draw a filled Graphic object. This resource is used
when resource XmNfillStyle is set to XintFILL_SOLID or
XintFILL_OPAQUE_STIPPLED.

XmNfillFilename

Specifies a filename containing the description of a bitmap that will be used for the
fill pattern. This resource is used when the value of resource XmNfillStyle is set to
XintFILL_STIPPLED or XintFILL_OPAQUE_STIPPLED.

XmNfillPixmap

Specifies a pixmap of depth 1 (bitmap) that will be used for the fill pattern. This
resource is used when resource XmNfillStyle is set to XintFILL_STIPPLED or
XintFILL_OPAQUE_STIPPLED.

XmNfillStyle

Specifies the fill style for the Graphic object. You can specify one of the following
constants:

XmNfont

Specifies the name of the X-Window font used to draw the object’s label. This
resource is used only if resource XmNdisplayName is set to True.

Resource Value Description

XintFILL_NONE No fill drawn.

XintFILL_STIPPLED Fill pattern drawn using stipple color pixel masked by
the specified fill pixmap.

XintFILL_OPAQUE_STIPPLED Fill pattern drawn using fill color pixel for unset bits and
the stipple color pixel for set bits of the specified fill pix-
map.

XintFILL_SOLID Fill pattern solid and drawn using the fill color pixel.
126 ChartObject Programming Guide

GRAPHIC OBJECT REFERENCE
Inherited Behavior and Resources 3

graph.fm5 Page 127 Thursday, January 22, 2009 11:19 AM
XmNgroup

Specifies the ID of a group object in which you want the graphic object to be
inserted. You only need to specify this resource if you want this object to be inserted
in a group. See Group Object class section for more information on group objects.

XmNhighlightMode

Specifies how an object will be highlighted when selected. The value of this resource
is specified as one of the defined constants listed below:

XmNhorizontalAxis

Specifies the ID of an Axis object which the Graphic object will use for its horizontal
coordinate system. If this resource is set to NULL, the horizontal coordinate system
of the object’s parent will be used.

XmNlineStyle

Specifies the line style used to draw the object’s edges. This resource is specified as
one of the defined constants listed below:

XmNlineThickness

Specifies the line thickness used to draw the Graphic object’s edges.

XmNmove

Specifies whether or not the Graphic object can be moved interactively by the end
user.

Resource Value Description

XintHIGHLIGHT_NONE Object will not be highlighted when selected.

XintHIGHLIGHT_HANDLE
(default)

Object’s handles will appear when it is selected.

XintHIGHLIGHT_COLOR Object’s color will change to the object’s highlight color
when it is selected. The object’s highlight color is the
value of its parent’s XmNhighlightColor resource.

Resource Value Description

XintLINE_NONE The object lines are not drawn.

XintLINE_SOLID The object lines are drawn using a solid line.

XintLINE_ON_OFF_DASH The object lines are drawn using a dashed line.

XintLINE_DOUBLE_DASH The object lines are drawn using a double dashed line.
ChartObject Programming Guide 127

GRAPHIC OBJECT REFERENCE
Graphic Object Metaclass3

graph.fm5 Page 128 Thursday, January 22, 2009 11:19 AM
XmNmoveDirection

Specifies whether a Graphic object move operation is constrained. You can specify
one of the following defined constants:

XmNname

Specifies the name of the Graphic object. The name of the object will be drawn if
resource XmNdisplayLabel is set to True. If this resource is NULL (default), the
object name as specified at creation time will be used.

XmNresourceDialog

Specifies whether or not the built-in resource editor dialog will be enabled. When
this entry is set to False, the built-in resource editor cannot be activated.

XmNsensitive

Specifies whether or not a Graphic object can be selected and manipulated
interactively by the end-user. When this resource is set to False, the object cannot be
selected, moved or resized by the end-user. When this resource is set to True, the
object can be selected and manipulated according to the settings of resources such as
XmNmove.

XmNshape

Specifies whether or not a Graphic object can be shaped interactively by the
end-user. For most objects, the shape is equivalent to a resize. For objects based on
the MultiPoint class (like Polyline), the shape operation allows the end-user to edit
the points of the object.

Resource Value Description

XintMOVE_ANY The object can be moved freely in any direction.

XintMOVE_VERTICAL The object can only be moved vertically.

XintMOVE_HORIZONTAL The object can only be moved horizontally
128 ChartObject Programming Guide

GRAPHIC OBJECT REFERENCE
Inherited Behavior and Resources 3

graph.fm5 Page 129 Thursday, January 22, 2009 11:19 AM
XmNstippleColor

Specifies the color (as a pixel value) used to draw the set bits of the fill pixmap when
the resource XmNfillStyle is set to XintFILL_STIPPLED or
XintFILL_OPAQUE_STIPPLED.

XmNuserData

Allows the application to attach any specific data to the Graphic object. This
resource is not used internally.

XmNverifyCallback

Specifies a callback list, called each time an object is modified interactively by the
end-user. The operation type, new object position and
new object size are returned in the callback structure. A confirmation flag allows the
application to cancel the operation.

XmNverticalAxis

Specifies the ID of an Axis object which the Graphic object will use for its vertical
coordinate system. If this resource is set to NULL, the vertical coordinate system of
the object’s parent will be used.

XmNvisible

Specifies whether or not the object is drawn on the screen.
ChartObject Programming Guide 129

GRAPHIC OBJECT REFERENCE
Graphic Object Metaclass3

graph.fm5 Page 130 Thursday, January 22, 2009 11:19 AM
Defined Callbacks
The following callback is defined by the Graphic object class.

Whenever a Graphic object has been modified interactively by the end-user, callback
XmNverifyCallback is invoked so that the application can validate the modification.
The operation type, the new position and size of the object are returned in the
callback structure. A confirmation flag, doit, allows the application to cancel the
operation.

The following ordered table lists the members of the callback structure,
XintGraphicVerifyCallbackStruct, associated with callback XmNverifyCallback.

Some of the subclasses of the Graphic object class define different callback
structures for the callback list specified as the value of the XmNverifyCallback
resource. The above structure describes only the common members in all of the
verify callback structures. Please refer to each Graphic object class reference section
for a full description of the data structure returned to the verify callback list.

Name Structure Reason

XmNverifyCallback XintGraphicVerifyCallbackStruct XintCR_OBJECT_MOVE
XintCR_OBJECT_SHAPE
XintCR_OBJECT_ADD_POINT
XintCR_OBJECT_DELETE_POINT

Data Type Member Description

int reason Indicates why the callback was invoked.

XEvent * event Points to the XEvent that triggered the callback.

Boolean doit Set to False to cancel the operation.
130 ChartObject Programming Guide

GRAPHIC OBJECT REFERENCE
Graphic Functions 3

graph.fm5 Page 131 Thursday, January 22, 2009 11:19 AM
Graphic Functions
The following functions can be applied on any graphic object.

XintGraphicUnmanageDialog

Unmanages the dialog panel associated with the specified object. Some objects, like
Text, AxisObject or Chart have a built-in dialog panel that can be used to edit the
object resources interactively. If the specified object is a group, this function will
also unmanage all panels that may be associated with objects contained in the group.

XintGraphicUnmanageDialog (Object object)

object The Object ID.

XintGraphicGetViewPortList

Retrieves the list of ViewPort objects that are associated with the specified object.
ViewPort objects can be used to “clone” an object in another window.

Object *XintGraphicGetViewPortList (Object object, int *cnt)

object The Object ID.

cnt Contains when the function returns the number of ViewPort
objects attached to object. The list of objects returned by the
function should not be freed or modified by the application.

Macros
Macro XintIsGraphic returns True if the specified object is a Graphic object.
Boolean XintIsGraphic (Object object)
ChartObject Programming Guide 131

GRAPHIC OBJECT REFERENCE
Group Object Class3

graph.fm5 Page 132 Thursday, January 22, 2009 11:19 AM
Group Object Class
Group is a special object class used to group multiple graphic objects into a single object.
Because groups are graphic objects, you can create nested groups.

Note: The Group class is also used as the base class for more complex object
classes such as Chart or Plot2D.

Interactive Grouping
The EditObject class defines two convenience functions to manipulate groups.
Function XintEditObjectGroup automatically creates a group from the selected
objects in the display. Function XintEditObjectUngroup ungroups the objects from
the selected group object and destroys the empty group object. See the EditObject
Widget reference section for more information on those two functions.

Example
The following code fragment illustrates how to create a group from a text and a line
object.

Code Widget edit; /* The parent EditObject widget */
XintTextLocation text_location;
XintLine line_location;
Object group;
...
/* Create the group */
group = (Object) XtVaCreateWidget(“group”,

(WidgetClass)xintGroupObjectClass, edit,
XmNlist, list,
XmNlistCount, 2,
NULL);

/* create an Text object and insert in the group */
text_location.x = 50;
text_location.y = 50;
XtVaCreateWidget(“text”, (WidgetClass)xintTextObjectClass, edit,

XmNgroup, group,
XmNtextLocation, &text_location,
XmNtextAnchor, XintBOTTOM_RIGHT,
XmNtextString, “Something there?”,
XmNfontSize, 12,
XmNroundEdge, True,
XmNfillStyle, XintFILL_SOLID,
XmNlineStyle, XintLINE_SOLID,
NULL);

/* Create line object and insert it in the group */
132 ChartObject Programming Guide

GRAPHIC OBJECT REFERENCE
Group Resources 3

graph.fm5 Page 133 Thursday, January 22, 2009 11:19 AM
line_location.start_x = 50;
line_location.start_y = 50;
line_location.end_x = 70;
line_location.end_y = 70;
XtVaCreateWidget(“line”, (WidgetClass)xintLineObjectClass, edit,

XmNgroup, group,
XmNline, &line_location,
XmNlineThickness, 2,
XmNlineEnd, XintEND_ARROW,
NULL);

...

The output from this example is shown in Figure 27:

Figure 27. Group Created from a Text and a Line Object

Group Resources
The Group object class inherits behavior and resources from the Xt Object and
Graphic classes:

• Class pointer is xintGroupObjectClass

• Class name is XintGroup

• Header file is included as <Xint/Group.h>
ChartObject Programming Guide 133

GRAPHIC OBJECT REFERENCE
Group Object Class3

graph.fm5 Page 134 Thursday, January 22, 2009 11:19 AM
The following resources are defined by the Group object class.

XmNlist

Specifies the list of objects in the group.

XmNlistCount

Specifies the size of the object list defined using resource XmNlist.

XmNpropagate

Specifies whether resources in a XtSetValues call are propagated to the objects in the
group. After it is used, this resource is always reset to False.

Group Functions
Function XintCreateGroup creates a Group object.

Object XintCreateGroup (...)

Macros
Macro XintIsGroup returns True if the specified object is a Group object.
Boolean XintIsGroup (Object object)

Name Type
Default

Access

XmNlist Object *
NULL

CSG

XmNlistCount int
0

CSG

XmNpropagate Boolean
False

S

Widget parent Parent of new Group object.

char * name Name of new Group object.

ArgList arglist List of resource/value items.

Cardinal argcount Number of items in arglist.
134 ChartObject Programming Guide

GRAPHIC OBJECT REFERENCE
Image Object Class 3

graph.fm5 Page 135 Thursday, January 22, 2009 11:19 AM
Image Object Class
The ImageObject class displays an image that is specified as a pixmap. The location
and size of the image is specified in user coordinates using inherited resource
XmNrectangle. If resource XmNimageDisplayMode is set to
XintIMAGE_INTERPOLATE, the image is interpolated to fit into the specified
rectangle. If resource XmNimageDisplayMode is set to XintIMAGE_FIXED, the
rectangle end points are modified to match the image size.

If the input pixmap is of depth 1, inherited resources XmNfillColor (unset bits) and
XmNstippleColor (set bits) control the color of the bitmap. If inherited resource
XmNfillStyle (from Graphic class) is set to XintFILL_STIPPLED, the bitmap is
drawn in transparent mode, i.e. only the set bits are drawn.

Image Resources
The Image object class inherits behavior and resources from the Xt Object, Graphic
and Rectangle classes:

• Class po inter is xintImageObjectClass

• Class name is XintImageObject

• Header file is included as <Xint/ImageObject.h>

The following resources are defined by the Image object class.

Name Type
Default

Access

XmNimageColorRecord XintColorRec *
NULL

CSG

XmNimageDisplayMode int
XintIMAGE_INTERPOLATE

CSG

XmNimagePixmap Pixmap
XmUNSPECIFIED_PIXMAP

CSG

XmNfreePixmap Boolean
True

CG
ChartObject Programming Guide 135

GRAPHIC OBJECT REFERENCE
Image Object Class3

graph.fm5 Page 136 Thursday, January 22, 2009 11:19 AM
XmNimageColorRecord

Specifies a pointer to a color record structure describing the colors used by the input
pixmap XmNimagePixmap. This resource needs only to be specified in cases where
the image needs to be saved into an ASCII file (using function
XintEditObjectWriteFile for example) or cut and pasted from one application to
another, so that the colors used by the pixmap get saved and reallocated when the
image object is restored. See function XintChartCreateColorRecord to build a color
record structure. If used, the color record structure should contain a list of all the
pixels used by the image pixmap.

XmNimageDisplayMode

This resource controls how the image is processed. The value of this resource is
specified as one of the defined constants listed below:

XmNimagePixmap

Specifies the pixmap to display by the image object. This pixmap depth should be 1
or equal to the depth of the widget containing the image.

XmNfreePixmap

Specifies whether or not to free the pixmap, specified using resource
XmNimagePixmap, when the Image object is destroyed or when a new pixmap is
provided in a SetValues operation.

Resource Value Description

XintIMAGE_FIXED The size of the rectangle specified with resource
XmNrectangle is adjusted to match exactly the size of
the input pixmap.

XintIMAGE_INTERPOLATE
(default)

The image is interpolated to fit the rectangle specified
with resource XmNrectangle.
136 ChartObject Programming Guide

GRAPHIC OBJECT REFERENCE
Defined Functions 3

graph.fm5 Page 137 Thursday, January 22, 2009 11:19 AM
Defined Functions
Function XintCreateImageObject creates an Image object.
Object XintCreateImageObject (...)

Macros
Macro XintIsImageObject returns True if the specified object is an Image object.
Boolean XintIsImageObject (Object object)

Widget parent Parent of new Image object.

char * name Name of new Image object.

ArgList arglist List of resource/value items.

Cardinal argcount Number of items in arglist.
ChartObject Programming Guide 137

GRAPHIC OBJECT REFERENCE
Line Object Class3

graph.fm5 Page 138 Thursday, January 22, 2009 11:19 AM
Line Object Class
The Line object class draws a line between two points. Arrows can be drawn on each
of the end points of the Line object. Most of the graphic attributes specifying the line
color, size and style are set using resources defined in Line’s superclass, the Graphic
object class. The Line end points are specified by passing a pointer to a data structure
of type XintLine.

Arrow Shape
The shape of the arrow is described using three resources, XmNbaseAngle to
specify the base angle, XmNtipAngle to specify the tip angle and
XmNarrowLength to specify the length of the arrow. The meaning of those
resources is illustrated in Figure 28:

Figure 28. Arrow Shape Resources

Line Resources
The Line object class inherits behavior and resources from the Xt Object and
Graphic classes:

• Class pointer is xintLineObjectClass

• Class name is XintLine

• Header file is included as <Xint/Line.h>

Base
Tip

Length
138 ChartObject Programming Guide

GRAPHIC OBJECT REFERENCE
Line Resources 3

graph.fm5 Page 139 Thursday, January 22, 2009 11:19 AM
The following resources are defined by the Line object class.

XmNarrowLength

Specifies the length of the arrow in pixel units. This resource only applies if resource
XmNlineEnd is not set to XintNO_ARROW.

XmNarrowStyle

Specifies the style of arrowhead to draw. This resource only applies if resource
XmNlineEnd is not set to XintNO_ARROW. You can specify one of the following
constants:

Figure 29. XmNarrowStyle Constants

XmNbaseAngle

Specifies the arrow base angle in degrees. This resource only applies if resource
XmNlineEnd is not set to XintNO_ARROW.

Name Type
Default Access

XmNarrowLength int
8

CSG

XmNarrowStyle int
XintFILLED

CSG

XmNbaseAngle int
45

CSG

XmNline XintLine *
{{0,0}, {1,1}}

CSG

XmNlineEnd int
XintNO_ARROW

CSG

XmNtipAngle int
25

CSG

XintFILLED

XintSTICK

XintHOLLOW
ChartObject Programming Guide 139

GRAPHIC OBJECT REFERENCE
Line Object Class3

graph.fm5 Page 140 Thursday, January 22, 2009 11:19 AM
XmNline

Specifies the end points in user coordinates. This resource is specified as a pointer
to a data structure of type XintLine which takes the following form:

typedef struct {
float start_x;
float start_y;
float end_x;
float end_y;

} XintLine;

where

XmNlineEnd

Specifies whether arrows are drawn at the ends of the Line object or not. You can
specify one of the following constants:

XmNtipAngle

Specifies the tip angle of the arrow in degrees. This resource only applies when the
resource XmNlineEnd is not set to XintNO_ARROW.

Member Description

start_x, start_y Coordinates of the line starting point.

end_x, end_y Coordinates of the line ending point.

Resource Value Description

XintNO_ARROW No arrow is drawn.

XintDOUBLE_ARROW An arrow on each end of the line is drawn.

XintEND_ARROW An arrow on the line ending point is drawn.

XintSTART_ARROW An arrow on the line starting point is draw.
140 ChartObject Programming Guide

GRAPHIC OBJECT REFERENCE
Line Callbacks 3

graph.fm5 Page 141 Thursday, January 22, 2009 11:19 AM
Line Callbacks
The Line object class does not define any new callbacks. However, the callback
structure returned with callback XmNverifyCallback (see class Graphic) is
redefined. The following ordered table lists the members of the callback structure
XintLineVerifyCallbackStruct.

Line Functions
Function XintCreateLine creates a Line object.

Object XintCreateLine (...)

Macros
Macro XintIsLine returns True if the specified object is a Line object.
Boolean XintIsLine (Object object)

Data Type Member Description

int reason Indicates why the callback was invoked.

XEvent * event Points to the XEvent that triggered the callback.

Boolean doit Set to False to cancel the operation on the Line object.

XintLine * old_line Current end points for the line.

XintLine * new_line Proposed new end points for the line.

Widget parent Parent of new Line object.

char * name Name of new Line object.

ArgList arglist List of resource/value items.

Cardinal argcount Number of items in arglist.
ChartObject Programming Guide 141

GRAPHIC OBJECT REFERENCE
MultiPoint Object Metaclass3

graph.fm5 Page 142 Thursday, January 22, 2009 11:19 AM
MultiPoint Object Metaclass
The MultiPoint class is a superclass for all objects that can be defined using a list of
points. It defines the symbology for the points, including the symbol type, size and
color. This object class must not be instantiated directly.

MultiPoint Object Interactive Creation
Most Graphic objects can be created interactively with function
XintEditObjectInsert using translations BSelect Drag (to initiate the insertion) and
BSelect Release (to terminate the insertion). The insertion translations for
MultiPoint object are different, since they must give the user the ability to specify
any number of points. The default translation to insert a MultiPoint object is BSelect
to specify a point and Btn2Down to signal that the last point has been inserted.

MultiPoint Object Editing
The Select, Move and Size editing operations are supported by the MultiPoint object
class. The Shape operation has a different meaning than for rectangular base objects.
For a MultiPoint object, a Shape operation is equivalent to a point move operation.

Two editing operations are defined exclusively for MultiPoint objects. They are,
ObjectPointAdd (for adding points to an object) and ObjectPointDelete (for deleting
points from an object).

Inherited Behavior and Resources
The MultiPoint object class inherits behavior and resources from the Xt Object and
Graphic classes:

• Class pointer is xintMultiPointObjectClass

• Class name is XintMultiPoint

• Header file is included as <Xint/MultiPoint.h>
142 ChartObject Programming Guide

GRAPHIC OBJECT REFERENCE
Inherited Behavior and Resources 3

graph.fm5 Page 143 Thursday, January 22, 2009 11:19 AM
The following resources are defined by the MultiPoint object class.

XmNhandleMode

Specifies where the handle bars are drawn when a MultiPoint object is selected.
Specify XintHANDLE_POINTS to have a handle bar drawn at each point location
or XintHANDLE_BOUNDS to have a handle bar drawn at each of the four corners
of the bounding box. This resource only applies if Graphic resource
XmNhighlightMode is set to XintHIGHLIGHT_HANDLE.

XmNsymbol

Specifies whether or not symbols are drawn at the point locations.

XmNsymbolColor

Specifies the pixel color used to draw point symbols, if resource XmNsymbol is
True.

XmNsymbolData

Specifies a pointer to a symbol descriptor, as returned by Symbol function
XintSymbolCreate. This resource allows the application to create its own symbols to
display points. To display a symbol defined by XmNsymbolData, resource
XmNsymbolType must be set to XintSYMBOL_DATA.

Name Type
Default Access

XmNhandleMode int
XintHANDLE_POINTS

CSG

XmNsymbol Boolean
False

CSG

XmNsymbolColor Pixel
Foreground

CSG

XmNsymbolData XintSymbolData *
NULL

CSG

XmNsymbolSize int
8

CSG

XmNsymbolType int
XintSYMBOL_PLUS

CSG
ChartObject Programming Guide 143

GRAPHIC OBJECT REFERENCE
MultiPoint Object Metaclass3

graph.fm5 Page 144 Thursday, January 22, 2009 11:19 AM
XmNsymbolSize

Specifies the size, in pixels, used to draw point symbols, if resource XmNsymbol is
True.

XmNsymbolType

Specifies the type of symbol used to draw points, if resource XmNsymbol is True.
One of the following constants can be specified:

Resource Value Description

XintSYMBOL_X Draws an “X”.

XintSYMBOL_PLUS Draws a “+”.

XintSYMBOL_SQUARE Draws a square.

XintSYMBOL_CIRCLE Draws a circle.

XintSYMBOL_TRIANGLE Draws a triangle.

XintSYMBOL_DIAMOND Draws a diamond.

XintSYMBOL_FILLED_SQUARE Draws a filled square.

XintSYMBOL_FILLED_CIRCLE Draws a filled circle.

XintSYMBOL_FILLED_TRIANGLE Draws a filled triangle.

XintSYMBOL_FILLED_DIAMOND Draws a filled diamond.

XintSYMBOL_DATA Draws the symbol specified by the resource
XmNsymbolData.
144 ChartObject Programming Guide

GRAPHIC OBJECT REFERENCE
Oval Object Class 3

graph.fm5 Page 145 Thursday, January 22, 2009 11:19 AM
Oval Object Class
The Oval object class allows the application to draw an oval shaped object (circular,
elliptical, etc.). The coordinates of the Oval are specified in a data structure of type
XintRectangle which is defined by the Rectangle object class. Graphic attributes
such as the line color, line width, fill style and fill color are set using resources
defined in the Graphic class.

Inherited Behavior and Resources
The Oval object class inherits behavior and resources from the Xt Object, Graphic
and Rectangle classes:

• Class pointer is xintOvalObjectClass
• Class name is XintOval
• Header file is included as <Xint/Oval.h>

The Oval object class does not define any new resources. The position and shape of
the Oval object are defined using the inherited resource XmNrectangle.

Oval Callbacks
The XintRectangleVerifyCallbackStruct callback structure is returned by the
callback XmNverifyCallback. Please see the reference section of the Rectangle
Object Class for more information regarding this structure.

Oval Functions
Function XintCreateOval creates an oval object.
Object XintCreateOval (...)

Macros
Macro XintIsOval returns True if the specified object is an Oval object.
Boolean XintIsOval (Object object)

Widget parent Parent of new Oval object.

char * name Name of new Oval object.

ArgList arglist List of resource/value items.

Cardinal argcount Number of items in arglist.
ChartObject Programming Guide 145

GRAPHIC OBJECT REFERENCE
Polyline Object Class3

graph.fm5 Page 146 Thursday, January 22, 2009 11:19 AM
Polyline Object Class
The Polyline object class can display a series of points connected by line segments.
The end points can be connected in such a way to form an open or closed polyline or
filled polygon. In addition, symbols can be drawn at each point location.

Resources to specify the line color, the line thickness, and fill options are inherited
from the Graphic class. Resources to specify a point symbol and a point size are
inherited from the MultiPoint class.

Creation
A Polyline object can be created as a child of any widget class derived from the
EditObject class. Resources are provided to specify the point values and the number
of points. A Polyline object can also be created interactively using function
XintEditObjectInsert.

Editing
Like any Graphic object, a Polyline object can be edited interactively. Editing
operations include move, shape (to move a point), add point and delete point. Editing
is specified by installing the proper translation table or by setting resource
XmNobjectEditMode from the EditObject class.

Optimization
For applications that create a large number of Polyline objects, it is possible to create
a single Polyline object composed of multiple discontinuous segments which appear
as discrete objects. This is done by defining resource XmNnullValue and inserting
null points between the sets of points that represent each discrete segment. It is
recommended that the programmer only combine segments which are located close
together to minimize the object bounding box. This will avoid excessive redrawing
when it becomes necessary to repaint a portion of the parent window.

Inherited Behavior and Resources
Polyline object class inherits behavior and resources from the Xt Object, Graphic
and MultiPoint classes:
• Class pointer is xintPolylineObjectClass
• Class name is XintPolyline
• Header file is included as <Xint/Polyline.h>
146 ChartObject Programming Guide

GRAPHIC OBJECT REFERENCE
Inherited Behavior and Resources 3

graph.fm5 Page 147 Thursday, January 22, 2009 11:19 AM
Resources The following resources are defined by the Polyline object class:

XmNcloseEndPoints

Specifies that the Polyline first and last points are connected with a line to make a
closed polygon (True).

XmNdrawSymbolCallback
Specifies list of callbacks called each time a point symbol is drawn. Can be used to
draw polylines where point symbols have different sizes, colors and symbol types.
Callback structure is XintPolylineDrawSymbolCallbackStruct and the callback
reason is XintCR_DRAW_SYMBOL.

XmNnullValue

Specifies pointer to floating point value used to represent null or missing values. Missing
values introduce discontinuity in the polyline. For filled polygons, segments between
null values are filled separately. You must set only one polyline coordinates (x or y) to
null value to specify a missing value.

XmNpointArray
Specifies the coordinates of the points contained in the Polyline object. The polyline
is specified as an array of points, where each point is specified using a structure of
type XintPolylinePoint which takes the following form:
typedef struct {
 float x;
 float y;
} XintPolylinePoint;

XmNpointCount

Specifies the number of points passed in resource XmNpointArray.

Name Type
Default Access

XmNcloseEndPoints Boolean
False

CSG

XmNdrawSymbolCallback XtCallbackList
NULL

CSG

XmNnullValue float *
NULL

CSG

XmNpointArray XintPolylinePoint *
{ {10., 10.}, {20., 20.} {30., 30.}}

CSG

XmNpointCount int
3

CSG
ChartObject Programming Guide 147

GRAPHIC OBJECT REFERENCE
Polyline Object Class3

graph.fm5 Page 148 Thursday, January 22, 2009 11:19 AM
Polyline Callbacks
The following table lists the XintPolylineDrawSymbolCallbackStruct members
returned to each procedure in the callback list specified by resource
XmNdrawSymbolCallback:

Structure member symbol_type can be set to one of the following constants:

Data Type Member Description

int reason Indicates why the callback was invoked.

XEvent * event Points to the XEvent that triggered the callback.

Boolean doit Set to False to prevent symbol from being drawn.

int index Index of the point which symbol is being drawn.

double x,y Location of the symbol.

double symbol_size Symbol size (can be changed).

Pixel symbol_color Symbol color (can be changed).

int symbol_type Symbol type (can be changed).

Member Value Description

XintSYMBOL_X Draws an “X”.

XintSYMBOL_PLUS Draws a “+”.

XintSYMBOL_SQUARE Draws a square.

XintSYMBOL_CIRCLE Draws a circle.

XintSYMBOL_TRIANGLE Draws a triangle.

XintSYMBOL_DIAMOND Draws a diamond.

XintSYMBOL_FILLED_SQUARE Draws a filled square.

XintSYMBOL_FILLED_CIRCLE Draws a filled circle.

XintSYMBOL_FILLED_TRIANGLE Draws a filled triangle.

XintSYMBOL_FILLED_DIAMOND Draws a filled diamond.
148 ChartObject Programming Guide

GRAPHIC OBJECT REFERENCE
Polyline Functions 3

graph.fm5 Page 149 Thursday, January 22, 2009 11:19 AM
Polyline Functions
Function XintCreatePolyline creates a polyline object.
Object XintCreatePolyline (...)

Macros
Macro XintIsPolyline returns True if the specified object is a Polyline object.
Boolean XintIsPolyline (Object object)

Rectangle Object Class
The Rectangle object class allows the application to draw a rectangular object. It is
also used as a base class for other object classes that are drawn in rectangular form
such as a Text object. The coordinates of the rectangle are specified in a data
structure of type XintRectangle. Graphic attributes such as the line color, line width,
fill style and fill color are set using resources defined in the Graphic class.

Inherited Behavior and Resources
The Rectangle object class inherits behavior and resources from the Xt Object and
Graphic classes:

• Class pointer is xintRectangleObjectClass

• Class name is XintRectangle

• Header file is included as <Xint/Rectangle.h>

Widget parent Parent of new Polyline object.

char * name Name of new Polyline object.

ArgList arglist List of resource/value items.

Cardinal argcount Number of items in arglist.
ChartObject Programming Guide 149

GRAPHIC OBJECT REFERENCE
Rectangle Object Class3

graph.fm5 Page 150 Thursday, January 22, 2009 11:19 AM
Resources The following resources are defined by the Rectangle object class:

XmNrectangle

Specifies the coordinates of the rectangle’s two opposite points using the data type
XintRectangle. This resource is specified as a pointer to a data structure which takes
the following form:
typedef struct {
 float x1;
 float y1;
 float x2;
 float y2;
} XintRectangle;

where

XmNrotateAngle

Specifies an angle of rotation in degrees about the center of the rectangle.

XmNroundEdge

Specifies whether the corners of the rectangle are rectangular (False) or rounded
(True).

Name Type
Default Access

XmNrectangle XintRectangle *
{10, 10, 25, 25}

CSG

XmNrotateAngle int
0

CSG

XmNroundEdge Boolean
False

CSG

Member Description

x1,y1 Coordinates of upper left corner of Rectangle object box.

x2, y2 Coordinates of lower right corner of Rectangle object box.
150 ChartObject Programming Guide

GRAPHIC OBJECT REFERENCE
Rectangle Callbacks 3

graph.fm5 Page 151 Thursday, January 22, 2009 11:19 AM
Rectangle Callbacks
The Rectangle object class does not define any new callbacks. However, the callback
structure returned with callback XmNverifyCallback (see class Graphic) is
redefined. The following ordered table lists the members of the callback structure
XintRectangleVerifyCallbackStruct.

Rectangle Functions
Function XintCreateRectangle creates a rectangular object.
Object XintCreateRectangle (...)

Macros
Macro XintIsRectangle returns True if the specified object is a Rectangle object.
Boolean XintIsRectangle (Object object)

Data Type Member Description

int reason Indicates why the callback was invoked.

XEvent * event Points to the XEvent that triggered the callback.

Boolean doit Set to False to cancel the operation.

XintRectangle * data Pointer to the new representation proposed for the
Rectangle object.

Widget parent Parent of new Rectangle object.

char * name Name of new Rectangle object.

ArgList arglist List of resource/value items.

Cardinal argcount Number of items in arglist.
ChartObject Programming Guide 151

GRAPHIC OBJECT REFERENCE
Symbol Object Class3

graph.fm5 Page 152 Thursday, January 22, 2009 11:19 AM
Symbol Object Class
The Symbol object class allows the application to define and draw custom symbols.
The Symbol object class defines a simple ASCII language that can be used to
describe a user symbol. Once defined, Symbol objects can be resized, moved,
selected, output to hardcopy like any other objects based on the Graphic class.

The size of a symbol can be specified in pixels (for a fixed size symbol) using
resources XmNsymbolWidth and XmNsymbolHeight or in user coordinates using
resource XmNsymbolScale. When a symbol size is specified in user coordinates, its
size will change when the coordinate system changes.

The Symbol object defines a text primitive which draws text inside a symbol. This
text, which is fully scalable, is drawn using an outline font technology provided with
the INT library. When this text primitive is used, the symbol object must access a file
containing a description of the outline for the specified font. The font descriptions,
must reside in a directory which you can specify as follows:

• Set CompBase resource XmNfontPath on the Symbol parent widget.

• Set environment variable INT_FONT_PATH.

If neither of these is defined, the current directory will be searched. If a valid font
description is not found, a stroke font will be used.
152 ChartObject Programming Guide

GRAPHIC OBJECT REFERENCE
Symbol Object Class 3

graph.fm5 Page 153 Thursday, January 22, 2009 11:19 AM
Symbol Editor
A symbol editor is built in the symbol object class. This editor allows the end-user to create
or modify a symbol object interactively. This editor, like other object editors, can be invoked
by double clicking on a symbol object. The editor can also be invoked from an application
using function XintEditObjectManageResourceDialog. Figure 30 shows the symbol editor:

Figure 30. Symbol Editor Example

Symbol Resources
The Symbol object class inherits behavior and resources from the Xt Object and
Graphic classes:

• Class pointer is xintSymbolObjectClass

• Class name is XintSymbol

• Header file is included as <Xint/Symbol.h>
ChartObject Programming Guide 153

GRAPHIC OBJECT REFERENCE
Symbol Object Class3

graph.fm5 Page 154 Thursday, January 22, 2009 11:19 AM
Resources The following resources are defined by the Symbol object class.

XmNlabelGravity

Specifies where to draw an optional label string, defined using the Graphic resource
XmNname. The label will appear at the specified location if Graphic resource
XmNdisplayName is set to True. You can specify one of the following constants:

XmNlabelSpacing

Specifies the space in pixels between the symbol and the label. See resource
XmNlabelGravity for information on how to display a symbol label.

Name Type
Default Access

XmNlabelGravity int
EastGravity

CSG

XmNlabelSpacing int
10

CSG

XmNsymbolData XintSymbolData *
NULL

CSG

XmNsymbolHeight int
21

CSG

XmNsymbolWidth int
21

CSG

XmNsymbolLocation XintSymbolLocation *
NULL

CSG

XmNsymbolScale XintSymbolScale *
NULL

CSG

Resource Value Description

NorthGravity Label is drawn above the symbol.

EastGravity (default) Label is drawn to the right of the symbol.

SouthGravity Label is drawn below the symbol.

WestGravity Label is drawn to the left of the symbol.
154 ChartObject Programming Guide

GRAPHIC OBJECT REFERENCE
Symbol Resources 3

graph.fm5 Page 155 Thursday, January 22, 2009 11:19 AM
XmNsymbolData

Specifies a pointer to an opaque structure of type XintSymbolData that contains a
parsed description of a symbol. See function XintSymbolCreate to create a parsed
symbol.

XmNsymbolHeight
XmNsymbolWidth

Specifies the height and width of the symbol in pixels. If you want to specify the size
of the symbol in user coordinates, use resource XmNsymbolScale instead.

XmNsymbolLocation

Specifies the position of the center of the symbol in user coordinates. This resource
is specified using a pointer to a structure of type XintSymbolLocation which takes
the following form:

typedef struct {
 float x;
 float y;
} XintSymbolLocation;

XmNsymbolScale

Specifies the size of the symbol in user coordinates. This resource is specified using
a pointer to a structure of type XintSymbolScale which takes the following form:

typedef struct {
 float width;
 float height;
} XintSymbolScale;

To specify a symbol with a fixed size in pixels, set resource XmNsymbolScale to
NULL and specify the symbol size using resources XmNsymbolWidth and
XmNsymbolHeight instead.
ChartObject Programming Guide 155

GRAPHIC OBJECT REFERENCE
Symbol Object Class3

graph.fm5 Page 156 Thursday, January 22, 2009 11:19 AM
Symbol Keywords
The following table lists the keywords available for describing a symbol:

Symbol Description Syntax
If specified, keyword BoundingBox must be placed first (default is-100 -100 100

Keyword Arguments Description

BoundingBox minx miny maxx
maxy

Specifies the bounding box, which defines the
coordinate system used to specify the symbol.
The origin is located at the upper left corner.

LineColor color_name Specifies the current color used to draw lines.

FillColor color_name Specifies the current fill color.

LineThickness line_thickness Specifies the current line width in pixels.

LineStyle line_style Specifies the current line style. Possible choices
are line_on_off_dash, line_double_dash and
line_solid.

Line x1 y1 x2 y2 Draw a line from coordinate (x1, y1) to (x2, y2).
Coordinates are specified within the coordinate
system defined by BoundingBox.

Polyline x1 y1 x2 y2...xn yn Draw a polyline through the specified points

Polygon x1 y1 x2 y2...xn yn Draw a filled polygon through the specified points.

Rectangle x y width height Draw a rectangle

FillRectangle x y width height Draw a filled rectangle

Arc x y width height
angle1 angle2

Draw an arc inside a box, starting at angle1 with
extension angle2. Angles are expressed in
degrees.

FillArc x y width height
angle1 angle2

Draw a filled arc inside a box, starting at angle1
with extension angle2. Angles are expressed in
degrees.

Font family weight slant Select a font to be used by the Text command.Argu-
ment family can be set to helvetica, times, courier,
symbol or new-century, weight can be set to medium
or bold, and slant can be set to regular or italic.

Text x y width height
string

Draw a string in the specified bounding box. If
argument width is set to 0, the text width is calcu-
lated automatically based on the height specifica-
tion. If argument height is set to 0, the text height
is calculated automatically based on the width
specification.
156 ChartObject Programming Guide

GRAPHIC OBJECT REFERENCE
Symbol Callbacks 3

graph.fm5 Page 157 Thursday, January 22, 2009 11:19 AM
100). Other keywords can be specified in any order, each starting on a new line.

Code The following code example illustrates a symbol description:

BoundingBox -100 -100 100 100
LineColor blue
FillColor red
LineThickness 5
Line -28.4116 20.4211 -40.0447 -13.2632
Polyline -19.9105 -13.6842 -9.17226 21.6842 2.01342 -14.9474

13.6465 21.2 632
Polyline 21.2528 19.5789 42.7293 19.1579 39.5973 19.5789
Line 32.4385 19.5789 22.5951 -16.2105
Polyline -16.7785 85.2632 -81.6555 16.2105 -81.6555 -9.89474

18.5682 84.8421 1.56599 85.2632
Polyline 11.8568 73.8947 62.8635 13.6842 62.8635 -11.1579

10.0671 -56.2105 12.7517 -69.6842 75. 3915 -17.0526
75.8389 14.9474 18.1208 84.8421 12.7517 84.4211
12.7517 74.3158

Symbol Callbacks
The Symbol object class does not define any new callbacks. However, the callback
structure returned with callback XmNverifyCallback (see class Graphic) is
redefined. The following ordered table lists the members of the callback structure
XintSymbolVerifyCallbackStruct:

Data Type Member Description

int reason Indicates why callback was invoked.

XEvent * event Points to XEvent that triggered callback.

Boolean doit Set to False to cancel the operation.

XintSymbolLocation * location Pointer to new location proposed for Symbol
object.

int symbol_width Proposed width for symbol in pixels.

int symbol_height Proposed height for symbol in pixels.
ChartObject Programming Guide 157

GRAPHIC OBJECT REFERENCE
Symbol Object Class3

graph.fm5 Page 158 Thursday, January 22, 2009 11:19 AM
Symbol Functions
The Symbol object class defines the following functions for creating a Symbol
object, and creating and freeing parsed symbol data structures:

XintCreateSymbol

Creates a symbol object.

Object XintCreateSymbol (...)

XintSymbolCreate

Converts a string containing a symbol description into a parsed symbol data structure
that can be passed to resource XmNsymbolData. A symbol data structure can be
shared between several Symbol objects.
XintSymbolData *XintSymbolCreate (char *symbol_string)

symbol_string A string containing a description of the symbol to parse.

Structure XintSymbolData is an opaque structure that is not documented.

XintSymbolFree

Frees a parsed symbol data structure. You can free a parsed symbol descriptor
immediately after its creation or after a set values operation since it is no longer
needed (the Symbol object makes a copy).
void XintSymbolFree(XintSymbolData *parsed_symbol)

parsed_symbol A pointer to the parsed symbol data structure to free.

Macros
Macro XintIsSymbol returns True if the specified object is a Symbol object.
Boolean XintIsSymbol (Object object)

Function Name Description

XintCreateSymbol Creates a Symbol object.

XintSymbolCreate Creates a parsed symbol from a description string.

XintSymbolFree Free a parsed symbol data structure.

Widget parent Parent of new Symbol object.

char * name Name of new Symbol object.

ArgList arglist List of resource/value items.

Cardinal argcount Number of items in arglist.
158 ChartObject Programming Guide

GRAPHIC OBJECT REFERENCE
Macros 3

graph.fm5 Page 159 Thursday, January 22, 2009 11:19 AM
Text Object Class
Text object class draws a character string that can span multiple lines within a
rectangular area. Derived from Rectangle class, Text class also allows you to draw a
background fill and/or an outline around the text.

Text object class can display fixed size text using the standard X bitmap font
technology or scalable text, or using an outlined font technology provided with the
INT library. Resource XmNtextScale controls whether fixed-size or scalable fonts
are used. If XmNtextScale is NULL, a fixed-size font will be used. The size of this
font, specified using resource XmNfontSize, must be a valid X font size. Otherwise,
if XmNtextScale is not NULL, a scalable font is used. The size of scalable text
object is specified in user coordinates, and its size changes when the coordinate
system changes (for example if you resize the parent widget window). Figure 31
illustrates and example of scalable text:

f

Figure 31. Scalable Text

Font description
directories

When using scalable text, the Text object must access a file containing the
description of the outline for the specified font. The font descriptions must reside in
a directory which you can specify as follows:
• Set CompBase resource XmNfontPath on the Text parent widget
• Set environment variable INT_FONT_PATH
If not defined, the current directory is searched, and if a valid font description is not found,
a default stroke font is used. Text object supports rotation for both fixed-size and scalable
text. The position of text is specified in user coordinates using structure XintTextLocation
and resource XmNtextLocation. To controls the positioning of text relative to this
location, use resources XmNhorizontalTextAlignment and
XmNverticalTextAlignment.
ChartObject Programming Guide 159

GRAPHIC OBJECT REFERENCE
Text Object Class3

graph.fm5 Page 160 Thursday, January 22, 2009 11:19 AM
Text Resources
The Text object class inherits behavior and resources from the Xt Object, Graphic
and Rectangle classes.

• Class pointer is xintTextObjectClass

• Class name is XintText

• Header file is included as <Xint/Text.h>

Resources The following resources are defined by the Text object class.

Name Type
Default Access

XmNfontFamily int
XintHELVETICA

CSG

XmNfontSize int
10

CSG

XmNfontSlant int
XintSLANT_REGULAR

CSG

XmNfontWeight int
XintWEIGHT_MEDIUM

CSG

XmNhorizontalTextAlignment int
XintHALIGN_LEFT

CSG

XmNmarginHeight Dimension
4

CSG

XmNmarginWidth Dimension
4

CSG

XmNrotateAngle int
0

CSG

XmNtextLocation XintTextLocation *
NULL

CSG

XmNtextScale XintTextScale *
NULL

CSG

XmNtextString char *
NULL

CSG

XmNverticalTextAlignment int
XintVALIGN_TOP

CSG
160 ChartObject Programming Guide

GRAPHIC OBJECT REFERENCE
Text Object Class 3

graph.fm5 Page 161 Thursday, January 22, 2009 11:19 AM
XmNfontFamily

Specifies the font family used to draw the text string. You can specify one of the
following constants:

XmNfontSize

Specifies size in points of font. Specify XintFONT_SIZE_DEFAULT to obtain
default font for specified family. Valid font sizes are 8, 10, 12, 14, 18 and 24.

XmNfontSlant

Specifies the slant of the font used to draw the text string. You can specifiy
XintSLANT_REGULAR, XintSLANT_OBLIQUE or XintSLANT_DEFAULT.

XmNfontWeight

Specifies the weight of the font used to draw the text string. You can specify
XintWEIGHT_MEDIUM or XintWEIGHT_BOLD or XintWEIGHT_DEFAULT.

XmNhorizontalTextAlignment

Specifies the horizontal alignment of the text. You can specify one of the following
constants:

XmNmarginHeight

Specifies space (in pixels) between text and top and bottom edges of rectangular

Resource Value Description

XintDEFAULT Use default font family. For scalable text, a
stroke font is selected. For fixed size text, the
default X font for the specified size and
weight is selected.

XintHELVETICA (default) Use Helvetica font family.

XintTIMES Use Times font family.

XintCOURIER Use Courier font family.

XintNEW_CENTURY_SCHOOLBOOK Use New Century Schoolbook font family

XintSYMBOL Use Symbol font family.

Resource Value Description

XintHALIGN_LEFT Text is aligned left in the horizontal direction.

XintHALIGN_CENTER Text is centered in the horizontal direction.

XintHALIGN_RIGHT Text is aligned right in the horizontal direction.
ChartObject Programming Guide 161

GRAPHIC OBJECT REFERENCE
Text Object Class3

graph.fm5 Page 162 Thursday, January 22, 2009 11:19 AM
area containing the text.

XmNmarginWidth

Specifies space (in pixels) between text and left and right edges of rectangular area
containing the text.

XmNrotateAngle

Specifies an angle of rotation in degrees for the text object. The text rotates about the
location defined in resource XmNtextLocation.

XmNtextLocation

Specifies location of text object in user coordinates. Specified as a pointer to a data
structure of type XintTextLocation which takes the following form:

typedef struct {
 float x;
 float y;
} XintTextLocation;

XmNtextScale

Specifies text font size in user coordinates and a horizontal stretch factor. When this
resource is set, a scalable font will be used to display the text string. The stretch value
should be set to 1.0 unless you want to stretch (> 1.0) or shrink (< 1.0) the text in
the horizontal direction. Specified as a pointer to data structure of type
XintTextScale that takes the following form:

typedef struct {
 float size;
 float stretch;
} XintTextScale;

XmNtextString

Specifies string to display. Use the new line symbol ‘\n‘ to separate lines.

XmNverticalTextAlignment

Specifies vertical alignment of text with respect to text location specified in resource
XmNtextLocation. You can specify one of the following constants:

Text Callbacks

Resource Value Description

XintVALIGN_TOP Text aligned with respect to top in vertical direction.

XintVALIGN_CENTER Text centered in vertical direction.

XintVALIGN_BOTTOM Text aligned with respect to bottom in vertical direction.
162 ChartObject Programming Guide

GRAPHIC OBJECT REFERENCE
Defined Functions 3

graph.fm5 Page 163 Thursday, January 22, 2009 11:19 AM
The Text object class does not define any new callbacks. However, the callback
structure returned with callback XmNverifyCallback (see class Graphic) is
redefined. The following ordered table lists the members of the callback structure
XintTextVerifyCallbackStruct.

Defined Functions
The XintCreateText function creates a Text object.
Object XintCreateText (...)

Macros
Macro XintIsText returns True if the specified object is a Text object.
Boolean XintIsText (Object object)

Data Type Member Description

int reason Indicates why the callback was invoked.

XEvent * event Points to the XEvent that triggered the callback.

Boolean doit Set to False to cancel the operation.

XintTextLocation old_location Old location of the Text object.

XintTextLocation location New location proposed for the Text object.

Widget parent Parent of new Text object.

char * name Name of new Text object.

ArgList arglist List of resource/value items.

Cardinal argcount Number of items in arglist.
ChartObject Programming Guide 163

GRAPHIC OBJECT REFERENCE
Text Object Class3

graph.fm5 Page 164 Thursday, January 22, 2009 11:19 AM
164 ChartObject Programming Guide

dataobj.fm5 Page 165 Thursday, January 22, 2009 11:20 AM
DataObject
Reference 4

Overview
This chapter includes the following sections:

• DataObject on page 166

• DataGroup Object Class on page 167

• DataGrid Object on page 173

• DataLabel Object on page 181

• DataSampled Object Class on page 188

• DataSequentialSeries Object Class on page 196

• DataSeries Object Class on page 196

• DataTimeLabel Object Class on page 203
ChartObject Programming Guide 165

DATAOBJECT REFERENCE
DataObject4

dataobj.fm5 Page 166 Thursday, January 22, 2009 11:20 AM
DataObject
The INT DataObject is a system of Xt intrinsic tools that provide for the retrieval, storage
and manipulation of sets or groups of data. DataObject and its companion ChartObject
are based on the MVC or Model-View-Controller architecture first used in Smalltalk.
DataObject serves as the model component of the architecture, while ChartObject serves
as the view and EditObject as the controller components.

Summary of Components
DataObject provides the following object classes that can be used to classify and
manipulate sets of data:

These classes all are Xt objects that can be manipulated using a series of resources,
functions, and callbacks, just like any standard Motif/Xt object or widget. The data
objects should not be managed, and modification of the data can be accomplished using
either standard Xt resource setting mechanisms or the convenience functions provided by
INT.

Class Description

DataGroup Allows the definition and manipulation of multiple data objects as a
single group. For example, a group may contain sampled objects,
series objects, grids, or even other groups.

DataGrid Allows the definition and manipulation of a two-dimensional array of
data values as a single object.

DataLabel Allows the definition and manipulation of a set of labels that are used
to identify visually the data in a chart or tabular view.

DataSampled Allows the definition and manipulation of a one-dimensional array of
data as a single object.

DataSeries Allows the definition and manipulation of a series of x,y pairs as a sin-
gle object.
166 ChartObject Programming Guide

DATAOBJECT REFERENCE
DataGroup Object Class 4

dataobj.fm5 Page 167 Thursday, January 22, 2009 11:20 AM
DataGroup Object Class
The DataGroup object class is used to build groups of related objects. This feature is
especially useful for transferring groups of data between different views. For example, in
a bar chart with multiple bars, a related group of data objects could be plotted
simultaneously against the same axis and share the same label(s). The DataGroup object
lets you:

• group data objects in a hierarchical relationship

• determine the maximum/minimum range of all data in the group (e.g., for axis
scaling).

• find and retrieve specific objects in the group.

A set of function calls can be used to manipulate ranges of data within specified arrays
or individual data points in any array. You can also extend, replace, or shift data in an
array.

Inherited Behavior and Resources
The DataGroup object class does not inherit behavior and resources from other classes:

• Class pointer is xintDataGroupObjectClass

• Class name is XintDataGroup

• Header file is included as <Xint/DataGroup.h>

Resources The following resources are defined by the DataGroup object class:

Name Type
Default

Access

XmNhistoryLength int
0

CSG

XmNlastViewDestroy Boolean
True

CSG

XmNlimitsX XintLimits *
NULL

CSG

XmNlimitsY XintLimits *
NULL

CSG

XmNlimitsZ XintLimits *
NULL

CSG
ChartObject Programming Guide 167

DATAOBJECT REFERENCE
DataGroup Object Class4

dataobj.fm5 Page 168 Thursday, January 22, 2009 11:20 AM
XmNhistoryLength
This resource (not implemented yet) will allow you to specify the number of editing
changes that can be saved to the history buffer for the current group. For example, if
this number is set to five, the history buffer will save up to the last five editing
changes. A special Undo feature will allow you to retrieve any set of historical
changes and restore the data to that stage in the editing process.

XmNlastViewDestroy
Specifies whether or not to automatically destroy the data group when there are no
more views connected to it. The DataGroup object will automatically change the
value of resource XmNlastViewDestroy for every data object inserted into the group
to match its own value.

XmNlimitsX
XmNlimitsY
XmNlimitsZ
These resources let you limit the range of displayed data in the entire group to a
certain limit in the X, Y, and/or Z direction. If not specified, the range of interest is
set by default to the actual minimum and maximum values of data in the data group.

The minimum/maximum limits are defined through the data structure XintLimits,
which takes the following form:
typedef struct {
 float minimum;
 float maximum;
} XintLimits;

where:

Member Description

minimum Minimum value of data in the group.

maximum Maximum value of data in the group.
168 ChartObject Programming Guide

DATAOBJECT REFERENCE
Callback Structure 4

dataobj.fm5 Page 169 Thursday, January 22, 2009 11:20 AM
Callback Structure
The callback XmNupdateCallback is used to provide notification of changes to any of
the data objects contained in the group. The callback structure takes the following form:
typedef struct {
 int reason;
 XEvent *event;
 Object object;
 union {
 XintDataUpdateCallbackStruct *data;
 XintDataSampledUpdateCallbackStruct *sampled;
 XintDataSeriesUpdateCallbackStruct *series;
 XintDataGridUpdateCallbackStruct *grid;
 } callback_struct;
} XintDataGroupUpdateCallbackStruct;

This particular callback is especially convenient because it provides notification of
updates to any child of the group, regardless of the data object type. Callback
XmNupdateCallback and update callbacks structures are also provided for each separate
data object type (e.g., XintDataSeriesUpdateCallbackStruct), but it is more convenient to
use a single callback for the whole group than trying to install update notification for each
member of the group.

The callback indicates which type of object was modified and why. This information can
help optimize the redrawing and updating of the window. The following table lists
members of XintDataGroupUpdateCallbackStruct in their required sequence:

The callback structure includes information explaining the reason why a particular

Data Type Member Description

int reason Indicates why callback was
invoked (see following section).

XEvent * event Standard member of Motif call-
back structure not used in this con-
text (will always be NULL).

Object object ID of updated object.

XintDataLabelCallbackStruct * label Indicates update performed if
object is DataLabel object.

XintDataSampledUpdateCallbackStruct * sampled Indicates update performed if
object is DataSampled object.

XintDataSeriesUdateCallbackStruct * series Indicates update performed if
object is a DataSeries object.

XintDataGridUpdateCallbackStruct * grid Indicates update performed if
object is DataGrid object.
ChartObject Programming Guide 169

DATAOBJECT REFERENCE
DataGroup Object Class4

dataobj.fm5 Page 170 Thursday, January 22, 2009 11:20 AM
update occurred. The following table lists the possible reasons returned by this callback:

Reason Description

XintCR_DATA_BATCH A batch update has been performed and any
number of changes on the objects in the group
could have happen. No information about the
changes is available in the callback structure.

XintCR_DATA_GROUP_INSERT_CHILD Child was inserted using the XmNData-
Group resource of the child. The ID of the
data object that was inserted is set in member
object.

XintCR_DATA_GROUP_DELETE_CHILD Child was deleted through external com-
mand (e.g., XtDestroy). The ID of the data
object that was destroyed is set in member
object.

XintCR_DATA_GROUP_UPDATE_CHILD Child object was updated. Information about
the type of update is available in callback
structure (use member label if object is a
DataLabel, use member sampled if object is
a DataSampled, etc.)
170 ChartObject Programming Guide

DATAOBJECT REFERENCE
Functions 4

dataobj.fm5 Page 171 Thursday, January 22, 2009 11:20 AM
Functions
The following functions are defined for creating and manipulating groups of data objects.

XintCreateDataGroup
Creates a data group of a certain name with a list of associated resource values.
Object XintCreateDataGroup (...)

XintDataBatchUpdate
Allows or disallows propagation of updates to the views of a data group. This
function can be used to batch multiple updates in a data group to minimize flashing.
To batch updates, first call this function with state flag set to True, perform the
changes on the members of the data group, then call this function again with state
flag set to False.
Object XintDataBatchUpdate (...)

Function Name Description

XintCreateDataGroup Creates a data group.

XintDataBatchUpdate To turn on/off propagation of updates to views.

XintDataRangeX Determines the total range of data in the X direction.

XintDataRangeY Determines the total range of data in the Y direction.

XintDataRangeZ Determines the total range of data in the Z direction.

XintDataGroupFind Finds a data object of a certain name in a data group.

XintDataGroupIterate Retrieves the nth data object of a specified class from a data
group.

Widget parent Name of the parent DataObject widget containing this new
data group.

char * name Name of the new data group.

ArgList arglist List of resources to be set for the new data group.

Cardinal argcount Total number of resources set by arglist.

Object data ID of the data object (usually a data group).

Boolean state Set to True to freeze updates. Set to False to allow updates.
ChartObject Programming Guide 171

DATAOBJECT REFERENCE
DataGroup Object Class4

dataobj.fm5 Page 172 Thursday, January 22, 2009 11:20 AM
XintDataRangeX, XintDataRangeY, and XintDataRangeZ
Determines total range of data for all objects in a group (minimum and maximum
values represented in all data arrays). Useful for determining length, end points, and
increments along an axis used to plot objects. Returns False there are no samples or
all samples are set to null values.
Boolean XintDataRangeX (...)
Boolean XintDataRangeY (...)
Boolean XintDataRangeZ (...)

XintDataGroupFind
Specifies data group and finds an object by name. For example, if you named an
object MyData and inserted it into a group, you could retrieve it by name.
Object XintDataGroupFind (...)

XintDataGroupIterate
Retrieves specific type of data object from a group by index number. To retrieve a series
of objects of the same type, start at index 0 and iterate on index numbers. Returns NULL
when objects are no longer available.
Object XintDataGroupIterate (...)

Macros
Macro XintIsDataGroup returns True if specified object is a DataGroup object.
Boolean XintIsDataGroup (Object object)

Object object Object ID of the data group to be examined.

float minimum Minimum value in the data range.

float maximum Maximum value in the data range.

Object object Object ID of the data group to be searched.

char * name Name of object to be found.

Object context Normally NULL. Can use to search for multiple objects with same name.
For example, if called with NULL and return value is not NULL, uses
return value as context argument of next call.

Object object ID of the data group.

ObjectClass data_class Class name of data object class to retrieve (for example,
intDataSampledObjectClass). Specify NULL to retrieve
data objects from any type.

int index Index number of the data object to be retrieved.
172 ChartObject Programming Guide

DATAOBJECT REFERENCE
Example 4

dataobj.fm5 Page 173 Thursday, January 22, 2009 11:20 AM
DataGrid Object
The DataGrid object class is used to store, retrieve and manipulate two-dimensional
arrays or grids of data. Each data group may contain multiple grid objects, such as
multiple blocks of cells in a table. The grid is described by pointing to a defined
two-dimensional array, then describing the following:

• Total count of X and Y values in the array

• Order or orientation of data in the array (for example X-oriented, Y-oriented)

• Min/max limits of the data

Data type The type of data contained in a DataGrid Object can any of the following:

• Float

• Short

• Integer

• Long

• Double

Example
The following example shows the code structure for a typical DataGrid object:

Code float grid[NX*NY];
Object grid_data;
...
for (i=0; i<NX*NY; i++) grid [i] = i
grid_data = (Object) XtVaCreateWidget(“Grid”,

(WidgetClass)xintDataGridObjectClass,
edit,
XmNgridArray, grid,
XmNxCount, NX,
XmNyCount, NY,
XmNgridOrder, XintX_VECTOR,
XmNdataGroup, data_group, NULL);
ChartObject Programming Guide 173

DATAOBJECT REFERENCE
DataGrid Object4

dataobj.fm5 Page 174 Thursday, January 22, 2009 11:20 AM
Inherited Behavior and Resources
The DataGrid object class does not inherit behavior and resources from any other object
class:

• Class pointer is xintDataGridObjectClass

• Class name is XintDataGrid

• Header file is included as <Xint/DataGrid.h>

Resources The following resources are defined by the DataGrid object class:

Name Type
Default Access

XmNcopyData Boolean
True

CSG

XmNdataGroup Object
NULL

CSG

XmNdataType int
XintDATA_TYPE_FLOAT

CSG

XmNeditable Boolean
True

CSG

XmNgridArray XtPointer
NULL

CSG

XmNgridOrder int
XintX_VECTOR

CSG

XmNlastViewDestroy Boolean
True

CSG

XmNupdateCallback XtCallbackList
NULL

CSG

XmNxCount int
0

CSG

XmNyCount int
0

CSG

XmNxRange XintRange *
NULL

CSG

XmNyRange XintRange *
NULL

CSG
174 ChartObject Programming Guide

DATAOBJECT REFERENCE
Inherited Behavior and Resources 4

dataobj.fm5 Page 175 Thursday, January 22, 2009 11:20 AM
XmNcopyData
If True, this resource will allocate memory to store a copy of the data, then free the
memory allocation when the object is destroyed. If False, the widget does not create
a copy of the data nor does it manage memory for this purpose.

XmNdataGroup
Specifies the object ID of the data group to which this data grid belongs. This
resource must be specified if the data grid object is to be placed inside a data group.

XmNdataType
This resource specifies the data type for the array named in XmNgridArray. The
resource value may be one of the following:

XmNeditable
Specifies whether or not this data series can be edited when displayed in a view.

XmNgridArray
This resource specifies the name of the array containing the gridded data. The data
type of the array can be defined using the XmNdataType resource.

Resource Value Description

XintDATA_TYPE_FLOAT (default) Data type is float.

XintDATA_TYPE_SHORT Data type is short.

XintDATA_TYPE_INTEGER Data type is integer.

XintDATA_TYPE_LONG Data type is long.

XintDATA_TYPE_DOUBLE Data type is double.
ChartObject Programming Guide 175

DATAOBJECT REFERENCE
DataGrid Object4

dataobj.fm5 Page 176 Thursday, January 22, 2009 11:20 AM
XmNgridOrder
This resource specifies the direction in which the grid is ordered (see Figure 32). For
example, in a table with Y orientation, the array values are arranged
column-by-column; in X orientation they are arranged row-by-row. The selected X
or Y orientation is maintained when the data is transferred to chart views and the data
is plotted accordingly.

Figure 32. Grid Orientation

The following constants describe the grid orientation for the XmNgridOrder resource.

XmNlastViewDestroy
Specifies whether or not to automatically destroy this data object when there are no
more views connected to the data. If this data object is inserted into a DataGroup,
you only need to set this resource for the DataGroup object.

XmNupdateCallback
This resource allows you to attach a callback to the Grid object that is invoked each
time the data has changed. See the following section for more information on this
callback.

XmNxCount
XmNyCount

These resources specify the size of the grid in the X and Y directions. In a table, X count
is the number of rows, and Y count is the number of columns.

Resource Value Description

XintX_VECTOR Grid is ordered in the X direction.

XintY_VECTOR (default) Grid is ordered in the Y direction.

1

2

3

4

5

6

7

8

9

1

4

7

2

5

8

3

6

9

X_VECTOR Y_VECTOR

Memory storage
176 ChartObject Programming Guide

DATAOBJECT REFERENCE
Callback 4

dataobj.fm5 Page 177 Thursday, January 22, 2009 11:20 AM
XmNxRange
XmNyRange
These resources let you define the grid data range in the X or Y direction as a start
and an increment. If you don’t specify a value for this resource, the starting value is
set to be 0 and the increment 1.

The actual start/increment values are defined through the data structure XintRange,
which takes the following form:
typedef struct {
 float start;
 float increment;
} XintRange;

where:

Callback
Callback XmNupdateCallback provides notification of changes in a grid object. This
notification can be used to ensure that updates to one view are properly reflected in all
other views. The callback structure takes the following form:
typedef struct {
int reason;
XEvent *event;
Object object;
 int x_start;
 int y_start;
 int x_count;
 int y_count;
 float minimum;
 float maximum;
} XintDataGridUpdateCallbackStruct;

If you have multiple DataGrid or other objects in a group, this callback must be registered
separately for each individual data object. If you prefer to control updates at the group
level, you should register this callback only once for the DataGroup object and use the
XintDataGroupUpdateCallbackStruct discussed earlier in this manual (see page 169 for
details).

Structure XintDataGridUpdateCallbackStruct contains information that indicates why and
how the object was modified. This information can help optimize the redrawing and
updating of the appropriate views.

Member Description

start Starting value.

increment Increment.
ChartObject Programming Guide 177

DATAOBJECT REFERENCE
DataGrid Object4

dataobj.fm5 Page 178 Thursday, January 22, 2009 11:20 AM
The following table lists the XintDataGridUpdateCallbackStruct members of structure:

Member reason provides information explaining why and how the update occurred.
Possible values for member reason are

Data Type

Member Description

int reason Indicates why callback was invoked (see table below).

XEvent * event Standard member in Motif callback structure; not used in
this context (will always be NULL).

Object object ID of the updated object.

int x_start Starting index of X value updated (starts at 0).

int y_start Starting index of Y value updated (starts at 0).

int x_count Total number of X values updated.

int y_count Total number of Y values being updated.

float minimum New minimum of updated values.

float maximum New maximum of updated values.

Reason Description

XintCR_DATA_UPDATE
XintCR_DATA_BATCH

Entire data grid has been changed, no more information
is available.

XintCR_DATA_REPLACE A portion of the grid (as specified by x_start, y_start,
x_count and y_count) has been replaced.
178 ChartObject Programming Guide

DATAOBJECT REFERENCE
Functions 4

dataobj.fm5 Page 179 Thursday, January 22, 2009 11:20 AM
Functions
The following functions are available for creating and manipulating grid data objects.

XintCreateDataGrid
Creates a new data grid object. The function argument list should contain any
resource settings that you want to specify for the new grid object.

Object XintCreateDataGrid(...)

XintDataGridGetGridArray
Retrieves any part of a DataGrid object as a floating point array. You will have to
free the array after it is no longer needed.
float *XintDataGridGetGridArray (...)

Function Name Description

XintCreateDataGrid Creates a new data grid object.

XintDataGridGetGridArray Retrieves any part of a grid.

XintDataGridDataReplace Replaces data in a grid.

Widget parent Parent of new data grid object.

char * name Name of new data grid object.

ArgList arglist List of resources to be set for this data grid.

Cardinal argcount Total number of resources being set.

Object object Object ID of the data grid in which data is being retrieved.

int x_start Starting X value in the area of the grid to be retrieved.

int y_start Starting Y value in the area of the grid to be retrieved.

int x_count Total number of X values to be retrieved.

int y_count Total number of Y values to be retrieved.
ChartObject Programming Guide 179

DATAOBJECT REFERENCE
DataGrid Object4

dataobj.fm5 Page 180 Thursday, January 22, 2009 11:20 AM
XintDataGridDataReplace
Replaces the data within a specified area of a specified grid. The function arguments
let you specify a pre-defined array to be inserted, along with the starting x,y values
and the number of values to be replaced in both the X and Y directions. The function
returns False if there is a bad argument or the function cannot be performed.
Boolean XintDataGridDataReplace (...)

Macros
Macro XintIsDataGrid returns True if the specified object is a DataGrid object.
Boolean XintIsDataGrid (Object object)

Object object Object ID of the data grid in which data is being replaced.

XtPointer array Array containing the replacement data. The data type for this
array should be the same as the type specified by XmNdataType.

int x_start Starting X value in the area of the grid being replaced.

int y_start Starting Y value in the area of the grid being replaced.

int x_count Total number of X values being replaced.

int y_count Total number of Y values being replaced.
180 ChartObject Programming Guide

DATAOBJECT REFERENCE
Example 4

dataobj.fm5 Page 181 Thursday, January 22, 2009 11:20 AM
DataLabel Object
The DataLabel object can be used to define a label for the data in a group. The label
object is an array of text strings that automatically appears in an appropriate context in
any view of the group. For example, a label associated with a data series might contain a
character string corresponding to each data pair in the series. These strings would appear
as row annotation in a table view.

DataLabel objects are created automatically when the user performs a drag-and-drop. If
the drag-and-drop begins inside an EditTable object, the column heading becomes the
name of the data object, and the row annotation becomes a label array. For instance, if
the user selects three columns for drag-and-drop, this will automatically create three
DataSampled objects (one for each column), with a DataLabel object containing the
annotation for each row.

For a Chart, DataLabel objects are used to annotate the axes. For a Table, DataLabel
objects provide row or column annotation. The data label has an orientation which
specifies which axis (when attached to a chart) it corresponds to. If you specify more than
one DataLabel for a specific orientation, the chart manager will try to merge those labels
based on the range information.

Example
The following example shows a typical code structure used to define a Data-Label
object.
static String x_labels[] = {"Houston","Dallas","San Antonio",

"Austin"};
...
XtVaCreateWidget("Cities",

(WidgetClass)xintDataLabelObjectClass, edit,
XmNlabelStrings, x_labels,
XmNlabelCount, sizeof(x_labels)/sizeof(String),
XmNlabelOrientation, XintLABEL_X,
XmNdataGroup, data_group,
NULL);
ChartObject Programming Guide 181

DATAOBJECT REFERENCE
DataLabel Object4

dataobj.fm5 Page 182 Thursday, January 22, 2009 11:20 AM
Inherited Behavior and Resources
The DataLabel object class does not inherit behavior and resources from any other object
class:

• Class pointer is xintDataLabelObjectClass

• Class name is XintDataLabel

• Header file is included as <Xint/DataLabel.h>

Resources The following resources are defined by the DataLabel object class. These resources must
be set as part of the object creation function XintCreateDataLabel discussed later in this
section.

XmNcopyData
If True, allocates memory to store a copy of the data (label string array and labels),
then free the memory when the object is destroyed. If False, widget does not create
a copy of the data or manage memory for this purpose.

Name Type
Default Access

XmNcopyData Boolean
True

CSG

XmNdataGroup Object
NULL

CSG

XmNlabelCount int
0

CSG

XmNlabelOrientation int
XintLABEL_X

CSG

XmNlabelPositionArray float *
NULL

CSG

XmNlabelStrings char **
NULL

CSG

XmNlastViewDestroy Boolean
True

CSG

XmNsampledRange XintRange *
NULL

CSG

XmNupdateCallback XtCallbackList
NULL

C

182 ChartObject Programming Guide

DATAOBJECT REFERENCE
Inherited Behavior and Resources 4

dataobj.fm5 Page 183 Thursday, January 22, 2009 11:20 AM
XmNdataGroup
Specifies the object ID of the data group that this label belongs to. This resource
must be specified if the data label object is to be placed inside a group.

XmNlabelCount
This is the number of separate character strings contained in this DataLabel object.

XmNlabelOrientation
For a Chart, this resource specifies the axis this label is associated with. For a Table,
this resource specifies whether the labels are used for row or column annotation. You
can use one of the following constants for the value of this resource:

XmNlabelPositionArray
This resource specifies an array, of size XmNlabelCount, used to position the labels
along a chart axis. This resource should only be used if the increment between the
labels is not constant. Use resource XmNsampledRange otherwise.

XmNlabelStrings
This is the text of the label, or the name of a pre-defined array containing a series of
character strings to be used as labels.

XmNlastViewDestroy
Specifies whether or not to automatically destroy this data object when there are no
more views connected to the data. If this data object is inserted into a DataGroup,
you only need to set this resource for the DataGroup object.

Resource Value Description

XintLABEL_X (default) Label is associated with the X axis (column annotation).

XintLABEL_Y Label is associated with the Y axis (row annotation).

XintLABEL_Z Label is associated with the Z axis.
ChartObject Programming Guide 183

DATAOBJECT REFERENCE
DataLabel Object4

dataobj.fm5 Page 184 Thursday, January 22, 2009 11:20 AM
XmNsampledRange
Specifies the start and increment for positioning the labels. For example, if the label
orientation is specified as X, this resource would define the start (position of the first
label) and the increment (how far apart are the labels) in the X direction. If this
resource is not specified, the start is assumed to be 0 and the increment 1. This
resource is helpful to position the annotation on the axis. Use resource
XmNlabelPositionArray to position labels at a non constant interval.

This resource is specified as a pointer to a data structure of type XintRange, which
takes the following form:
typedef struct {
 float start;
 float increment;
} XintRange;

where:

XmNupdateCallback
Allows you to attach a callback to the Label object that is invoked each time the data
has changed. See the following section for more information on this callback.

Member Description

start Minimum value.

increment Increment.
184 ChartObject Programming Guide

DATAOBJECT REFERENCE
Callback 4

dataobj.fm5 Page 185 Thursday, January 22, 2009 11:20 AM
Callback
Callback XmNupdateCallback provides notification of changes in a DataLabel object.
This notification can be used to ensure that updates to one view are properly reflected in
all other views. The callback structure takes the following form:
typedef struct {
 int reason;
 XEvent *event;
 Object object;
} XintDataLabelUpdateCallbackStruct;

If you have multiple DataLabel or other objects in a group, this callback must be
registered separately for each individual data object. If you prefer to control updates at
the group level, you should register this callback only once for the DataGroup object and
use the XintDataGroupUpdateCallbackStruct discussed earlier in this manual (see
page 169 for details).

The following ordered table describes the members of structure
XintDataLabelUpdateCallbackStruct:

Member reason provides information explaining why and how the update occurred.
Possible values for member reason are

Data Type Member Description

int reason Indicates why callback was invoked (see table below).

XEvent * event Standard member in Motif callback structure; not used in
this context (will always be NULL).

Object object ID of the updated object.

Reason Description

XintCR_DATA_UPDATE
XintCR_DATA_BATCH

Label has been changed, no more information is avail-
able.
ChartObject Programming Guide 185

DATAOBJECT REFERENCE
DataLabel Object4

dataobj.fm5 Page 186 Thursday, January 22, 2009 11:20 AM
Functions
The following functions are defined for creating and manipulating DataLabel objects.

XintCreateDataLabel
Creates a data label and define all resources for it.

Object XintCreateDataLabel (...)

XintDataLabelExtend
Adds more labels to the end of a data label array. The function returns False if there
is a bad argument, if the function cannot be performed, or if resource XmNcopyData
is false.
Boolean XintDataLabelExtend (...)

Function Name Description

XintCreateDataLabel Creates a DataLabel object.

XintDataLabelExtend Extends the labels.

XintDataLabelReplace Replaces the labels.

XintDataLabelShift Shifts the labels.

Widget parent Parent of the new data label.

char * name Name of new data label object.

ArgList arglist List of resource settings for the new object.

Cardinal argcount Number of resources being set in arglist.

Object object Object ID of the label array to be extended.

String * string_array Array of strings to be added to the original label array.

float * pos_array Array of positions to be added to the original position array
(Specify NULL if you are not using this field).

int count Number of values being added.
186 ChartObject Programming Guide

DATAOBJECT REFERENCE
Macros 4

dataobj.fm5 Page 187 Thursday, January 22, 2009 11:20 AM
XintDataLabelReplace
Replaces a range of labels in the label array. The function returns False if there is a
bad argument.
Boolean XintDataLabelReplace(...)

XintDataLabelShift
Shifts the labels contained in a DataLabel object by discarding a specified number
of values at the beginning of the existing array, and adding an equal number of
values to the end of the existing array. The function returns False if argument count
is bigger than the number of labels.
Boolean XintDataLabelShift(...)

Macros
Macro XintIsDataLabel returns True if the specified object is a DataLabel object.
Boolean XintIsDataLabel (Object object)

Object object Object ID of the label array to be replaced.

String * string_array Array of new strings to be used to replace existing labels.

float * pos_array Array of positions to be used to replace existing positions (Specify
NULL if you are not using this field).

int start Index of first value to be replaced (starts at 0).

int count Number of values being replaced.

Object object Object ID of the label array to be shifted.

String * string_array Array of new strings to be appended at the end of the list of
labels.

float * pos_array Array of positions to be used to be appended at the end of
the position list (Specify NULL if you are not using this
field).

int count Number of values to be discarded at the front and appended
to the end of the existing array.
ChartObject Programming Guide 187

DATAOBJECT REFERENCE
DataSampled Object Class4

dataobj.fm5 Page 188 Thursday, January 22, 2009 11:20 AM
DataSampled Object Class
The DataSampled object class is used to manipulate a one-dimensional array of values.
For instance, a DataSampled object may appear as a row or column of data in a table, a
series of bars in a bar chart, a plotted line in a graph and so forth. The type of data
contained in a DataSampled Object can be float, short, integer, long, or double. When the
one-dimensional array is viewed in a two-dimensional context such as a chart, the second
dimension (or implied direction) is generated from a start and an increment which are
specified using resource XmNrange.

For example, Figure 33 shows a single-dimensioned array plotted on a chart in the default
configuration. The X direction is implied from the data by counting the number of values
(n) in the sample and creating a synthetic array of values based on a start and an increment
(0 and 1 in this case):

Figure 33. Example of DataSampled Array

Example
The following example code defines a typical DataSampled object:
static int population[] = {142000, 256000, 320000, 340000}
Object population_data;
XintRange range;
...
range.start = 1990;
range.increment =1;
population_growth = (Object) XtVaCreateWidget(“population”),
 (WidgetClass)
xintDataSampledObjectClass, parent,
 XmNdataArray, population,
 XmNdataType, XintDATA_TYPE_INTEGER,
 XmNsampledRange, &range,
 XmNdataGroup, data_group,
 NULL);

static float d1[] = { 4.0, 5.0, 5.9, 7.3 };
188 ChartObject Programming Guide

DATAOBJECT REFERENCE
DataSampled Object Class 4

dataobj.fm5 Page 189 Thursday, January 22, 2009 11:20 AM
Inherited Behavior and Resources
The DataSampled object class does not inherit behavior and resources from any other
object class:

• Class pointer is xintDataSampledObjectClass

• Class name is XintDataSampled

• Header file is included as <Xint/DataSampled.h>

Resources The following resources can be defined for the DataSampled object class:

XmNcopyData
If True, allocates memory to store a copy of the data, then free the memory allocation
when the object is destroyed. If False, the widget does not create a copy of the data
or manage memory for this purpose.

Name Type
Default Access

XmNcopyData Boolean
True

CSG

XmNcount int
0

CSG

XmNdataArray XtPointer
NULL

CSG

XmNdataGroup Object
NULL

CSG

XmNdataType int
XintDATA_TYPE_FLOAT

CSG

XmNeditable Boolean
True

CSG

XmNlastViewDestroy Boolean
True

CSG

XmNsampledRange XintRange *
NULL

CSG

XmNupdateCallback XtCallbackList
NULL

CSG
ChartObject Programming Guide 189

DATAOBJECT REFERENCE
DataSampled Object Class4

dataobj.fm5 Page 190 Thursday, January 22, 2009 11:20 AM
XmNcount

Specifies number of elements in sampled data array named by XmNdataArray.

XmNdataArray
Specifies name of a pre-defined array containing the actual data. The array size is
expressed through the resource XmNcount and the data type is specified by
XmNdataType, both discussed later in this section. The default value of this
resource is NULL.

XmNdataGroup

Specifies object ID of data group to which this sampled array belongs. Must be specified
if the sampled data object is to be placed inside a group.

XmNdataType

Specifies the data type for the array named by XmNdataArray. You can specify one of
the following constants for the value of this resource:

XmNeditable

Specifies whether or not this data series can be edited when displayed in a view.

XmNlastViewDestroy
Specifies whether or not to automatically destroy this data object when there are no
more views connected to the data. If this data object is inserted into a DataGroup,
you only need to set this resource for the DataGroup object.

XmNsampledRange
Specifies the start and increment used to generate the implied direction. This is
particularly useful for axis scaling in a chart view. If this resource is not specified,
the start is assumed to be 0 and the increment 1.

Resource Value Description

XintDATA_TYPE_FLOAT Data type is float (default).

XintDATA_TYPE_SHORT Data type is short.

XintDATA_TYPE_INTEGER Data type is integer.

XintDATA_TYPE_LONG Data type is long.

XintDATA_TYPE_DOUBLE Data type is double.
190 ChartObject Programming Guide

DATAOBJECT REFERENCE
Callback for Data Updates 4

dataobj.fm5 Page 191 Thursday, January 22, 2009 11:20 AM
This resource is specified as a pointer to a data structure of type XintRange, which
takes the following form:
typedef struct {
 float start;
 float increment;
} XintRange;

where:

XmNupdateCallback
Allows you to attach a callback to the object, as described in the following section.

Callback for Data Updates
The callback XmNupdateCallback provides notification of changes in sampled data
objects. As for any widget, you can register callbacks using the Xt function
XtAddCallback. The callback structure takes the following form:
typedef struct {
 int reason;
 XEvent *event;
 Object object;
 int start;
 int count;
 float minimum;
 float maximum;
} XintDataSampledUpdateCallbackStruct;

This callback is specific to the DataSampled object and must be registered for each
separate data object in a group. If you prefer to monitor updates at the group level, you
should register callback XmNupdateCallback only for the DataGroup object and use the
XintDataGroupUpdateCallbackStruct discussed earlier in this manual (see page 169 for
details).

The DataSampled update callback contains information that indicates why and how the
object was modified. The following ordered table lists the members of
XintDataSampledUpdateCallbackStruct in their required sequence:

Member Description

start Minimum value.

increment Increment.

Data Type Member Description

int reason Indicates why the callback was invoked (see table below).
ChartObject Programming Guide 191

DATAOBJECT REFERENCE
DataSampled Object Class4

dataobj.fm5 Page 192 Thursday, January 22, 2009 11:20 AM
The callback structure includes information explaining the reason why a particular
update occurred.

XEvent * event Standard member of a Motif callback structure; not used in
this context (will always be NULL).

Object object ID of the updated object.

int start Starting index of the data updated (starts at 0).

int count Number of items updated.

float minimum New minimum value of the object.

float maximum New maximum value of the object.

Reason Description

XintCR_DATA_UPDATE
XintCR_DATA_BATCH

Entire data array has been changed, no more informa-
tion is available.

XintCR_DATA_REPLACE Data was replaced in the object. (as specified by start
and count).

XintCR_DATA_EXTEND Data was added to the object (count values were added).

XintCR_DATA_SHIFT Data was shifted in the object (count values were
shifted).

Data Type Member Description
192 ChartObject Programming Guide

DATAOBJECT REFERENCE
Functions 4

dataobj.fm5 Page 193 Thursday, January 22, 2009 11:20 AM
Functions
The following functions are defined for creating, updating or retrieving information
regarding a particular sampled data object.

XintCreateDataSampled

Creates a data sampled object and defines all the resources for it.
Object XintCreateDataSampled (...)

XintDataSampledDataExtend
Adds more data to the end of a sampled array. The function returns False if there is
a bad argument, if the function cannot be performed, or if CopyData is false.
Boolean XintDataSampledDataExtend (...)

Function Name Description

XintCreateDataSampled Creates a DataSampled object.

XintDataSampledDataExtend Extends the data in a sampled array.

XintDataSampledGetDataArray Returns part of data array and converts it to float.

XintDataSampledGetSampledArray Returns the sampled values.

XintDataSampledDataReplace Replaces a range of values in a sampled array.

XintDataSampledDataShift Shifts the data in a sampled array.

Widget parent Parent of new data sampled object.

char * name Name of new data sampled.

ArgList arglist List of resource settings for the new data object.

Cardinal argcount Number of resources set by arglist.

Object object Object ID of the sampled array to be extended.

XtPointer array Array of data values to be added to the original sampled array.
The data type for this array should be the same as the type speci-
fied by XmNdataType.

int count Number of values being added.
ChartObject Programming Guide 193

DATAOBJECT REFERENCE
DataSampled Object Class4

dataobj.fm5 Page 194 Thursday, January 22, 2009 11:20 AM
XintDataSampledGetDataArray
Returns any part of a specified data array as an array of float values. If the data is not
already stored as float, it converts the data type to float. You will need to free the
returned array after it is no longer needed.
float *XintDataSampledGetDataArray (...)

XintDataSampledGetSampledArray
Since a sampled data object contains only a single array of data values, the data along
the implied direction is generated from the XmNsampledRange resource. This
function lets you retrieve any part of the synthetic array by specifying the index of
the first value and the total number of values (count) to be retrieved. Count cannot
be more than the total number of values available, otherwise this function returns
NULL. You will need to free the returned array after it is no longer needed.

float *XintDataSampledGetSampledArray (...)

XintDataSampledDataReplace
Replaces a range of values in a sampled array. The function returns False if there is
a bad argument or the function cannot be performed.
Boolean XintDataSampledDataReplace (...)

XintDataSampledDataShift
Shifts the data in the sampled array by discarding a certain number of values (count)

Object object Object ID of the sampled array containing the desired data.

int start Index of first value to be returned (starts at 0).

int count Total number of values to be returned.

Object object ID of the sampled array.

int start Index of first value to be retrieved.

int count Number of values to be retrieved.

Object object Object ID of the sampled array that requires values replaced.

XtPointer array Array of new values to be used to replace existing values. The
data type for this array should be the same as the type specified
by XmNdataType.

int start Index of first value to be replaced (starts at 0).

int count Number of values being replaced.
194 ChartObject Programming Guide

DATAOBJECT REFERENCE
Macros 4

dataobj.fm5 Page 195 Thursday, January 22, 2009 11:20 AM
at the beginning of the array and adding an equal number of values to the end of the
array. The values to be added must be specified in a separate array, as shown in
Figure 34:

Figure 34. Data Shift

The function returns False if there is a bad argument or the function cannot be
performed.

Boolean XintDataSampledDataShift (...)

Macros
Macro XintIsDataSampled returns True if the specified object is a DataSampled object.
Boolean XintIsDataSampled (Object object)

Object object Object ID of the array to be shifted

XtPointer array An array of values to be appended to the end of the current array in
the DataSampled object. The data type for this array should be the
same as the type specified by XmNdataType.

int count Number of values to be discarded at the front of the array and
appended to the end of the array.

static float d1 {0.01 0.35 0.63 1.01 1.74 2.13 2.65 2.89}

static float d2 {3.54 3.99 4.83}

Values to be discarded

Values to be added

static float d3 {1.01 1.74 2.13 2.65 2.89 3.54 3.99 4.83}Final array result:
ChartObject Programming Guide 195

DATAOBJECT REFERENCE
DataSequentialSeries Object Class4

dataobj.fm5 Page 196 Thursday, January 22, 2009 11:20 AM
DataSequentialSeries Object Class
The DataSequentialSeries class is identical to DataSeries except that it requires the X data
values to be sequential (increasing). Using this class when appropriate results in
significantly better display performance when dealing with large datasets or in the case
of real-time applications.

Resources The DataSequentialSeries object class inherits behavior and resources from the
DataSeries class:

• Class pointer is xintDataSequentialSeriesObjectClass

• Class name is XintDataSequentialSeries

• Header file is included as <Xint/DataSequentialSeries.h>

Note: The DataSequentialSeries object class does not define any new resources.
Refer to the “DataSeries Object Class” for a complete list of the resources of
DataSequentialSeries.

DataSeries Object Class
The DataSeries object class is used to store, retrieve, and manipulate any series of (x,y)
data pairs. Each data group may contain multiple DataSeries objects (for instance,
multiple columns from a table or multiple lines on a chart). The series is specified as an
array of X data points, with a matching array of Y data points. Compared to the
DataSampled object, the DataSeries object is more suitable for describing random series
of irregularly spaced data points. The type of data contained in a DataSeries Object can
be float, short, integer, long, or double.

Example
The following example shows the code structure for a typical DataSeries object.

static float x_coord[] = {12.4, 23.5, 28.1, 31.5};
static float y_coord[] = {123, 432, 234, 121};
Object point_series;
...
point_series = (Object) XtVaCreateWidget(“series”,

(WidgetClass)xintDataSeriesObjectClass, edit,
XmNxArray, x_coord,
XmNyArray, y_coord,
XmNcount, sizeof(x_coord)/sizeof(float),
XmNdataType, XintDATA_TYPE_FLOAT,
XmNcopyData, False,
NULL);
196 ChartObject Programming Guide

DATAOBJECT REFERENCE
Inherited Behavior and Resources 4

dataobj.fm5 Page 197 Thursday, January 22, 2009 11:20 AM
Inherited Behavior and Resources
The DataSeries object class does not inherit behavior and resources from any other object
class:

• Class pointer is xintDataSeriesObjectClass

• Class name is XintDataSeries

• Header file is included as <Xint/DataSeries.h>

Resources The following resources are defined by the DataSeries object class:

XmNcopyData
If True, this resource will allocate memory to store a copy of the data, then free the
memory allocation when the object is destroyed. If False, the widget does not create
a copy of the data or manage memory for this purpose.

Name Type
Default Access

XmNcopyData Boolean
True

CSG

XmNcount int
0

CSG

XmNdataGroup Object
NULL

CSG

XmNdataType int
XintDATA_TYPE_FLOAT

CSG

XmNeditable Boolean
False

CSG

XmNlastViewDestroy Boolean
True

CSG

XmNupdateCallback XtCallbackList
NULL

CSG

XmNxArray XtPointer
NULL

CSG

XmNyArray XtPointer
NULL

CSG
ChartObject Programming Guide 197

DATAOBJECT REFERENCE
DataSeries Object Class4

dataobj.fm5 Page 198 Thursday, January 22, 2009 11:20 AM
XmNcount
Specifies the number of data values in the X and Y data arrays that were specified by
XmNxArray and XmNyArray.

XmNdataGroup
Specifies object ID of the data group to which this object belongs. Must be specified
if the data series object is to be placed inside a group.

XmNdataType
Specifies the data type for the resources XmNxArray and XmNyArray. You can
specify one of the following constants for the value of this resource:

XmNeditable
Specifies whether or not this data series can be edited when displayed in a view.

XmNlastViewDestroy
Specifies whether or not to automatically destroy this data object when there are no
more views connected to the data. If this data object is inserted into a DataGroup,
you only need to set this resource for the DataGroup object.

XmNupdateCallback
This resource allows you to attach a callback to the object, as described in the
following section.

XmNxArray
XmNyArray
Specifies the names of the pre-defined X and Y data arrays containing the data in this
series. The array size is expressed through the resource XmNcount and the data type
is specified by XmNdataType, discussed later in this section. The default value of
this resource is NULL.

Resource Value Description

XintDATA_TYPE_FLOAT Data type is float (default).

XintDATA_TYPE_SHORT Data type is short.

XintDATA_TYPE_INTEGER Data type is integer.

XintDATA_TYPE_LONG Data type is long.

XintDATA_TYPE_DOUBLE Data type is double.
198 ChartObject Programming Guide

DATAOBJECT REFERENCE
DataSeries Object Class 4

dataobj.fm5 Page 199 Thursday, January 22, 2009 11:20 AM
Callbacks
Callback XmNupdateCallback can be used to provide notification of changes in a
DataSeries object. Similarly as for widgets, you can register this callback with the Xt
function XtAddCallback. When connected to a view (Chart or Table for example), this
notification is used to ensure that updates to one view are properly reflected in all other
applicable views.

The callback structure takes the following form:
typedef struct {
 int reason;
 XEvent *event;
 Object object;
 int x_start;
 int x_count;
 int y_start;
 int y_count;
} XintDataSeriesUpdateCallbackStruct;

When used with DataSeries objects, this callback must be registered individually for each
object. If you prefer to control updates at the group level, register the callback at the group
level and use XintDataGroupUpdateCallbackStruct discussed earlier in this manual (see
“Callback Structure” on page 169 for details).

The callback provides information indicating why and how the object was modified. The
following ordered table describes the members of XintDataSeriesUpdateCallbackStruct:

Data Type Member Description

int reason Indicates why callback was invoked (see table below).

XEvent * event Standard member in Motif callback structure; not used in
this context (will always be NULL).

Object object ID of the updated object.

int x_start Starting index of X values updated (starts at 0).

int x_count Total number of X values updated.

int y_start Starting index of Y values updated (starts at 0).

int y_count Total number of Y values updated.
ChartObject Programming Guide 199

DATAOBJECT REFERENCE
DataSeries Object Class4

dataobj.fm5 Page 200 Thursday, January 22, 2009 11:20 AM
The callback structure includes information explaining the reason why a particular
update occurred. Header file Data.h contains the following reasons:

Defined Functions
The following functions are defined for creating and manipulating DataSeries objects:

XintCreateDataSeries
Creates a data series object and defines all the resources for it.
Object XintCreateDataSeries (...)

Reason Description

XintCR_DATA_UPDATE
XintCR_DATA_BATCH

Entire X and Y arrays have been changed, no more infor-
mation is available.

XintCR_DATA_REPLACE Data was replaced in the object, as specified by members
x_start, x_count, y_start and y_count;

XintCR_DATA_EXTEND Data added to object (x_count values where added).

XintCR_DATA_SHIFT Data shifted in object (x_count values where shifted).

Function Name Description

XintCreateDataSeries Creates a DataSeries object.

XintDataSeriesDataExtend Adds extra data points to a data series.

XintDataSeriesDataReplace Replaces a specified range of values in a data series.

XintDataSeriesDataShift Shifts the data in a data series to a new range of values.

XintDataSeriesGetXArray Returns part of X array and converts it to a float value.

XintDataSeriesGetYArray Returns part of Y array and converts it to a float value.

Widget parent Parent of new data series object.

char * name Name of new data series object.

ArgList arglist List of resource settings for the new data object.

Cardinal argcount Number of resources set by arglist.
200 ChartObject Programming Guide

DATAOBJECT REFERENCE
Defined Functions 4

dataobj.fm5 Page 201 Thursday, January 22, 2009 11:20 AM
XintDataSeriesDataExtend
Adds additional data to the end of a series array. The values to be added must be
defined in separate X and Y arrays. Both arrays must contain an equal number of
values representing matched (x,y) pairs. The function returns False if there is a bad
argument or resource XmNcopyData is False.
Boolean XintDataSeriesDataExtend (...)

XintDataSeriesDataReplace
Replaces the range of values specified. The function returns False if there is a bad
argument or if the function cannot be performed.
Boolean XintDataSeriesDataReplace (...)

Object object Object ID of the data series array to be extended.

XtPointer x_array Array of X values to be added to the data series. The data type
for this array should be the same as the type specified by
XmNdataType.

XtPointer y_array Array of matching Y values to be added to the data series. The
data type for this array should be the same as the type specified
by XmNdataType.

int count Number of (x,y) pairs being added.

Object object ID of the data series object in which data is being replaced.

XtPointer x_array Array containing X replacement values The data type for
this array should be the same as the type specified by
XmNdataType.

XtPointer y_array Array containing Y replacement values. The data type for
this array should be the same as the type specified by
XmNdataType

int start Index of first value to be replaced in the existing array.

int count Total number of (x,y) pairs being replaced.
ChartObject Programming Guide 201

DATAOBJECT REFERENCE
DataSeries Object Class4

dataobj.fm5 Page 202 Thursday, January 22, 2009 11:20 AM
XintDataSeriesDataShift
Shifts the data contained in a DataSeries object by discarding a specified number of
values at the beginning of the existing arrays, and adding an equal number of values
to the end of the existing arrays (see Figure 34 on page 195). For example, you may
want to discard the first four points in a data series and add four new points to the
end of the data series.
The values to be added must be defined in separate X and Y arrays. Both arrays must
contain an equal number of values representing matched (x,y) pairs, and the total
number of values in the new arrays must equal the number of values to be discarded
from the existing arrays. The function returns False if argument count is incorrect.
Boolean XintDataSeriesDataShift (...)

XintDataSeriesGetXArray
XintDataSeriesGetYArray
Retrieve any part of the X or Y array in an existing DataSeries object and returns it
as an array of float values. If the data is not already classified as float, it converts the
data type to float. You will need to free the returned array after it is no longer needed.
float *XintDataSeriesGetXArray (...)
float *XintDataSeriesGetYArray (...)

Macros
Macro XintIsDataSeries returns True if the specified object is a DataSeries object.
Boolean XintIsDataSeries (Object object)

Object object ID of the data series array.

XtPointer x_array Array of X values to be appended to the end of the current X
array in the DataSeries object.

XtPointer y_array Array of Y values to append to end of current Y array in the
DataSeries object. Data type for this array should be the
same as the type specified by XmNdataType

int count Number of values to discard at front and append to end of
existing array. The data type for this array should be the
same as the type specified by XmNdataType

Object object ID of the DataSeries object containing the desired data.

int start Index of first value to be retrieved.

int count Number of values to be retrieved.
202 ChartObject Programming Guide

DATAOBJECT REFERENCE
Example 4

dataobj.fm5 Page 203 Thursday, January 22, 2009 11:20 AM
DataTimeLabel Object Class
The DataTimeLabel class provides automatic time annotation for an axis object. The
number of labels, label strings are generated based on the range of the axis and the axis
increment.

Example
The following code shows the structure for a typical DataTimeLabel object:

XintRange range;
Object data_group;
Widget edit;
...
range.start = time((long *) 0L);
range.increment = 1;

/* Create a Date label object */
XtVaCreateWidget(“Real Time”,

(WidgetClass)xintDataTimeLabelObjectClass,
edit,
XmNtimeBase, time((long *) 0L),
XmNtimeMeasure, XintTIME_SECOND,
XmNtimeLabelFormat, “%H:%M:%S”,
XmNsampledRange, &range,
XmNlabelOrientation, XintLABEL_X,
XmNdataGroup, data_group, NULL);

Inherited Behavior and Resources
DataTimeLabel object class inherits behavior and resources from DataLabel class:

• Class pointer is xintDataTimeLabelObjectClass

• Cass name is XintDataTimeLabel

• Header file is included as <Xint/DataTimeLabel.h>

Resources The following resources can be defined for the DataTimeLabel object class:

Name Type
Default Access

XmNtimeBase int
0

CSG

XmNtimeMeasure int
XintTIME_SECOND

CSG

XmNtimeLabelFormat char *
dynamic

CSG
ChartObject Programming Guide 203

DATAOBJECT REFERENCE
DataTimeLabel Object Class4

dataobj.fm5 Page 204 Thursday, January 22, 2009 11:20 AM
XmNtimeBase
Specifies the relative time in seconds since Jan. 1st, 1970. See Unix function mktime
to convert a specified date into a number of seconds that can be used as the time base.
The time base is added to the limits of the axis when generating the time labels.

XmNtimeMeasure
Specifies the units used to measure time.

XmNtimeLabelFormat
Specifies the format used to display the time label using the syntax of function
strftime. A partial list of the format specifiers is given below. See man page strftime
for a complete description of the syntax.

%a locale’s abbreviated weekday name
%A locale’s full weekday name
%b locale’s abbreviated month name
%B locale’s full month name
%d day of month [1,31]; single digits are preceded by 0
%D date as %m/%d/%y
%e day of month [1,31]; single digits are preceded by a space
%h locale’s abbreviated month name
%H hour (24-hour clock) [0,23]; single digits are preceded by 0
%m month number [1,12]; single digits are preceded by 0
%M minute [00,59]; leading zero is permitted but not required
%n insert a newline
%p locale’s equivalent of either a.m. or p.m.
%y year within century [00,99]
%Y year, including the century (for example 1993)

Name Description

XintTIME_SECOND Time is measured in seconds.

XintTIME_MINUTE Time is measured in minutes.

XintTIME_HOUR Time is measured in hours.

XintTIME_DAY Time is measured in days.

XintTIME_MONTH Time is measured in months.

XintTIME_YEAR Time is measured in years.
204 ChartObject Programming Guide

chart.fm5 Page 205 Thursday, January 22, 2009 11:24 AM
Chart Object
Reference 5

Overview
This chapter includes the following sections:

• ChartObject Library on page 206

• Chart Object Class on page 206

• ChartWidget Widget Class on page 223

• AxisObject Object Class on page 224

• Legend Object Class on page 231

• Plot2D Object Metaclass on page 235

• Plot3D Object Metaclass on page 241

• CellArray Object Class on page 247

• ComboPlot Object Class on page 250

• BarLine Object Class on page 253

• Bar3D Object on page 258

• HighLow Object Class on page 261

• Histogram Object on page 265

• Pie Object Class on page 269

• Surface3D Object on page 273

• XYPlot Object Class on page 278
ChartObject Programming Guide 205

CHART OBJECT REFERENCE
ChartObject Library5

chart.fm5 Page 206 Thursday, January 22, 2009 11:24 AM
ChartObject Library
This chapter is a reference for resources and public functions for the Chart object, as
well as for all sub-objects that can be created by a Chart. Except for the Chart object
itself, all other objects described in this chapter are created automatically based on
the specified chart type and the type of data.

Object classes The ChartObject library defines the following object classes:

Chart Object Class
ChartObject provides the view component of the MVC architecture described earlier.
To create a chart, the application or the end-user needs to create a Chart object. This
object automatically creates a number of sub-objects to compose the plot. For
example, the chart may create axes objects, Text objects for annotation, a Legend
object, a plot object, series objects, and so forth.

Class Description

Chart Main component that creates and manages all objects necessary for build-
ing a chart.

ChartWidget Convenience widget class that automatically create a Chart object inside
an EditObject widget.

AxisObject Provides axis annotation and coordinate transformation for 2D plot com-
ponents.

Legend Draws a legend.

Plot2D Base class for all 2D plot classes.

Plot3D Base class for all 3D plot classes.

CellArray Plot class that displays its data as a 2D grid of colored cells.

ComboPlot Special class used as a container for multiple plots.

BarLine Plot class that displays its data as bars, stacked bars or lines.

Bar3D Plot class that displays its data as 3D bars.

HighLow Plot class that displays high-low-open-close graphs.

Histogram Plot class that displays the distribution of a set of data.

Pie Plot class that displays its data as 2D pies.

Surface3D Plot class that displays its data as a 3D surface.

XYPlot Plot class that displays its data as a 2D area, line or scatter plot.
206 ChartObject Programming Guide

CHART OBJECT REFERENCE
Chart Object Class 5

chart.fm5 Page 207 Thursday, January 22, 2009 11:24 AM
Inherited Behavior and Resources
Chart object class inherits behavior and resources from the Xt Object, Graphic and
Group object classes:
• Class pointer is xintChartObjectClass
• Class name is XintChart
• Header file included as <Xint/Chart.h>

Resources The Chart object class defines the following resources:

Name Type
Default

Access

XmNaxisSpacing int
10

CSG

XmNchartFooter String
NULL

CSG

XmNchartMargins XintChartMargins *
{10., 10., 10., 10.}

CSG

XmNchartTitle char *
NULL

CSG

XmNchartType int
XintCHART_TYPE_BAR

CSG

XmNcolorList String *
{“red”, “green”, “blue”, “yellow”, “violet”,
“cyan”, “salmon”, “PaleGreen2”, NULL}

CSG

XmNdoubleBuffer Boolean
True

CSG

XmNgeometry XintGeometry *
{15, 15, 85, 85}

CSG

XmNpropagate Boolean
False

CSG

XmNshowLegend Boolean
False

CSG

XmNsymbolCount int
dynamic

CSG

XmNsymbolList int *
dynamic

CSG

XmNtranspose Boolean
False

CSG

XmNzValueColorRecord XintColorRec *
NULL

CSG
ChartObject Programming Guide 207

CHART OBJECT REFERENCE
Chart Object Class5

chart.fm5 Page 208 Thursday, January 22, 2009 11:24 AM
XmNaxisSpacing
Specifies the space to leave between adjacent axes in the horizontal or vertical
direction.

XmNchartFooter
Specifies a string that will be used as the Chart footer. If this resource is specified, the
Chart object will create and manage a Text object. If you need to customize the
appearance of the footer, use function XintChartGetComponent to extract the footer
object ID. See constraint resource XmNconstraint to set the position of the footer object.

XmNchartMargins
Specifies the margins for the chart. The margins correspond to the space left between
the chart boundaries and the axes (or plot if there is no axis on one side), as a
percentage between 0 and 100. XmNchartMargins is specified as a pointer to a data
structure of type XintChartMargins, which takes the following form:

typedef struct {
 int left;
 int right;
 int top;
 int bottom;
} XintChartMargins;

left Left margin as a percentage between 0 and 100.
right Right margin as a percentage between 0 and 100.
top Top margin as a percentage between 0 and 100.
bottom Bottom margin as a percentage between 0 and 100.

XmNchartTitle
Specifies a string that will be used as the Chart title. If this resource is specified, the
Chart object will create and manage a Text object. To customize the appearance of
the title, use function XintChartGetComponent to extract the title object ID. See
constraint resource XmNconstraint, described in the next section, to set the position
of the title object.
208 ChartObject Programming Guide

CHART OBJECT REFERENCE
Inherited Behavior and Resources 5

chart.fm5 Page 209 Thursday, January 22, 2009 11:24 AM
XmNchartType
Specifies the default chart type, as follows:

XmNcolorList
Specifies a NULL terminated list of color names (string array) used to assign the
data series colors. The colors are assigned sequentially in the list. When the end of
the list is reached, it is reset to the beginning. To change the color assigned to a
specific series, use the function XintChartGetSeriesOfData and the appropriate
resource (usually XmNcolor or XmNfillColor) to retrieve the series object ID.

XmNdoubleBuffer
Specifies whether or not double buffering is set. The default is True. For Plot3D
objects this resource is ignored and double buffering is always set.

Constant Description

XintCHART_TYPE_AREA Area plot.

XintCHART_TYPE_BAR 2D Bar plot.

XintCHART_TYPE_BAR_3D 3D bars plot.

XintCHART_TYPE_CELL_ARRAY 2D array of colored cells.

XintCHART_TYPE_COMBINATION Combination plot.

XintCHART_TYPE_HIGH_LOW High-Low plot.

XintCHART_TYPE_HISTOGRAM Histogram plot.

XintCHART_TYPE_LINE Line plot.

XintCHART_TYPE_PIE 2D Pie plot.

XintCHART_TYPE_SCATTERED Scattered plot.

XintCHART_TYPE_SURFACE_3D 3D Surface plot.
ChartObject Programming Guide 209

CHART OBJECT REFERENCE
Chart Object Class5

chart.fm5 Page 210 Thursday, January 22, 2009 11:24 AM
XmNgeometry
Specifies the geometry of the chart object in the parent coordinate system.
XmNgeometry is specified as a pointer to a data structure of type XintGeometry,
which takes the following form:

typedef struct {
 float x1;
 float y1;
 float x2;
 float y2;
} XintGeometry;

x1,y1 Coordinates of upper left corner of the chart.

x2,y2 Coordinates of lower right corner of the chart.

XmNpropagate
Specifies whether or not to propagate the resources set in a call to XtSetValues to the
Chart’s sub-objects (Plot, Axes, Legend, etc.). This resource is particularly useful to
propagate resources controlling the edit mode such as XmNsensitive, XmNmove or
XmNshape. It can also be used to propagate graphic attributes such as the
background color or the font. This resource is automatically reset to False after it has
been applied.

XmNshowLegend
Specifies whether a legend is displayed. If this resource is set to True, a Legend
object is created. If you need to customize the legend, use function
XintChartGetComponent to extract the ID of the Legend object.

XmNsymbolCount
Specifies the number of symbols defined in resource XmNsymbolList.

XmNsymbolList
Specifies a list of default symbols used in some plot types such as the scatter plot. The
symbols in the list are used in turn (that is, the first series that requires a symbol will use
the first symbol specified, the second series will used the second symbol, etc.). When the
end of the list is reached, it is reset to the first symbol. The size of this array is specified
using resource XmNsymbolCount.
210 ChartObject Programming Guide

CHART OBJECT REFERENCE
Inherited Behavior and Resources 5

chart.fm5 Page 211 Thursday, January 22, 2009 11:24 AM
The symbol list can contain any of the symbol constants listed in the following table:

XmNtranspose
This resource controls whether or not to transpose DataSampled series. The
transpose functionality is supported by several plot classes, including BarLine, Pie,
XYPlot and all the 3D plot classes. See the Data section of each plot class for a
description on how it handles transposed data.

XmNzValueColorRecord
Specifies a pointer to an opaque structure containing a list of color pixels that are
used to display plot types that color their data series based on a Z value (or Y for 2D
plots), including Surface3D, Bar3D and BarLine. If this resource is not specified, the
colors specified using resource XmNcolorList will be used. See Chart function
XintChartCreateColorRecord to create a color record structure from an array of
pixel values.

Symbol Constant Description

XintSYMBOL_X X symbol.

XintSYMBOL_PLUS + symbol.

XintSYMBOL_SQUARE Square symbol.

XintSYMBOL_CIRCLE Circle symbol.

XintSYMBOL_TRIANGLE Triangle symbol.

XintSYMBOL_DIAMOND Diamond symbol.

XintSYMBOL_FILLED_SQUARE Filled square symbol.

XintSYMBOL_FILLED_CIRCLE Filled circle symbol.

XintSYMBOL_FILLED_TRIANGLE Filled triangle symbol.

XintSYMBOL_FILLED_DIAMOND Filled diamond symbol.
ChartObject Programming Guide 211

CHART OBJECT REFERENCE
Chart Object Class5

chart.fm5 Page 212 Thursday, January 22, 2009 11:24 AM
Constraint Resources
The position of the Chart sub-objects is managed by the Chart. For example, the
Chart normally will position the title above the Plot object and the legend to the right
of the Plot object. Constraint resource XmNconstraint can be used to override the
default placement of objects managed by the Chart, including any external objects
inserted by the application. This resources does not apply to Plot objects, whose
geometry is controlled by Chart resource XmNchartMargins. Resource
XmNconstraint is specified using a pointer to a union of type XintConstraint which
takes the following form:
typedef union {
 struct {
 int type;
 int anchor;
 } placement;
} XintConstraint;

Member type should always be set to XintCONSTRAIN_PLACEMENT. For
member anchor, use one of the following constants:

Defined Constants Description

XintANCHOR_NORTH Object placed above the Plot.

XintANCHOR_NORTH_EAST Object placed next to upper right corner of Plot.

XintANCHOR_NORTH_WEST Object placed next to upper left corner of Plot.

XintANCHOR_SOUTH Object placed below the Plot.

XintANCHOR_SOUTH_EAST Object placed next to lower right corner of Plot.

XintANCHOR_SOUTH_WEST Object placed next to lower left corner of Plot.

XintANCHOR_EAST Object placed right of the Plot.

XintANCHOR_WEST Object placed left of the Plot.

XintANCHOR_CENTER Object placed at the center inside the Plot.
212 ChartObject Programming Guide

CHART OBJECT REFERENCE
Chart Callbacks 5

chart.fm5 Page 213 Thursday, January 22, 2009 11:24 AM
Code The following code sample shows how to position the title at the bottom of the plot.
Object chart;
Object title;
XintConstraint constraint;
...
title = XintChartGetComponent(chart,

XintCHART_COMPONENT_TITLE);
constraint.placement.type = XintCONSTRAIN_PLACEMENT;
constraint.placement.anchor = XintANCHOR_SOUTH;
XtVaSetValues((Object) title, XmNconstraint, &constraint,

NULL);

You can also use resource XmNconstraint to specify the placement of objects
created by the application and inserted into the Chart using function
XintChartInsertObject. If XmNconstraint is left NULL, the object will be
positioned based on its own geometry resource, using the Chart coordinate system
(0 to 100 in both directions with the origin located in the upper left corner).

Chart Callbacks
The following callbacks are defined by the Chart object class.

Name Structure Reason

XmNchartLayoutCallback XintChartLayout-
CallbackStruct

None

XmNplotLayoutCallback XintPlotLayoutCall-
backStruct

None

XmNverifyCallback XintChartVerifyCall-
backStruct

XintCR_OBJECT_MOVE
XintCR_OBJECT_SHAPE
XintCR_OBJECT_ADD_POINT
XintCR_OBJECT_DELETE_POINT
ChartObject Programming Guide 213

CHART OBJECT REFERENCE
Chart Object Class5

chart.fm5 Page 214 Thursday, January 22, 2009 11:24 AM
XintChartLayoutCallbackStruct
The following ordered table lists the members of the callback structure,
XintChartLayoutCallbackStruct associated with the callback
XmNchartLayoutCallback.

XintPlotLayoutCallbackStruct
The following ordered table lists the members of the callback structure
XintPlotLayoutCallbackStruct associated with the callback
XmNplotLayoutCallback:

Data Type Member Description

int reason Indicates why the callback was invoked.

XEvent * event Points to the XEvent that triggered the call-
back.

XintChartMargins * chart_margins The margins of the chart. The user should con-
trol it in the callback routine to maintain the
aspect ratio he wants.

int chart_height Height of the chart (in pixels).

int chart_width Width of the chart (in pixels).

Boolean doit Set to False to prevent the chart margin from
being recalculated.

Data Type Member Description

int reason Indicates why the callback was invoked

XEvent * event Points to the XEvent that triggered the callback.

int plot_height Height of the plot (in pixels). a

a. The user should control it in the callback routine to maintain the aspect ratio he wants.

int plot_width Width of the plot (in pixels).a

Boolean doit Set to False to prevent the plot dimensions from being
recalculated.
214 ChartObject Programming Guide

CHART OBJECT REFERENCE
Functions 5

chart.fm5 Page 215 Thursday, January 22, 2009 11:24 AM
Functions
The following functions are defined for creating, updating or retrieving information
regarding a particular Chart object.

Function Name Description

XintCreateChart Creates a Chart object.

XintChartAssociateData Associates data with a chart.

XintChartCreateColorRecord Creates a color record.

XintChartDisassociateAllData Disassociates all data associated to a chart.

XintChartDisassociateData Disassociates data from a chart.

XintChartFreezeUpdates To freeze (or unfreeze) the chart while doing a series
of changes.

XintChartGetComponent Returns a particular component of the chart.

XintChartGetDataList Returns the list of all the data groups that are con-
nected to the specified Chart.

XintChartGetDataOfSeries Returns the data object associated to the specified
series in a chart.

XintChartGetSelectedComponent Returns the selected component inside a chart.

XintChartGetSeriesOfData Returns the object series of a Chart associated with
the specified data element.

XintChartInitializeClassConverter Initialized the ChartObject class converter.

XintChartInsertObject To insert user defined object inside chart or plot.

XintChartIsTransposed To tell if a Chart is transposed or not.

XintChartPick To implement picking or data selection.

XintChartReadTemplate Reads a list of Chart templates from a disk file.

XintChartSaveTemplate Saves a list of Chart templates in a disk file.

XintChartZoom To zoom a Chart object.
ChartObject Programming Guide 215

CHART OBJECT REFERENCE
Chart Object Class5

chart.fm5 Page 216 Thursday, January 22, 2009 11:24 AM
XintCreateChart
Creates a chart object and defines all the resources for it.
Object XintCreateChart (...)

XintChartAssociateData
Associates a data group or a data item with a chart object. If you want multiple data
group objects associated with a specified chart, you can call this function repeatedly.
void XintChartAssociateData (...)

XintChartCreateColorRecord
Creates a color record from an array of pixels that has been allocated by the
application. A color record is a pointer to an opaque structure, XintColorRec, that
can be used to specify Chart resource XmNzValueColorRecord.

XintColorRec *XintChartCreateColorRecord (...)

XintChartDisassociateAllData
Disassociates all data from a chart object.
void XintChartDisassociateAllData (Object chart)

Widget parent Parent of new chart object.

char * name Name of new chart object.

ArgList arglist List of resource settings for the new chart.

Cardinal argcount Number of resources set by arglist.

Object chart ID of the chart object.

Object data ID of the data group or data object to associate with the chart.

Pixel * pixels Array of pixels that has been allocated by the applica-
tion.

int pixel_count Number of pixels in array pixels.
216 ChartObject Programming Guide

CHART OBJECT REFERENCE
Functions 5

chart.fm5 Page 217 Thursday, January 22, 2009 11:24 AM
XintChartDisassociateData
Disassociates a data group or a data item from a chart object. This function returns
False if the data group or data item was not previously associated with the chart.
void XintChartDisassociateData (...)

XintChartFreezeUpdates
Freezes updates on a ChartObject before the application performs a series of
changes on the Chart (argument freeze set to True). After the changes are made, the
function should be called again with the argument freeze set to False to restore the
Chart. If the argument freeze is set to True or False twice consecutively, the function
will return False.

Boolean XintChartFreezeUpdates (...)

XintChartGetComponent
This function returns the object ID of a specified component of the chart.
Object XintChartGetComponent (...)

Object chart ID of the chart object.

Object data ID of the data object or data group to disassociate from the
chart.

Object chart Name of the chart object to be frozen.

int freeze Controls whether to freeze or unfreeze the display of the Chart
object.
1 - freeze
0 - unfreeze

Object chart ID of the chart object.

int code Code of the component to return.
ChartObject Programming Guide 217

CHART OBJECT REFERENCE
Chart Object Class5

chart.fm5 Page 218 Thursday, January 22, 2009 11:24 AM
The argument code can be one of the following constants:

XintChartGetDataList
Returns the list of all the data groups or data items that have been associated with a
particular Chart object using function XintChartAssociateData.
Object *XintChartGetDataList (...)

If the list returned is not NULL, you should free it after it is no longer needed.

XintChartGetDataOfSeries
Returns the list of data objects that are associated with the specified series
component of a Chart. Most series represent one single data object component. Some
series, like a HighLow series or a surface, represent more than one data object. Also,
when a Chart is transposed (Chart resource XmNtranspose set to True) multiple
series can be used to represent a data object.
Object *XintChartGetDataOfSeries (...)

You will need to free the object list returned after it is no longer needed.

XintChartGetSelectedComponent
When a chart or an object inside a chart is selected, the EditObject selection callback
structure and function XintEditObjectSelectList always return the ID of the chart

Constant Description

XintCHART_COMPONENT_PLOT Code for the plot object.

XintCHART_COMPONENT_VERTICAL_AXIS Code for the vertical axis object.

XintCHART_COMPONENT_HORIZONTAL_AXIS Code for the horizontal axis object.

XintCHART_COMPONENT_LEGEND Code for the legend object.

XintCHART_COMPONENT_TITLE Code for the title object.

XintCHART_COMPONENT_FOOTER Code for the footer object.

Object chart Chart object ID.

int * count Returns the data group count.

Object chart_or_plot Chart or Plot object ID.

Object series ID of the series element.

int * count Returns the number of data objects
associated with series.
218 ChartObject Programming Guide

CHART OBJECT REFERENCE
Functions 5

chart.fm5 Page 219 Thursday, January 22, 2009 11:24 AM
object. This convenience function can be used to retrieve the ID of the
sub-component of the chart that was selected. It also returns a code indicating the
type of the selected component.
Object XintChartGetSelectedComponent (...)

The argument code will be one of the following constants:

Object chart ID of the chart object.

int *code Code for the returned component.

Constant Description

XintCHART_COMPONENT_CHART Selected object is the chart.

XintCHART_COMPONENT_PLOT Selected object is the plot.

XintCHART_COMPONENT_VERTICAL_AXIS Selected object is the vertical axis.

XintCHART_COMPONENT_HORIZONTAL_AXIS Selected object is the horizontal axis.

XintCHART_COMPONENT_LEGEND Selected object is the legend object.

XintCHART_COMPONENT_TITLE Selected object is the title object.

XintCHART_COMPONENT_FOOTER Selected object is the footer object.

XintCHART_COMPONENT_SERIES Selected object is a series.

XintCHART_COMPONENT_USER_OBJECT Selected object is an object that was
inserted using XintChartInsertObject.
ChartObject Programming Guide 219

CHART OBJECT REFERENCE
Chart Object Class5

chart.fm5 Page 220 Thursday, January 22, 2009 11:24 AM
XintChartGetSeriesOfData
Returns the list of object series used to represent a particular data element that is part
of a Data Group associated with the chart. For most chart types, a single series object
is used to represent a data object. For example, a DataSampled object is displayed
using a BarSeries in a bar chart. If the Chart object is transposed (resource
XmNtranspose set to True) and argument data is a DataSampled object, multiple
series may be returned.
Object *XintChartGetSeriesOfData (...)

You will need to free the object list returned after it is no longer needed.

XintChartInitializeClassConverter
Installs the ChartObject class converter. This converter is used to convert the ascii
object format and templates for the ChartObject from the string class name to the
widget pointer class.
void XintChartInitializeClassConverter (void)

XintChartInsertObject
Allows the insertion of a graphic object, created by the application, inside a Chart or
Plot2D object. User defined objects cannot be inserted inside a Plot3D object. If the
object is inserted inside a Chart, its coordinate system is the Chart coordinate system
which is between 0 and 100 in both the vertical and horizontal directions. If the
object is inserted inside a Plot2D, the coordinate system is the one defined by the
axes attached to the Plot2D object.
void XintChartInsertObject(...)

Object chart_or_plot Chart or Plot object ID.

Object data ID of the data element.

int * count Returns the number of series elements
associated with data.

Object chart_or_plot ID of the Chart or the Plot in which to insert the object.

Object object ID of the object to be inserted.
220 ChartObject Programming Guide

CHART OBJECT REFERENCE
Functions 5

chart.fm5 Page 221 Thursday, January 22, 2009 11:24 AM
XintChartIsTransposed
This convenience function returns True if resource XmNtransposed is True and
False otherwise
Boolean XintChartIsTransposed (Object chart)

XintChartPick
Implements picking or data selection. Function XintChartPick converts an (X,Y)
location inside a plot, specified as an event structure, into the corresponding data
object and point index. If the location selected is outside the plot boundary or no data
is selected, then the function returns NULL. Most applications requiring picking
should use EditObject callback XmNselection Callback and call XintChartPick
inside the callback routine. This function only works for 2D chart types.

Object XintChartPick(...)

XintChartReadTemplate
This function reads a template file that was created by the XintChartSaveTemplate
function and restores the Chart or Charts that were saved in template form. Each Chart is
associated with a data group by this function. However, the data are not required to be
defined as formal DataGroup objects; any of the INT data object classes may be used. A
list of the restored Charts is returned.
Object *XintChartReadTemplate (...)

Widget edit_object ID of the EditObject Widget.

XEvent *event Event to process (must be a button event of type ButtonPress
or ButtonRelease).

int *index Returns the index of the data point selected.

Widget parent Widget ID of the parent of this Chart object.

char * filename Name of the file that contains the Chart templates.

Object * data_group_list List of data groups, one per Chart from the template
file.

int data_group_count Number of data groups in the list.

int * count Returns the number of Chart objects read from disk
and restored.
ChartObject Programming Guide 221

CHART OBJECT REFERENCE
Chart Object Class5

chart.fm5 Page 222 Thursday, January 22, 2009 11:24 AM
XintChartSaveTemplate
This function saves the listed Chart objects (and related objects) into a disk file. The
Chart objects are saved in template format, meaning that the visual attributes of an
object are saved, but the data associated with the object are not saved. This permits
a Chart object to be read from disk by the XintChartReadTemplate function and used
to display new data. Other, non-Chart, objects are entirely saved, including their
data. All of the objects in the object_list must have the same parent.
Boolean XintChartSaveTemplate (...)

The function will return False if it cannot write to the specified file; otherwise it will
return True.

XintChartZoom
This convenience function can be used to zoom a Chart object. The application must
specify a rectangle in pixel coordinates defining the area to zoom. The Chart object
viewport will be changed so that it displays only the intersection of the plot area with
the specified rectangle. This function is normally called from a callback procedure
attached to callback XmNareaSelectionCallback (see EditObject Reference section).
The geometry of the selected rectangle is provided inside the callback structure. The
function returns NULL and does not change the Chart object if the selected rectangle
does not intersect with the plot area.
Boolean XintChartZoom (...)

Macros
Macro XintIsChart returns True if the specified object is a Chart object and False
otherwise.
Boolean XintIsChart (Object object)

char * filename Name of the file where the Chart object templates will be stored.

Object * object_list List of Chart and non-Chart objects to be saved on disk in tem-
plate format.

int count Number of objects in the list.

Object chart ID of the Chart object to Zoom.

int x,y Pixel coordinates of the upper left corner of the area to zoom.

int width, height Size in pixels of the area to zoom.
222 ChartObject Programming Guide

CHART OBJECT REFERENCE
ChartWidget Widget Class 5

chart.fm5 Page 223 Thursday, January 22, 2009 11:24 AM
ChartWidget Widget Class
The ChartWidget class is a convenience widget class that automatically creates a
Chart object inside an EditObject widget. The main purpose of this widget class is
to be used inside GUI builders so that one can create an application requiring a chart
interactively. This widget class can also be used directly to create a Chart object and
an EditObject widget in one step.

Inherited Behavior and Resources
The ChartWidget class inherits behavior and resources from the Core, Composite,
Constraint, Manager, CompBase and EditObject classes:

• Class pointer is xintChartWidgetClass

• Class name is XintChartWidget

• Header file is included as <Xint/ChartW.h>

The ChartWidget class does not define any new resources. You can however, specify
any resources defined or inherited by the Chart object class. These resources will be
applied directly to the Chart object created.

Functions
The following functions can be used to create a ChartWidget and to obtain the ID of
the Chart object created by a ChartWidget widget.

XintChartWidgetGetObject
Returns the ID of the Chart Object created by a ChartWidget widget.
Object XintChartWidgetGetObject (Widget chart_widget)

where chart_widget is the ID of a ChartWidget widget.

XintCreateChartWidget
Creates an unmanaged ChartWidget widget.
Widget XintCreateChartWidget (...)

Widget parent Parent of new ChartWidget widget.

char * name Name of new ChartWidget widget.

ArgList arglist List of resource/value items.

Cardinal argcount Number of items in arglist.
ChartObject Programming Guide 223

CHART OBJECT REFERENCE
AxisObject Object Class5

chart.fm5 Page 224 Thursday, January 22, 2009 11:24 AM
AxisObject Object Class
A Chart object automatically creates several AxisObject objects. AxisObject objects
are used both to provide annotation to the plot and to provide a coordinate system to
map user coordinates to and from device coordinates.

The Chart object creates two additional sets of axes (two vertical axes and two
horizontal axes) that are used to provide annotation for the plot and to define the user
coordinate system. Function XintChartGetComponent lets you access the ID of one
of the horizontal axes and one of the vertical axes. The axes in each set are
synchronized, so when one is modified the other one is automatically updated. See
Plot2D resources XmNxAxisPlacement and XmNyAxisPlacement to control
which axes are visible.

The resources listed below can be used to customize the appearance of the axis
objects.

Axis Limits and Increments
The limits and increments of the horizontal and vertical AxisObject associated with
a 2D plot are controlled using Plot2D resources XmNxLimits, XmNyLimits,
XmNxIncrements and XmNyIncrements. See section Plot2D below for more
information on how to set those resources. If you don’t specify those resources, the
axis will be automatically scaled based on the content of the data displayed in the
Plot2D object.

Resources
The AxisObject object class inherits behavior and resources from the Xt Object and
Graphic object classes:

• Class pointer is xintAxisObjectClass

• Class name is XintAxisObject

• Header file is included as <Xint/AxisObject.h>
224 ChartObject Programming Guide

CHART OBJECT REFERENCE
Resources 5

chart.fm5 Page 225 Thursday, January 22, 2009 11:24 AM
Resources The following resources are defined by the AxisObject object class:

Name Type
Default Access

XmNannotationAngle int
0

CSG

XmNannotationFont String
“*-Helvetica*-120-*”

CSG

XmNannotationFormat String
“%g”

CSG

XmNannotationPlacement int
XintANNOTATION_OUTSIDE

CSG

XmNaxisLineThickness int
2

CSG

XmNendPoints XintEndPoints *
{10., 10., 90., 90.}

CSG

XmNincrements XintIncrements *
{20., 10.}

CSG

XmNlabel String
NULL

CSG

XmNlabelFont String
“*-Helvetica*-140-*”

CSG

XmNlimits XintLimits *
{0., 100.}

CSG

XmNlogScale Boolean
False

CSG

XmNmajorGridLineStyle int
XintLINE_NONE

CSG

XmNminimumLabelSpacing int
0

CSG

XmNminorGridLineStyle int
XintLINE_NONE

CSG

XmNreverseOrder Boolean
False

CSG

XmNtickPlacement int
XintTICK_OUTSIDE

CSG
ChartObject Programming Guide 225

CHART OBJECT REFERENCE
AxisObject Object Class5

chart.fm5 Page 226 Thursday, January 22, 2009 11:24 AM
XmNannotationAngle
Specifies the angle of rotation in degrees for the axis annotation with respect to the
axis base line. Best results are obtained for angle values between -45 and 90.

XmNannotationFont
Specifies the font used to draw the axis annotation.

XmNannotationFormat
Specifies the format used to draw the annotation. Use any C format descriptor (e.g.
“%5.2f”) suitable for displaying floating point data.

XmNannotationPlacement
Specifies where to locate the annotation with respect to the axis line. You can specify
one of the following constants:

XmNaxisLineThickness
Specifies the axis line thickness in pixels.

XmNendPoints
Specifies the axis geometry which is defined by specifying the two end points of the
axis bounding box in the parent coordinate system. This resource is specified as a
pointer to a data structure of type XintEndPoints which takes the following form:
typedef struct {
 float x1, y1;
 float x2, y2;
} XintEndPoints;

This resource is automatically set for an Axis object that is used inside a Chart
object.

Resource Value Description

XintANNOTATION_NONE No annotation is displayed.

XintANNOTATION_INSIDE Annotation is displayed inside the plot area.

XintANNOTATION_OUTSIDE
(default)

Annotation is displayed outside the plot area.

XintANNOTATION_CROSS Annotation is displayed on both sides.
226 ChartObject Programming Guide

CHART OBJECT REFERENCE
Resources 5

chart.fm5 Page 227 Thursday, January 22, 2009 11:24 AM
XmNincrements
Specifies the major and minor increment for the axis annotation. This resource is
specified as a pointer to a data structure of type XintIncrements which takes the
following form:
typedef struct {
 float major_increment;
 float minor_increment;
} XintIncrements;

This resource should not be set directly for an Axis object created inside a Chart
object. Use Plot2D resources XmNxIncrements and XmNyIncrements instead.

XmNlabel
Specifies a string that is used to draw the axis title label. Specify NULL if you don’t
want an axis title label.

XmNlabelFont
Specifies the font used to draw the axis title label.

XmNlimits
Specifies the limits for the axis widget. This resource is specified as a pointer to a
data structure of type XintLimits which takes the following form:

typedef struct {
 float minimum;
 float maximum;
} XintLimits;

This resource should not be set directly for an Axis object created inside a Chart
object. Use Plot2D resources XmNxLimits and XmNyLimits instead.

XmNlogScale
Specifies whether to use a linear scale (False) or a logarithmic scale (True). If you
specify a logarithmic scale, make sure that the data range is strictly positive.
ChartObject Programming Guide 227

CHART OBJECT REFERENCE
AxisObject Object Class5

chart.fm5 Page 228 Thursday, January 22, 2009 11:24 AM
XmNmajorGridLineStyle
XmNminorGridLineStyle
Specifies how to draw the major (minor) grid lines associated with the AxisObject.
For a vertical axis, these resources control the horizontal grid lines; for a horizontal
axis, these resources control the vertical grid lines. You can specify one of the
following constants:

XmNminimumLabelSpacing
Specifies the minimum distance, in pixel, between any adjacent label annotation.

XmNreverseOrder
Specifies whether to invert the axis or not. By default (False), the axis places the
minimum value on the left (horizontal axis) or at the bottom (vertical axis). If you
specify True, the axis will place the minimum value on the right (horizontal axis) or
at the top (vertical axis).

XmNtickPlacement
Specifies where to locate the major and minor tick marks with respect to the axis
line. You can specify one of the following constants:

Resource Value Description

XintLINE_NONE (default) No grid lines are drawn.

XintLINE_SOLID Grid lines are drawn using a solid line.

XintLINE_ON_OFF_DASH Grid lines are drawn using a on-off dash pattern

XintLINE_DOUBLE_DASH Grid lines are drawn using a double dashed patterns.

Resource Value Description

XintTICK_NONE No tick marks are displayed.

XintTICK_INSIDE Tick marks are displayed inside the plot area.

XintTICK_OUTSIDE
(default)

Tick marks are displayed outside the plot area.

XintTICK_CROSS Tick marks are displayed on both sides.
228 ChartObject Programming Guide

CHART OBJECT REFERENCE
Inherited Resources 5

chart.fm5 Page 229 Thursday, January 22, 2009 11:24 AM
Inherited Resources
AxisObject inherits behavior and resources from the Graphic class. The set of
resources that can be accessed along with the proper defaults is listed below.

AxisObject Callbacks
The following callback is defined by the AxisObject object class.

Name Type
Default Access

XmNcolor Pixel
foreground

CSG

XmNdashList char *
NULL

CSG

XmNfont char *
“Helvetica*120*”

CSG

XmNhighlightMode int
XintHIGHLIGHT_HANDLE

CSG

XmNlineStyle int
XintLINE_SOLID

CSG

XmNlineThickness int
1

CSG

XmNmove Boolean
True

CSG

XmNsensitive Boolean
True

CSG

XmNshape Boolean
True

CSG

XmNstippleColor Pixel
foreground

CSG

Name Structure Reason

XmNcolorLabelCallback XintAxisObjectColorLabelCallbackStruct None
ChartObject Programming Guide 229

CHART OBJECT REFERENCE
AxisObject Object Class5

chart.fm5 Page 230 Thursday, January 22, 2009 11:24 AM
XintAxisObjectColorLabelCallbackStruct
The following ordered table lists the members of the callback structure,
XintAxisObjectColorLabelCallbackStruct associated with the callback
XmNcolorLabelCallback.

Functions
The following functions can be used to do conversion between pixel coordinates and
axis object coordinates.

XintAxisObjectUserToPixel
Converts a user coordinate expressed in the Axis object coordinate system into a
pixel location. The function returns False if the coordinate is outside the axis range.

Boolean XintAxisObjectUserToPixel (...)

Data Type Member Description

int reason Indicates why the callback was invoked.

XEvent * event Points to the XEvent that triggered the callback.

int index Index of the label for which the color is being changed.

float position Position of the label.

String label The character string content of the label.

Pixel color The color of the label (can be changed).

Object object The object id of the AxisObject.

int doit Set it to False to prevent the color from being changed.

Object axis ID of the Axis object.

double user_coordinate User coordinate to convert to a pixel location.

int * pixel Returns the pixel location corresponding to
user_coordinate.
230 ChartObject Programming Guide

CHART OBJECT REFERENCE
Legend Object Class 5

chart.fm5 Page 231 Thursday, January 22, 2009 11:24 AM
XintAxisObjectPixelToUser
Converts a pixel location into a user coordinate expressed in the Axis object
coordinate system. The function returns False if the coordinate returned is outside
the axis range.
Boolean XintAxisObjectPixelToUser (...)

Macros
The XintIsAxisObject macro returns True if the specified object is an AxisObject
object. It returns False otherwise.

Boolean XintIsAxisObject (Object object)

Legend Object Class
A Chart Object creates a Legend object when Chart resource XmNshowLegend is
set to True. The following section describes the resources of the Legend object that
you can use to customize its appearance. The labels used to annotate the legend
correspond to the name of each series data object. Figure 35 shows a bar chart with
a legend.

Figure 35. Plot With a Legend

Object axis ID of the Axis object.

int pixel Pixel coordinate to convert.

float * user_coordinate Returns the user coordinate corresponding to pixel.
ChartObject Programming Guide 231

CHART OBJECT REFERENCE
Legend Object Class5

chart.fm5 Page 232 Thursday, January 22, 2009 11:24 AM
Inherited Behavior and Resources
The Legend object class inherits behavior and resources from the Xt Object and
Graphic object classes:

• Class pointer is xintLegendObjectClass

• Class name is XintLegend

• Header file is included as <Xint/Legend.h>

Resources The following resources are defined by the Legend object class:

XmNiconWidth
Specifies the size in pixels of the icon used to draw the series symbol.

XmNcolumns
Specifies the number of columns to use for the legend layout.

XmNlegendLocation
This resource is used to specify the position of the legend inside the chart. Do not
use this resource directly but rather use the Chart constraint resource
XmNconstraint to move the legend elsewhere. This resource is used to get values.

Name Type
Default Access

XmNiconWidth int
15

CSG

XmNcolumns int
1

CSG

XmNlegendLocation XintLocation *
NULL

CSG

XmNlegendTitle String
NULL

CSG

XmNlineStyle int
XintLINE_NONE

CSG

XmNmarginHeight int
8

CSG

XmNmarginWidth int
8

CSG

XmNvisibleEntryCount int
0

CSG
232 ChartObject Programming Guide

CHART OBJECT REFERENCE
Inherited Behavior and Resources 5

chart.fm5 Page 233 Thursday, January 22, 2009 11:24 AM
This resource is specified as a pointer to a data structure of type XintLocation which
takes the following form:
typedef struct {
 float x;
 float y;
} XintLocation;

XmNlegendTitle
Specifies a title for the legend.

XmNlineStyle
Controls the line style for the rectangle that is drawn around the legend. The line
color and line thickness are controlled by the Graphic resources XmNcolor and
XmNlineThickness. You can specify one of the following constants for
XmNlineStyle:

XmNmarginHeight
Specifies the vertical margin for the legend in pixels.

XmNmarginWidth
Specifies the horizontal margin for the legend in pixels.

XmNvisibleEntryCount
Specifies the maximum number of entries that can be displayed by the legend.
Specify 0 to have no limits.

member Description

x, y Specify the location of the center of the legend in the chart coordinate system
(0 to 100 in both X and Y directions).

Resource Value Description

XintLINE_NONE (default) No rectangle is drawn.

XintLINE_SOLID The rectangle is drawn with a solid line.

XintLINE_ON_OFF_DASH The rectangle is drawn with an on-off dash pattern.

XintLINE_DOUBLE_DASH The rectangle is drawn with a double dash pattern.

XintSHADOW_IN Shadow is drawn so that legend appears inset.

XintSHADOW_OUT Shadow is drawn so that legend appears outset.
ChartObject Programming Guide 233

CHART OBJECT REFERENCE
Legend Object Class5

chart.fm5 Page 234 Thursday, January 22, 2009 11:24 AM
Resources Legend inherits behavior and resources from the Graphic class.The following table
lists the resources that can be accessed:

Macros
The XintIsLegend macro returns True if the specified object is a Legend object.
Otherwise, returns False otherwise.
Boolean XintIsLegend (Object object)

Name Type
Default

Access

XmNcolor Pixel
foreground

CSG

XmNdashList char *
NULL

CSG

XmNfillColor Pixel
background

CSG

XmNfillFilename char *
NULL

CSG

XmNfillPixmap Pixmap
NULL

CSG

XmNfillStyle int
XintFILL_NONE

CSG

XmNfont char *
“*Helvetica*-120-*”

CSG

XmNhighlightMode int
XintHIGHLIGHT_HANDLE

CSG

XmNlineStyle int
XintLINE_SOLID

CSG

XmNlineThickness int
1

CSG

XmNmove Boolean
True

CSG

XmNsensitive Boolean
True

CSG

XmNshape Boolean
True

CSG

XmNstippleColor Pixel
foreground

CSG
234 ChartObject Programming Guide

CHART OBJECT REFERENCE
Inherited Behavior and Resources 5

chart.fm5 Page 235 Thursday, January 22, 2009 11:24 AM
Plot2D Object Metaclass
Plot2D is the base class for all the 2D plot objects that can be created by a Chart
object. This class is a metaclass and it will never be instantiated. Its only purpose is
to define the set of resources common to all 2D plot objects.

Inherited Behavior and Resources
The Plot2D object class inherits behavior and resources from the Xt Object, Graphic
and Group.

Object class
resources

The following resources are defined by the Plot2D object class:

Name Type
Default Access

XmNdrawFrame Boolean
True

CSG

XmNpropagate Boolean
False

CSG

XmNxAutoRangeMode int
XintROUND_MIN_MAX

CSG

XmNxAxisPlacement int
XintPLACEMENT_BOTTOM

CSG

XmNxIncrements XintIncrements *
NULL

CSG

XmNxInsidePlacement float *
NULL

CSG

XmNxLimits XintLimits *
NULL

CSG

XmNyAutoRangeMode int
XintROUND_MIN_MAX

CSG

XmNyAxisPlacement int
XintPLACEMENT_LEFT

CSG

XmNyIncrements XintIncrements *
NULL

CSG

XmNyInsidePlacement float *
NULL

CSG

XmNyLimits XintLimits *
NULL

CSG
ChartObject Programming Guide 235

CHART OBJECT REFERENCE
Plot2D Object Metaclass5

chart.fm5 Page 236 Thursday, January 22, 2009 11:24 AM
XmNdrawFrame
Specifies whether or not to draw a frame around the plot area. The thickness of the
frame is set to be the maximum of the horizontal and vertical thickness. The frame
color is set to the color of the axis, horizontal or vertical, that was last set.

XmNpropagate
Specifies whether or not to propagate the resources set in a call to XtSetValues to the
Plot2D’s sub-objects (series object). This resource is particularly useful to propagate
resources controlling the edit mode such as XmNsensitive, XmNmove or
XmNshape. For example, to disable editing on all the series objects created inside a
plot, apply resources XmNpropagate (set to True) and XmNshape (set to False) for
the Plot object. Resource XmNpropagate is reset to False automatically after being
used.

XmNxAutoRangeMode
When resource XmNxLimits is NULL, the auto range is activated for the horizontal
axis. When auto range is active, the limits of the axis are calculated automatically
based on the data range in the axis direction. Resource XmNxAutoRangeMode
specifies how those limits are calculated. You can specify one of the following
constants:

XmNxAxisPlacement
Specifies where to locate the X axis, according to the following constants:

XmN[xy]Increments
Specifies the major and minor increment for the axis (horizontal or vertical)

Constant Description

XintROUND_MIN_MAX
(default)

Axis end values obtained by rounding off minimum and maxi-
mum data values to multiples of major increment.

XintUSE_MIN_MAX Axis end values set to minimum and maximum data values.

Resource Value Description

XintPLACEMENT_TOP Axis is placed at top of plot area.

XintPLACEMENT_BOTTOM (default) Axis is placed at bottom of plot area.

XintPLACEMENT_NONE No axis is displayed.

XintPLACEMENT_TOP_BOTTOM Axis placed at top and bottom of plot area.

XintPLACEMENT_INSIDE Axis placed inside plot area at Y location specified
by resource XmNxInsidePlacement
236 ChartObject Programming Guide

CHART OBJECT REFERENCE
Inherited Behavior and Resources 5

chart.fm5 Page 237 Thursday, January 22, 2009 11:24 AM
associated with the Plot2D object. If you don’t specify this resource, the axis major
and minor increments are calculated automatically based on the range of the data
displayed in the plot.

These resources are specified as a pointer to a data structure of type XintIncrements
which takes the following form:
typedef struct {
 float major_increment;
 float minor_increment;
} XintIncrements;

XmN[xy]InsidePlacement
Specifies the location of the X (Y) axis inside the Plot object if resource
XmNxAxisPlacement (XmNyaxisPlacement) is set to
XintPLACEMENT_INSIDE. The location should be specified using the coordinate
system of the other direction, Y (X).

XmN[xy]Limits
Specifies the limits for the axis (horizontal or vertical) associated with the Plot2D
object. If you don’t specify these resources, the limits of the horizontal axis and
vertical axis associated with a Plot2D are automatically calculated based on the
range of the data displayed in the plot. This resource can be used to overwrite the
default limits or to zoom in on a portion of the plot. If you only want the auto-range
option to apply to the minimum or the maximum but not both, specify constant
XintUNDEFINED_FLOAT for the field which you want to be calculated
automatically.

These resources are specified as a pointer to a data structure of type XintLimits
which takes the following form:

typedef struct {
 float minimum;
 float maximum;
} XintLimits;
ChartObject Programming Guide 237

CHART OBJECT REFERENCE
Plot2D Object Metaclass5

chart.fm5 Page 238 Thursday, January 22, 2009 11:24 AM
XmNyAutoRangeMode
When resource XmNyLimits is NULL, the auto range is activated for the vertical
axis. When auto range is active, the limits of the axis are calculated automatically
based on the data range in the axis direction. Resource XmNyAutoRangeMode
specifies how those limits are calculated. You can specify one of the following
constants:

XmNyAxisPlacement
Specifies where to locate the Y axis. You can use one of the following constants:

Constant Description

XintROUND_MIN_MAX
(default)

Axis end values are obtained by rounding off minimum and
maximum data values to multiples of the major increment.

XintUSE_MIN_MAX Axis end values are set to the minimum and maximum data
values.

Constant Description

XintPLACEMENT_LEFT (default) Axis is placed to the left of the plot area.

XintPLACEMENT_RIGHT Axis is placed to the right of the plot area.

XintPLACEMENT_NONE No axis is displayed.

XintPLACEMENT_LEFT_RIGHT Axis is placed both left and right of the plot area.

XintPLACEMENT_INSIDE Axis is placed inside the plot area at X location spec-
ified by resource XmNyInsidePlacement
238 ChartObject Programming Guide

CHART OBJECT REFERENCE
Inherited Behavior and Resources 5

chart.fm5 Page 239 Thursday, January 22, 2009 11:24 AM
Graphic class
resources

Plot2D inherits behavior and resources from the Graphic class. The following table
lists the rsources that can be accessed:

Name Type
Default Access

XmNcolor Pixel
foreground

CSG

XmNdashList char *
NULL

CSG

XmNfillColor Pixel
“gray”

CSG

XmNfillFilename char *
NULL

CSG

XmNfillPixmap Pixmap
NULL

CSG

XmNfillStyle int
XintFILL_SOLID

CSG

XmNfont char *
“*Helvetica*-120-*”

CSG

XmNhighlightMode int
XintHIGHLIGHT_HANDLE

CSG

XmNlineStyle int
XintLINE_NONE

CSG

XmNlineThickness int
1

CSG

XmNmove Boolean
True

CSG

XmNsensitive Boolean
True

CSG

XmNshape Boolean
True

CSG

XmNstippleColor Pixel
foreground

CSG
ChartObject Programming Guide 239

CHART OBJECT REFERENCE
Plot2D Object Metaclass5

chart.fm5 Page 240 Thursday, January 22, 2009 11:24 AM
Functions
The following function is defined to insert objects into plots.

XintPlotInsertObject
Inserts a graphic object created by the application inside a Plot2D object. The
function performs an optimized insertion which is faster and smoother than the Chart
convenience function XintChartInsertObject. The inserted object’s coordinate
system is the one defined by the axis attached to the Plot2D object.

Boolean XintPlotInsertObject (...)

Object chart or plot Name of the Chart or the Plot in which to insert the object.

Object child Name of the child object to be inserted.
240 ChartObject Programming Guide

CHART OBJECT REFERENCE
Rotation, Translation and Scaling 5

chart.fm5 Page 241 Thursday, January 22, 2009 11:24 AM
Plot3D Object Metaclass
Plot3D is the base class for all the 3D plot objects that can be created by a Chart
object. This class is a metaclass and it will never be instantiated. Its only purpose is
to define the set of resources common to all 3D plot objects.

Rotation, Translation and Scaling
Objects based on the Plot3D class can be rotation, scaled and translated
interactively. The EditObject widget class supports a set of three actions,
Transform3DStart, Transform3D and Transform3DEnd that are used to specify how
to interact with 3D objects. The default translation associated with those actions is
as followed:

Refer to “EditObject Widget Class” on page 81 for a complete description of those
actions.

Event Sequence Action Description

Ctrl <Btn3Down> Transform3DStart(scale) Start scaling 3D object.

Shift <Btn3Down> Transform3DStart(shift) Start translating 3D object.

 None <Btn3Down> Transform3DStart(rotate) Start rotating 3D object.

<Btn3Motion> Transform3D() Execute transformation while
mouse is moving.

<Btn3Up> Transform3DEnd() End transformation and redraw
object.
ChartObject Programming Guide 241

CHART OBJECT REFERENCE
Plot3D Object Metaclass5

chart.fm5 Page 242 Thursday, January 22, 2009 11:24 AM
Inherited Behavior and Resources
The Plot3D object class inherits behavior and resources from the Xt Object, Graphic
and Group.

Object class
resources

The following resources are defined by the Plot3D object class:

Name Type
Default Access

XmN3dPerspectiveDepth int
0

CSG

XmN3dRotation Xint3DRotation *
{45., 0., 45.}

CS

XmN3dScale Xint3DScale
{1., 1., 1.}

CSG

XmNannotationStrokeFont int
XintSIMPLEX_ROMAN

CSG

XmNannotationStrokeFont-
Size

int
40

CSG

XmNlabelStrokeFont int
XintCOMPLEX_ROMAN

CSG

XmNlabelStrokeFontSize int
50

CSG

XmNviewScale int
100

CSG

XmNxAnnotation Boolean
True

CSG

XmNyAnnotation Boolean
True

CSG

XmNzAnnotation Boolean
True

CSG

XmNxAnnotationFormat char *
“%.0f”

CSG

XmNyAnnotationFormat char *
“%.0f”

CSG

XmNzAnnotationFormat char *
“%.0f”

CSG

XmNxAxisOffset int
0

CSG
242 ChartObject Programming Guide

CHART OBJECT REFERENCE
Inherited Behavior and Resources 5

chart.fm5 Page 243 Thursday, January 22, 2009 11:24 AM
XmNyAxisOffset int
0

CSG

XmNzAxisOffset int
0

CSG

XmNxGridLines int
XintXY_PLANE+XintXZ_PLANE

CSG

XmNyGridLines int
XintXY_PLANE+XintYZ_PLANE

CSG

XmNzGridLines int
XintXZ_PLANE+XintYZ_PLANE

CSG

XmNxIncrements XintIncrements *
NULL

CSG

XmNyIncrements XintIncrements *
NULL

CSG

XmNzIncrements XintIncrements *
NULL

CSG

XmNxLabel String
NULL

CSG

XmNyLabel String
NULL

CSG

XmNzLabel String
NULL

CSG

XmNxLimits XintLimits *
NULL

CSG

XmNyLimits XintLimits *
NULL

CSG

XmNzLimits XintLimits *
NULL

CSG

XmNxTranslation int
0

CSG

XmNyTranslation int
0

CSG

XmNwallColor Pixel
“light grey”

CSG

Name (continued)
Type

Default Access
ChartObject Programming Guide 243

CHART OBJECT REFERENCE
Plot3D Object Metaclass5

chart.fm5 Page 244 Thursday, January 22, 2009 11:24 AM
XmN3dPerspectiveDepth
Specifies the distance from the eye to the object as a percentage of the object size.
The distance must be a positive integer greater or equal to 200, which corresponds
to a distance equal to twice the object size. You can also specify 0 to obtain a parallel
projection (distance from object is infinite).

XmN3dRotation
Specifies the clockwise rotation in degrees along the X, Y and Z directions. This
resource is specified as a pointer to a data structure of type Xint3DRotation which
takes the following form:
typedef struct {
 float x_angle;
 float y_angle;
 float z_angle;
} Xint3DRotation;

XmN3dScale
Specifies the scale to apply along the X, Y and Z directions. This resource is
specified as a pointer to a data structure of type Xint3DScale which takes the
following form:
typedef struct {
 float x_scale;
 float y_scale;
 float z_scale;
} Xint3DScale;

XmNannotationStrokeFont
Specifies the font used to draw the annotation. You can specify one of the following
constants:

XmNannotationStrokeFontSize
Specifies the size of the font used to draw the axis annotation. The size is measured
in thousandths of the unit cube size.

Resource Value Description

XintHERSHEY_SIMPLEX Use a simplex stroke font.

XintHERSHEY_TRIPLEX Use a triplex stroke font.
244 ChartObject Programming Guide

CHART OBJECT REFERENCE
Inherited Behavior and Resources 5

chart.fm5 Page 245 Thursday, January 22, 2009 11:24 AM
XmNlabelStrokeFont
Specifies the font used to draw the axis labels. You can specify one of the following
constants:

XmNlabelStrokeFontSize
Specifies the size of the font used to draw the axis labels. The size is measured in
thousandths of the unit cube size.
XmNviewScale
Specifies the scale to apply to the 3D plot as a percentage of the initial size. You
must specify a positive integer value.
XmN[xyz]Annotation
Specifies whether or not to display the axis annotation.
XmN[xyz]AnnotationFormat
Specifies the format used to draw the annotation. Use any C format descriptor (e.g.
“%2.5f”) suitable for displaying floating point data. Resource
XmNzAnnotationFormat is also used to specify the legend annotation format for
the Surface3D subclass.
XmN[xyz]AxisOffset
Specifies an offset corresponding to a space to leave on either side of the axis in the
specified direction. The offset size is measured in thousandths of the unit cube size.
XmN[xyz]GridLines
Specifies which grid lines to draw. You can specify one or a combination of 2 (by
adding them together) of the following constants:

For example, to have all X grid lines drawn, specify
XintXY_PLANE+XintXZ_PLANE for resource XmNxGridLines.

Resource Value Description

XintHERSHEY_SIMPLEX Use a simplex stroke font.

XintHERSHEY_TRIPLEX Use a triplex stroke font.

Resource Value Description

XintXY_PLANE Draw grid lines in the XY plane.

XintXZ_PLANE Draw grid lines in the XZ plane.

XintYZ_PLANE Draw grid lines in the YZ plane.
ChartObject Programming Guide 245

CHART OBJECT REFERENCE
Plot3D Object Metaclass5

chart.fm5 Page 246 Thursday, January 22, 2009 11:24 AM
XmN[xyz]Increments
Specifies the major and minor increment for the axis along the X (Y or Z) direction.
If you don’t specify this resource, the axis major and minor increment are calculated
automatically based on the range of the data.

These resources are specified as a pointer to a data structure of type XintIncrements
which takes the following form:
typedef struct {
 float major_increment;
 float minor_increment;
} XintIncrements;

XmN[xyz]Label
Specifies the X (Y or Z) label displayed next to the corresponding axis. Specify
NULL to have no label displayed.

XmN[xyz]Limits
Specifies the axis range along the specified direction. If you don’t specify anything
for this value, the axis range will be set to the minimum and maximum in the
specified direction. This resource is specified as a pointer to a data structure of type
XintLimits which takes the following form:
typedef struct {
 float minimum;
 float maximum;
} XintLimits;

XmN[xy]Translation
Specifies the translation in the X (Y) direction in pixel units.

XmNwallColor
Specifies the color, as a pixel value, used to draw the wall behind 3D plots such as
Surface or Bar3D.
246 ChartObject Programming Guide

CHART OBJECT REFERENCE
Inherited Behavior and Resources 5

chart.fm5 Page 247 Thursday, January 22, 2009 11:24 AM
CellArray Object Class
A ChartObject creates a Plot object of type CellArray when the chart type resource
is set to XintCHART_TYPE_CELL_ARRAY, as shown in Figure 36. The CellArray
object displays data as an array of colored cells, with colors specified as a list of
color pixels using Chart resource XmNzValueColorRecord. If this resource is
NULL, the colors specified using Chart resource XmNcolorList are used. Colors are
assigned to each cell according to the cell value, using a linear interpolation scheme
based on the data minimum and maximum values.

Figure 36. CellArray Chart Type
ChartObject Programming Guide 247

CHART OBJECT REFERENCE
CellArray Object Class5

chart.fm5 Page 248 Thursday, January 22, 2009 11:24 AM
Data
The CellArray class handles data objects of type DataGrid or DataSampled. It first
searches for a DataGrid object, if none is found, it searches for DataSampled objects.
All the DataSampled objects should have the same increment, but can have different
starting values (see resource XmNsampledRange to specify a non default start and
increment). Missing and undefined values in the data are represented as a hole.

Inherited Behavior and Resources
The CellArray object class inherits behavior and resources from the Xt Object,
Graphic, Group and Plot2D object classes:

• Class pointer is xintCellArrayObjectClass

• Class name is XintCellArray

• Header file is included as <Xint/CellArray.h>

Resources The following resources are defined by the CellArray object class:

XmNdisplayPatterns
Specifies whether or not to display patterns defined with XmNpatternList.

Name Type
Default

Access

XmNdisplayPatterns Boolean
True

CSG

XmNlegendAnnotationFormat char *
“%.0f”

CSG

XmNpatternList Pixmap *
NULL

CSG
248 ChartObject Programming Guide

CHART OBJECT REFERENCE
Inherited Resources 5

chart.fm5 Page 249 Thursday, January 22, 2009 11:24 AM
XmNlegendAnnotationFormat

Specifies format used to print the data values in the legend. Use any C format
descriptor suitable for displaying floating point data.

XmNpatternList

Specifies list of bitmaps (pixmaps of depth 1) used as patterns when drawing each
cell content. The list should be terminated using constant
XmUNSPECIFIED_PIXMAP. Each pattern is assigned to a color in the colormap
used by the CellArray in the order specified (first pattern is associated with first
color, etc.).To assign a pattern to each cell, specify as many patterns as there are
colors in the colormap.

Inherited Resources
Refer to “Plot2D Object Metaclass” on page 235 for a complete listing of the
inherited resources for the CellArray object class.

Macros
Macro XintIsCellArray returns True if specified object is a CellArray object.
Otherwise returns False.
Boolean XintIsCellArray (Object object)
ChartObject Programming Guide 249

CHART OBJECT REFERENCE
ComboPlot Object Class5

chart.fm5 Page 250 Thursday, January 22, 2009 11:24 AM
ComboPlot Object Class
A Chart Object creates a Plot object of type ComboPlot when the chart type resource
is set to XintCHART_TYPE_COMBO_PLOT. This is a special plot type that can
create and manage other plot types to build composite plots.

Resources
The ComboPlot object class inherits behavior and resources from the Xt Object,
Graphic and Group object classes:

• Class pointer is xintComboPlotObjectClass

• Class name is XintComboPlot

• Header file is included as <Xint/ComboPlot.h>

Note: The ComboPlot object class does not define any new resources.

Inherited Resources
ComboPlot inherits behavior and resources from the Graphic class:

Name Type
Default Access

XmNcolor Pixel
foreground

CSG

XmNdashList char *
NULL

CSG

XmNfillColor Pixel
“gray”

CSG

XmNfillFilename char *
NULL

CSG

XmNfillPixmap Pixmap
NULL

CSG

XmNfillStyle int
XintFILL_SOLID

CSG

XmNfont char *
“*Helvetica*-120-*”

CSG

XmNhighlightMode int
XintHIGHLIGHT_HANDLE

CSG
250 ChartObject Programming Guide

CHART OBJECT REFERENCE
ComboPlot Object Class 5

chart.fm5 Page 251 Thursday, January 22, 2009 11:24 AM
Functions
The following functions are defined for creating new plot types and retrieving plot
components.

XintComboPlotCreateNewPlot
Creates a new plot object inside the ComboPlot object. You can use function
XintChartAssociateData to attach data to this new plot object. The function returns
the ID of the plot object that was created.
Object XintComboPlotCreateNewPlot (...)

XmNlineStyle int
XintLINE_NONE

CSG

XmNlineThickness int
1

CSG

XmNmove Boolean
True

CSG

XmNsensitive Boolean
True

CSG

XmNshape Boolean
True

CSG

XmNstippleColor Pixel
foreground

CSG

Name (continued)
Type

Default Access

Function Name Description

XintComboPlotCreateNewPlot Creates a new plot type inside the combo plot.

XintComboPlotGetComponent Retrieves a component from a combo plot.

Object combo_plot ID of the ComboPlot object.

int plot_type Type of plot to create.
ChartObject Programming Guide 251

CHART OBJECT REFERENCE
ComboPlot Object Class5

chart.fm5 Page 252 Thursday, January 22, 2009 11:24 AM
Argument plot_type can be one of the following constants:

XintComboPlotGetComponent
Returns object ID of specified component of ComboPlot. Similar to
XintChartGetComponent, except that it provides one more argument to take into
account that multiple plots can be managed by a ComboPlot.
Object XintComboPlotGetComponent (...)

Argument code can be one of the following constants:

Returns NULL if argument index is out of range.

Macros
Macro XintIsComboPlot returns True if specified object is a ComboPlot object.
Otherwise returns False.

Boolean XintIsComboPlot (Object object)

Constant Description

XintPLOT_TYPE_BAR Create a BarLine plot.

XintPLOT_TYPE_PIE Create a Pie plot.

XintPLOT_TYPE_SURFACE_3D Create a Surface3D plot.

XintPLOT_TYPE_HIGH_LOW Create a HighLow plot.

XintPLOT_TYPE_HISTOGRAM Create a Histogram plot.

XintPLOT_TYPE_AREA Create a XYPlot configured as an area plot.

XintPLOT_TYPE_LINE Create a XYPlot configured as a line plot.

XintPLOT_TYPE_SCATTERED Create a XYPlot configured as a scattered plot.

XintPLOT_TYPE_BAR_3D Create a Bar3D plot.

Object combo_plot ID of the ComboPlot object.

int code Code for the component to return.

int index The index of the plot of interest (starts at 0).

Constant Description

XintCHART_COMPONENT_PLOT Code for plot object.

XintCHART_COMPONENT_VERTICAL_AXIS Code for vertical axis object.

XintCHART_COMPONENT_HORIZONTAL_ AXIS Code for horizontal axis object.
252 ChartObject Programming Guide

CHART OBJECT REFERENCE
Data 5

chart.fm5 Page 253 Thursday, January 22, 2009 11:24 AM
BarLine Object Class
A Chart Object creates a Plot object of type BarLine when the chart type resource is
set to XintCHART_TYPE_BAR. This plot type displays its data as horizontal or
vertical bars or lines, as illustrated in Figure 37. A BarLine creates BarSeries and
LineSeries objects to display the bars or the lines. See section BarLine Series for a
complete list of the applicable resources.

.

Figure 37. BarLine Chart Type

Data
The BarLine class only handles data objects of type DataSampled. It creates a
BarSeries for each DataSampled object, with as many bars as the number of samples
in the data object. No bars are created for missing or null values. All the
DataSampled objects should have the same increment, but can have different
starting values (see resource XmNsampledRange to specify a non default start and
increment).

The BarLine class supports transposition. In this case a BarSeries is created at each
sampled location, with as many bars as there are DataSampled objects.
ChartObject Programming Guide 253

CHART OBJECT REFERENCE
BarLine Object Class5

chart.fm5 Page 254 Thursday, January 22, 2009 11:24 AM
Inherited Behavior and Resources
The BarLine object class inherits behavior and resources from the Xt Object,
Graphic, Group and Plot2D object classes:

• Class pointer is xintBarLineObjectClass

• Class name is XintBarLine

• Header file is included as <Xint/BarLine.h>

The following resources are defined by the BarLine object class:

XmNbarOrientation
Specifies if the bars are oriented vertically (XintVERTICAL) or horizontally
(XintHORIZONTAL).

Name Type
Default Access

XmNbarOrientation int
XintVERTICAL

CSG

XmNbarStyle int
XintADJACENT

CSG

XmNclusterWidth int
75

CSG

XmNdrawShadow Boolean
False

CSG

XmNinclination int
0

CSG

XmNperspectiveDepth int
25

CSG

XmNproportional Boolean
False

CSG

XmNrotation int
0

CSG
254 ChartObject Programming Guide

CHART OBJECT REFERENCE
BarLine Object Class 5

chart.fm5 Page 255 Thursday, January 22, 2009 11:24 AM
XmNbarStyle
Specifies the bar style. You can use one of the following constants:

XmNclusterWidth
Specifies, as a percentage between 0 and 100, the size of a bar cluster (all the bars
assigned to the same sampled value). The difference between the specified size and
100 is the size allocated for the space between bar clusters. Specify 100 to have no
space between bar clusters.

XmNdrawShadow
If True, and if either resource XmNinclination or XmNdepth is not 0, the side of
the bars will drawn using a darker color which simulates a shadow.

XmNinclination
Specifies the inclination in degrees along the X axis (vertical bars) or the Y axis
(horizontal bars) of the bars. This value must be between 0 and 45.

XmNperspectiveDepth
This resource specifies the depth of a bar as a percentage of the plot width. This
resource is ignored if XmNinclination and XmNrotation are both 0.

XmNproportional

Specifies that the stacked bars should be made proportional to and plotted against an
axis ranging between 0 and 100.

XmNrotation
Specifies the rotation clockwise in degrees along the Y axis (vertical bars) or the X
axis (horizontal bars) of the bars. This value must be between 0 and 45.

Inherited Resources
Refer to “Plot2D Object Metaclass” on page 235 for a complete listing of the
inherited resources for the BarLine object class.

Resource Value Description

XintADJACENT Bars are adjacent.

XintOVERLAPPED Bars overlap.

XintSTACKED Bars are stacked.
ChartObject Programming Guide 255

CHART OBJECT REFERENCE
BarLine Object Class5

chart.fm5 Page 256 Thursday, January 22, 2009 11:24 AM
Macros
The XintIsBarLine macro returns True if the specified object is a BarLine object. It
returns False otherwise.
Boolean XintIsBarLine (Object object)

BarLine Series
The BarLine object class displays its data using BarSeries or Polyline Series objects.
These object classes inherit their resources from the Graphic class.

BarSeries
resources

The following table lists resources for BarSeries object classes (refer to Chapter
3—Graphic Object Reference for a complete description of these resources):

Name Type
Default

Access

XmNcolor Pixel
“black”

CSG

XmNdashList char *
NULL

CSG

XmNfillColor Pixel
assigned from color list

CSG

XmNfillFilename char *
NULL

CSG

XmNfillPixmap Pixmap
NULL

CSG

XmNfillStyle int
XintFILL_SOLID

CSG

XmNlineStyle int
XintLINE_SOLID

CSG

XmNlineThickness int
1

CSG

XmNsensitive Boolean
True

CSG

XmNstippleColor Pixel
“black”

CSG
256 ChartObject Programming Guide

CHART OBJECT REFERENCE
BarLine Series 5

chart.fm5 Page 257 Thursday, January 22, 2009 11:24 AM
Polyline series
resources

The following table lists resources for Polyline Series object classes:

Name Type
Default Access

XmNcolor Pixel
assigned from color list

CSG

XmNdashList char *
NULL

CSG

XmNfillColor Pixel
assigned from color list

CSG

XmNfillFilename char *
NULL

CSG

XmNfillPixmap Pixmap
NULL

CSG

XmNfillStyle int
dynamic

CSG

XmNlineStyle int
dynamic

CSG

XmNlineThickness int
1

CSG

XmNsensitive Boolean
True

CSG

XmNstippleColor Pixel
“black”

CSG

XmNsymbol Boolean
dynamic

CSG

XmNsymbolColor Pixel
assigned from color list

CSG

XmNsymbolSize int8
8

CSG

XmNsymbolType int
assigned from symbol list

CSG
ChartObject Programming Guide 257

CHART OBJECT REFERENCE
Bar3D Object5

chart.fm5 Page 258 Thursday, January 22, 2009 11:24 AM
Bar3D Object
A Chart Object creates a Plot object of type Bar3D when the chart type resource is
set to XintCHART_TYPE_BAR_3D. This plot type displays its data as a 3D bar
plot. Figure 38 shows a sample 3D bar plot.

Figure 38. Bar3D Chart

Data
The Bar3D class accepts data objects of type Grid or DataSampled. It first looks for
a Grid data object, if one is not found, it searches for DataSampled objects. All the
DataSampled objects should have the same increment, but can have different starting
values (see resource XmNsampledRange to specify a non default start and
increment).

Transposition is supported for the case where a Bar3D object displays a set of
DataSampled objects. If Chart resource XmNtranspose is False, DataSampled
objects are plotted along the X direction, with a different color for each data object.
If XmNtranspose it True, DataSampled objects are plotted along the Y direction.
with a different color for each sample (color is uniform along the Y direction).
258 ChartObject Programming Guide

CHART OBJECT REFERENCE
Inherited Behavior and Resources 5

chart.fm5 Page 259 Thursday, January 22, 2009 11:24 AM
Inherited Behavior and Resources
The Bar3D object class inherits behavior and resources from the Xt Object, Graphic,
Group and Plot3D object classes:

• Class pointer is xintBar3DObjectClass

• Class name is XintBar3D

• Header file is included as <Xint/Bar3D.h>

The following resources are defined by the Bar3D object class.

XmNbarColorMode
Specifies how to assign the bar colors. You can use one of the following constants:

XmNbarLineColor
Specifies the color pixel used to draw the bar outline.

Name Type
Default Access

XmNbarColorMode int
XintCOLOR_LIST_MODE

CSG

XmNbarLineColor Pixel
“black”

CSG

XmNbarLineThickness int
1

CSG

XmNclusterHeight int
75

CSG

XmNclusterWidth int
75

CSG

XmNdrawShadow Boolean
True

CSG

Resource Value Description

XintCOLOR_LIST_MODE
(default)

Bar color is uniform in the X direction (or Y if
transposed) and colors are taken from the list
specified in Chart resource XmNcolorList.

XintZ_VALUE_MODE Bar color is based on the Z value and colors are
assigned from the colors specified in Chart
resource XmNzValueColorRecord.
ChartObject Programming Guide 259

CHART OBJECT REFERENCE
Bar3D Object5

chart.fm5 Page 260 Thursday, January 22, 2009 11:24 AM
XmNbarLineThickness
Specifies the bar line thickness in pixels.

XmNclusterHeight
Specifies the size of the bars along the Y direction as a percentage. The resource value
must be an integer value between 0 and 100. The difference between the resource value
and 100 corresponds to the space left between bars.

XmNclusterWidth
Specifies the size of the bars along the X direction as a percentage. The resource
value must be an integer value between 0 and 100. The difference between the
resource value and 100 corresponds to the space left between bars.

XmNdrawShadow
Specifies whether or not to draw the side of the bars using a darker color which
simulates a shadow.

Inherited Resources
See section Plot3D Object Class for a complete listing of the inherited resources for
the Bar3D object class.

Macros
Macro XintIsBar3D returns True if the specified object is a Bar3D object.
Boolean XintIsBar3D (Object object)
260 ChartObject Programming Guide

CHART OBJECT REFERENCE
Data 5

chart.fm5 Page 261 Thursday, January 22, 2009 11:24 AM
HighLow Object Class
A Chart Object creates a Plot object of type HighLow when the chart type resource is
set to XintCHART_TYPE_HIGH_LOW. This plot type is often used for stock prices,
to display high/low/open/close information. This type of plot can also be used for
scientific data, such as to indicate temperature ranges. Resource
XmNdrawCandlestick is available to draw the HighLow chart as a Candlestick plot.
Figure 39 shows a typical HighLow chart.

.

Figure 39. HighLow Chart type

Data
The HighLow class accepts only DataSampled series for data. You must pass
DataGroup objects containing DataSampled objects in the following order: high,
low, open and close. You need to pass a DataGroup containing at least two
DataSampled series (for the high and low information). Open and close information
is optional.

Note: Transposition is not supported for this plot object class.

The HighLow object class creates a HighLowSeries object to display a
high-low-open-close curve. A maximum of one curve is created for each DataGroup
associated with the chart. To display multiple curves you will need to associate
additional DataGroup objects, each containing at least two DataSampled objects.
ChartObject Programming Guide 261

CHART OBJECT REFERENCE
HighLow Object Class5

chart.fm5 Page 262 Thursday, January 22, 2009 11:24 AM
Inherited Behavior and Resources
The HighLow object class inherits behavior and resources from the Xt Object,
Graphic, Group and Plot2D object classes:

• Class pointer is xintHighLowObjectClass

• Class name is XintHighLow

• Header file is included as <Xint/HighLow.h>

The following resources are defined by the HighLow object class:

XmNdrawCandlestick
Specifies whether or not to draw the chart as a candlestick chart. In a candlestick
chart, a filled rectangle is used to draw the area between the open and the close. The
width of the rectangle is set by resource XmNtickLength. Resources
XmNshowClose, XmNshowOpen are ignored when resource
XmNdrawCandlestick is set to True.

Name Type
Default Access

XmNdrawCandlestick Boolean
False

CSG

XmNshowClose Boolean
True

CSG

XmNshowGainLoss Boolean
False

CSG

XmNshowOpen Boolean
True

CSG

XmNtickLength int
75

CSG
262 ChartObject Programming Guide

CHART OBJECT REFERENCE
HighLow Object Class 5

chart.fm5 Page 263 Thursday, January 22, 2009 11:24 AM
XmNshowClose
Specifies whether or not the close indicator is displayed.

XmNshowGainLoss
Specifies whether samples corresponding to a loss are drawn using the same color
as the samples corresponding to a gain. See section HighLow Series for a description
of the resources to use to set the HighLowSeries colors.

XmNshowOpen
Specifies whether or not the open indicator is displayed.

XmNtickLength
Specifies the length of the open and close indicators as a percentage between 0 and
100. Specify 100 to have the close from one sample connected to the open from the
next sample.

Inherited Resources
See section Plot2D Object Class for a complete listing of the inherited resources for
the HighLow object class.

Macros
Macro XintIsHighLow returns True if the specified object is a HighLow object.

Boolean XintIsHighLow (Object object)
ChartObject Programming Guide 263

CHART OBJECT REFERENCE
HighLow Object Class5

chart.fm5 Page 264 Thursday, January 22, 2009 11:24 AM
HighLow Series
The HighLow object class displays its data using HighLowSeries objects. This
resource class inherits its resources from the Graphic class. The following is a list of
the applicable resources for the HighLow object class. See class Graphic for a
complete description of these resources.

For a HighLow plot, resource XmNcolor controls the color of the lines when
resource XmNshowGainLoss is False. When resource XmNshowGainLoss is
True, resources XmNgainColor and XmNlossColor are used to draw the samples
corresponding to a gain or a loss respectively.

For a Candlestick plot, resource XmNcolor is used to draw the wick. The color used
to draw the body of the candle is specified by resources XmNgainColor or
XmNlossColor.

Name Type
Default Access

XmNcolor Pixel
assigned from color list

CSG

XmNdashList char *
NULL

CSG

XmNgainColor Pixel
“white”

CSG

XmNlineStyle int
XintLINE_SOLID

CSG

XmNlineThickness int
1

CSG

XmNlossColor Pixel
“black”

CSG

XmNsensitive Boolean
True

CSG
264 ChartObject Programming Guide

CHART OBJECT REFERENCE
Data 5

chart.fm5 Page 265 Thursday, January 22, 2009 11:24 AM
Histogram Object
A Chart Object creates a Plot object of type Histogram when the chart type resource
is set to XintCHART_TYPE_HISTOGRAM. The histogram is used to display the
distribution of a set of data, and optionally a cumulative curve. Figure 40 shows a
typical Histogram chart.

Figure 40. Histogram Chart Type

Data
The Histogram accepts only DataSampled series for data. For each DataSampled
object it creates a HistogramSeries object (distribution curve) and a Line Series
(cumulative curve). See section Histogram Series for a complete description of the
resources applicable to the HistogramSeries class. Transposition is not supported for
this plot class.
ChartObject Programming Guide 265

CHART OBJECT REFERENCE
Histogram Object5

chart.fm5 Page 266 Thursday, January 22, 2009 11:24 AM
Inherited Behavior and Resources
The Histogram object class inherits behavior and resources from the Xt Object,
Graphic, Group and Plot2D object classes:

• Class pointer is xintHistogramObjectClass

• Class name is XintHistogram

• Header file is included as <Xint/Histogram.h>

Resources The following resources are defined by the Histogram object class:

XmNbarLength
Specifies the width of the bars used to display the distribution as a percentage
between 0 and 100.

XmNshowCumulative
Specifies whether or not to display a curve representing the cumulative sum of the
distribution.

XmNshowDistribution
Specifies whether or not to display the distribution curve.

Inherited Resources
See section Plot2D Object Class for a complete listing of the inherited resources for
the Histogram object class.

Macros
Macro XintIsHistogram returns True if the specified object is an histogram object.
Boolean XintIsHistogram (Object object)

Name Type
Default Access

XmNbarLength int
100

CSG

XmNshowCumulative Boolean
False

CSG

XmNshowDistribution Boolean
True

CSG
266 ChartObject Programming Guide

CHART OBJECT REFERENCE
Histogram Object 5

chart.fm5 Page 267 Thursday, January 22, 2009 11:24 AM
Histogram Series
The Histogram object class displays its data using HistogramSeries objects
(distribution curve) and Polyline series objects (cumulative curve).

Graphic class
resources

This object classes inherits its resources from the Graphic class. The following table
lists resources for this class (refer to Chapter 3—Graphic Object Reference for a
complete description of these resources):

Name Type
Default

Access

XmNcolor Pixel
assigned from color list

CSG

XmNdashList char *
NULL

CSG

XmNfillColor Pixel
assigned from color list

CSG

XmNfillFilename char *
NULL

CSG

XmNfillPixmap Pixmap
NULL

CSG

XmNfillStyle int
XintFILL_SOLID

CSG

XmNlineStyle int
XintLINE_SOLID

CSG

XmNlineThickness int
1

CSG

XmNsensitive Boolean
True

CSG

XmNstippleColor Pixel
“black”

CSG
ChartObject Programming Guide 267

CHART OBJECT REFERENCE
Histogram Object5

chart.fm5 Page 268 Thursday, January 22, 2009 11:24 AM
PolyLine class
resources

The following table lists PolyLine class resources:

Name Type
Default

Access

XmNcolor Pixel
assigned from color list

CSG

XmNdashList char *
NULL

CSG

XmNlineStyle int
dynamic

CSG

XmNlineThickness int
1

CSG

XmNsensitive Boolean
True

CSG

XmNstippleColor Pixel
“black”

CSG

XmNsymbol Boolean
False

CSG

XmNsymbolColor Pixel
Foreground

CSG

XmNsymbolSize int8
8

CSG

XmNsymbolType int
XintSYMBOL_PLUS

CSG
268 ChartObject Programming Guide

CHART OBJECT REFERENCE
Data 5

chart.fm5 Page 269 Thursday, January 22, 2009 11:24 AM
Pie Object Class
A Chart Object creates a Plot object of type Pie when the chart type resource is set
to XintCHART_TYPE_PIE. The Pie chart graphs data as a proportional slice of a
circular pie. The resulting chart is useful in the comparison of the relative
contribution of parts to a whole. Figure 41 shows a sample Pie chart.

Figure 41. Pie Chart Type

Data
The Pie class only handles data objects of type DataSampled. It creates a
WedgeSeries for each DataSampled, with as many Wedges as the number of samples
in the data object. No wedges are created for missing or null values. All the
DataSampled objects should have the same increment, but can have different
starting values (see resource XmNsampledRange to specify a non default start and
increment).

The Wedge class supports transposition. If Chart resource XmNtranspose is False,
each wedge of a Wedge Series is placed in a different pie. If XmNtranspose is True,
all the wedges of a WedgeSeries are placed in one pie (A DataSampled object
defines an entire pie).
ChartObject Programming Guide 269

CHART OBJECT REFERENCE
Pie Object Class5

chart.fm5 Page 270 Thursday, January 22, 2009 11:24 AM
Inherited Behavior and Resources
The Pie object class inherits behavior and resources from the Xt Object, Graphic,
Group and Plot2D object classes:

• Class pointer is xintPieObjectClass

• Class name is XintPie

• Header file is included as <Xint/Pie.h>

Resources The following resources are defined by the Pie object class:

XmNdrawShadow
Specifies whether or not to draw the side of the pie with a darker color.

XmNinclination
Specifies the inclination of the pie in degrees. You must specify an integer value
between 0 and 45 for this resource

XmNpieSize
Each pie is centered in a square whose size is based on the number of pies and the
width and height of the plot area. Resource XmNpieSize specifies how much of the
square the pie occupies, as a percentage between 0 and 100.

XmNperspectiveDepth
Specifies the depth of the pie as a percentage of the Plot width. This resource has no
effect if resource XmNinclination is 0.

Name Type
Default Access

XmNdrawShadow Boolean
False

CSG

XmNinclination int
0

CSG

XmNpieSize int
75

CSG

XmNperspectiveDepth int
25

CSG

XmNshowPieName Boolean
False

CSG

XmNshowWedgeLabels Boolean
False

CSG
270 ChartObject Programming Guide

CHART OBJECT REFERENCE
Pie Object Class 5

chart.fm5 Page 271 Thursday, January 22, 2009 11:24 AM
XmNshowPieName
Specifies whether or not to display the name of each pie.

XmNshowWedgeLabels
Specifies whether or not to display the name of the series next to each wedge. The
name of the series corresponds to the name of the DataSampled object to which each
wedge corresponds.

Inherited Resources
Refer to “Plot2D Object Metaclass” on page 235 for a complete listing of the
inherited resources for the Pie object class.

Functions
Function XintPieExplodeWedge is used to explode a wedge in a pie.
Boolean XintPieExplodeWedge (...)

Macros
Macro XintIsPie returns True if the specified object is a Pie object.
Boolean XintIsPie (Object object)

Object plot ID of the Pie object.

Object data ID of the DataSampled object that contains the wedge.

int sample_index Index of the sample inside the DataSampled object
(starts at 0).

int series_index Not used.

int percent Distance of explosion as a percentage of the pie radius.
ChartObject Programming Guide 271

CHART OBJECT REFERENCE
Pie Object Class5

chart.fm5 Page 272 Thursday, January 22, 2009 11:24 AM
Pie Series
The Pie object class displays its data using WedgeSeries objects. This object class
inherits its resources from the Graphic class. The following table lists the resources
for this class (refer to Chapter 3—Graphic Object Reference for a complete
description of these resources):

Name Type
Default Access

XmNcolor Pixel
“black”

CSG

XmNdashList char *
NULL

CSG

XmNfillColor Pixel
assigned from color list

CSG

XmNfillFilename char *
NULL

CSG

XmNfillPixmap Pixmap
NULL

CSG

XmNfillStyle int
XintFILL_OPAQUE_STIPPLED

CSG

XmNlineStyle int
XintLINE_SOLID

CSG

XmNlineThickness int
1

CSG

XmNsensitive Boolean
True

CSG

XmNstippleColor Pixel
“black”

CSG
272 ChartObject Programming Guide

CHART OBJECT REFERENCE
Pie Series 5

chart.fm5 Page 273 Thursday, January 22, 2009 11:24 AM
Surface3D Object
A Chart Object creates a Plot object of type Surface3D when the chart type resource
is set to XintCHART_TYPE_SURFACE_3D. This plot type displays its data as a 3D
surface. Figure 42 shows a typical Surface3D chart:

Figure 42. Surface3D Chart Type
ChartObject Programming Guide 273

CHART OBJECT REFERENCE
Surface3D Object5

chart.fm5 Page 274 Thursday, January 22, 2009 11:24 AM
Data
The Surface3D class accepts data objects of type Grid or DataSampled. It first looks
for a Grid data object, if one is not found, it searches for DataSampled objects. All
the DataSampled objects should have the same increment, but can have different
starting values (see resource XmNsampledRange to specify a non default start and
increment).

Transposition is supported for the case where a Surface3D object displays a set of
DataSampled objects. If Chart resource XmNtranspose is False, DataSampled
objects are plotted along the X direction. If XmNtranspose it True, DataSampled
objects are plotted along the Y direction.

Inherited Behavior and Resources
The Surface3D object class inherits behavior and resources from the Xt Object,
Graphic, Group and Plot3D object classes:

• Class pointer is xintSurface3DObjectClass

• Class name is XintSurface3D

• Header file is included as <Xint/Surface3D.h>

Resources The following resources are defined by the Surface3D object class;

Name Type
Default Access

XmNcontourLineColor Pixel
black

CSG

XmNcontourLineMode int
XintNO_CONTOUR_LINE

CSG

XmNcontourLineThickness int
1

CSG

XmNfillMode int
XintCONTOUR_FILL

CSG

XmNmeshColor Pixel
black

CSG

XmNmeshDrawX Boolean
True

CSG

XmNmeshDrawY Boolean
True

CSG
274 ChartObject Programming Guide

CHART OBJECT REFERENCE
Surface3D Object 5

chart.fm5 Page 275 Thursday, January 22, 2009 11:24 AM
XmNcontourLineColor
Specifies the color used to draw contour lines when resource
XmNcontourLineMode is set to XintCONTOUR_LINE.

XmNcontourLineMode
Specifies what type of contour lines to draw. You can use one of the following
constants:

XmNcontourLineThickness
Specifies the line thickness in pixels used to draw the contour lines.

XmNmeshMode int
XintMONOCHROME_MESH

CSG

XmNmeshLineThickness int
1

CSG

XmNnumGridX int
16

CSG

XmNnumGridY int
16

CSG

XmNnumGridZ int
16

CSG

XmNsolidSurface Boolean
False

CSG

XmNsurfaceBottomColor Pixel
gray

CSG

XmNsurfaceTopColor Pixel
light grey

CSG

Resource Value Description

XintNO_CONTOUR_LINE (default) No contour line is drawn.

XintCONTOUR_LINE Draw the contour lines using color specified in
resource XmNcontourLineColor.

XintCONTOUR_COLORED_LINE Draw the contour lines using the color based
on the Z value.

Name (continued)
Type

Default Access
ChartObject Programming Guide 275

CHART OBJECT REFERENCE
Surface3D Object5

chart.fm5 Page 276 Thursday, January 22, 2009 11:24 AM
XmNfillMode
Specifies the surface fill mode. You can specify one of the following constants:

XmNmeshColor
Specifies the color used to draw the grid mesh.

XmNmeshDrawX
XmNmeshDrawY
Specifies whether the grid mesh is drawn along the X (Y) direction.

XmNmeshMode
Specifies mode used to draw the mesh according to the following constants:

XmNmeshLineThickness
Specifies the thickness in pixels of the line used to draw the grid mesh.

XmNnumGridX
XmNnumGridY
Specifies the number of grid lines in the X (Y) direction.

XmNnumGridZ
Specifies the number of contour levels.

Resource Value Description

XintNO_FILL No fill.

XintSHADED_FILL Surface is drawn using two colors. One for the top of the
surface (XmNsurfaceTopColor) and one for the bottom
of the surface (XmNsurfaceBottomColor).

XintMOSAIC_FILL The surface is filled using a uniform color inside each grid
cell. The color used is based on the average Z value for each
cell.

XintCONTOUR_FILL The surface is filled along the contour lines. The color used
is based on the contour value.

Resource Value Description

XintNO_MESH No grid mesh is drawn.

XintCONTOUR_MESH Grid mesh is drawn using colors based on the Z
values.

XintMONOCHROME_MESH (default) Mesh is drawn with color specified in resource
XmNmeshColor.
276 ChartObject Programming Guide

CHART OBJECT REFERENCE
Inherited Resources 5

chart.fm5 Page 277 Thursday, January 22, 2009 11:24 AM
XmNsolidSurface
When this resource is TRUE, the surface is rendered as a solid object by adding
“sides” to the surface. The sides drop from the surface boundaries to the minimum
Z value. The mesh and surface bottom colors are used when drawing the “sides”.

XmNsurfaceBottomColor
XmNsurfaceTopColor
Specifies the pixel color used to draw the bottom (top) of the surface when resource
XmNfillMode is set to XintSHADED_FILL

Inherited Resources
Refer to “Plot3D Object Metaclass” on page 241 for a complete listing of the
inherited resources for the Surface3D object class.

Macros
Macro XintIsSurface3D returns True if the specified object is a Surface3D object.
Boolean XintIsSurface3D (Object object)
ChartObject Programming Guide 277

CHART OBJECT REFERENCE
XYPlot Object Class5

chart.fm5 Page 278 Thursday, January 22, 2009 11:24 AM
XYPlot Object Class
A Chart Object creates a Plot object of type XYPlot when the chart type resource is
set to XintCHART_TYPE_AREA, XintCHART_TYPE_LINE or
XintCHART_TYPE_SCATTERED. Figure 43 shows a sample XYPlot chart:

Figure 43. Scattered Plot Chart Type

Data
The XYPlot object class accepts DataSampled or DataSeries objects for data.
DataSampled objects are plotted along the X axis.

If Chart resource XmNtranspose is False, a Polyline series is created for each
DataSampled object. If XmNtranspose if True, a Polyline series is created for each
sample (number of points in the Polyline series is equal to the number of
DataSamPled objects). Transposition has no effect on DataSeries objects.
278 ChartObject Programming Guide

CHART OBJECT REFERENCE
Inherited Behavior and Resources 5

chart.fm5 Page 279 Thursday, January 22, 2009 11:24 AM
Inherited Behavior and Resources
The XYPlot object class inherits behavior and resources from the Xt Object,
Graphic, Group and Plot2D object classes:

• Class pointer is xintXYPlotObjectClass

• Class name is XintXYPlot

• Header file is included as <Xint/XYPlot.h>

Resources The following resources are defined by the XYPlot object class:

XmNplotOrientation
Specifies the orientation of the plot.

XmNsymbol
Specifies whether or not a symbol is displayed at each point location. The default for
this resource is True for scattered plots and False otherwise. See Chart resource
XmNsymbolList to see how symbols are assigned by default.

Name Type
Default Access

XmNplotOrientation int
XintVERTICAL

CSG

XmNsymbol Boolean
dynamic

CSG

XmNsymbolSize int
8

CSG

XmNstackingOrder int
XintFRONT_TO_BACK

CSG

Resource Value Description

XintVERTICAL (default) The X axis is plotted along the horizontal
direction and the Y axis along the vertical
direction.

XintHORIZONTAL The X axis is plotted along the vertical direc-
tion and the Y axis is along the horizontal
direction.
ChartObject Programming Guide 279

CHART OBJECT REFERENCE
XYPlot Object Class5

chart.fm5 Page 280 Thursday, January 22, 2009 11:24 AM
XmNsymbolSize
Specifies the size of the symbol in pixels.

XmNstackingOrder
Specifies the stacking order if multiple series are displayed. This resource is useful
for area plots where the order in which the series are drawn is important. See also
EditObject functions XintEditObjectRaise, XintEditObjectLower,
XintEditObjectBack and XintEditObjectFront to control the stacking order on a
object by object basis. You can specify the following constants for this resource:

Inherited Resources
Refer to “Plot2D Object Metaclass” on page 235 for a complete listing of the
inherited resources for the XYPlot object class.

Macros
Macro XintIsXYPlot returns True if the specified object is a XYPlot object.

Boolean XintIsXYPlot (Object object)

Resource Value Description

XintFRONT_TO_BACK
(default)

Series are painted from first one specified to the last
one.

XintBACK_TO_FRONT Series are painted from the last one specified to the first
one.
280 ChartObject Programming Guide

CHART OBJECT REFERENCE
PolySeries 5

chart.fm5 Page 281 Thursday, January 22, 2009 11:24 AM
PolySeries
The XYPlot object class displays its data using PolySeries objects. The following
table lists the resources for this class (refer to “MultiPoint Object Metaclass” on
page 142 and “Polyline Object Class” on page 146 for a complete description of
these resources):

Name Type
Default Access

XmNcolor Pixel
assigned from color list

CSG

XmNdashList char *
NULL

CSG

XmNdrawSymbolCallback XtCallbackList
NULL

C

XmNfillColor Pixel
assigned from color list

CSG

XmNfillFilename char *
NULL

CSG

XmNfillPixmap Pixmap
NULL

CSG

XmNfillStyle int
dynamic

CSG

XmNlineStyle int
dynamic

CSG

XmNlineThickness int
1

CSG

XmNsensitive Boolean
True

CSG

XmNstippleColor Pixel
“black”

CSG

XmNsymbol Boolean
dynamic

CSG

XmNsymbolColor Pixel
assigned from color list

CSG

XmNsymbolSize int8
8

CSG

XmNsymbolType int
assigned from symbol list

CSG
ChartObject Programming Guide 281

CHART OBJECT REFERENCE
XYPlot Object Class5

chart.fm5 Page 282 Thursday, January 22, 2009 11:24 AM
282 ChartObject Programming Guide

Index
Actions
ChangeCursorMask 89
DrawCursor 89
EndAreaSelection 90
EndDrawCursor 89
ExtendAreaSelection 90
Increment 89
InitAreaSelection 89
InitDrawCursor 89
Locator 89
MotifDragStart 89
NextTabGroup 89
ObjectCancel 91
ObjectEdit 90
ObjectEditEnd 90
ObjectEditStart 90
ObjectPointAdd 91
ObjectPointDelete 91
ObjectSelect 90
Page 89
PreviousTabGroup 89
ResourceDialog 91
SelectionCallback 89
Transform3D 91
Transform3DEnd 91
Transform3DStart 91
TraverseCurrent 89

Callback Reasons
XintCR_AREA_SELECTION 93
XintCR_COPY 85, 93
XintCR_CUT 86, 93
XintCR_DATA_BATCH 170, 178, 185, 192, 200

XintCR_DATA_EXTEND 192, 200
XintCR_DATA_GROUP_DELETE_CHILD 170
XintCR_DATA_GROUP_INSERT_CHILD 170
XintCR_DATA_GROUP_UPDATE_CHILD 170
XintCR_DATA_REPLACE 178, 192, 200
XintCR_DATA_SHIFT 192, 200
XintCR_DATA_UPDATE 178, 185, 192, 200
XintCR_DRAG 93
XintCR_DROP 93
XintCR_INSERT_OBJECT 93
XintCR_LOCATOR 93
XintCR_MANAGE_RESOURCE_DIALOG 93
XintCR_OBJECT_ADD_POINT 130
XintCR_OBJECT_DELETE_POINT 130
XintCR_OBJECT_DESELECTION 93
XintCR_OBJECT_EDIT 93
XintCR_OBJECT_EDIT_END 93
XintCR_OBJECT_EDIT_START 93
XintCR_OBJECT_MOVE 130
XintCR_OBJECT_SELECTION 87, 93
XintCR_OBJECT_SHAPE 130
XintCR_PASTE 88, 93
XintCR_RUBBERBAND 93
XintCR_RUBBERBAND_END 93
XintCR_RUBBERBAND_START 93
XintCR_SELECTION 88, 93

Data Structures
Xint3DRotation 244
Xint3DScale 244
XintChartMargins 208
XintConstraint 212
XintDataGridUpdateCallbackStruct 177
XintDataGroupUpdateCallbackStruct 169
ChartObject Programming Guide 283

Index

Data Structures (continued)
XintDataLabelUpdateCallbackStruct 185
XintDataSampledUpdateCallbackStruct 191
XintDataSeriesUpdateCallbackStruct 199
XintEditObjectAreaSelectionCallbackStruct 94
XintEditObjectCallbackStruct 94
XintEditObjectDragDropCallbackStruct 95
XintEditObjectEditCallbackStruct 95
XintEditObjectInsertCallbackStruct 96
XintEditObjectLocatorCallbackStruct 97
XintEditObjectResourceDialogCallbackStruct 97
XintEditObjectRubberbandCallbackStruct 98
XintEditObjectSelectionCallbackStruct 96
XintGeometry 210
XintGraphicVerifyCallbackStruct 130
XintIncrements 237, 246
XintLimits 168, 227, 237, 246
XintLine 140
XintLineVerifyCallbackStruct 141
XintLocation 233
XintPolylineDrawSymbolCallbackStruct 148
XintPolylinePoint 147
XintRange 177, 184, 191
XintRectangle 150
XintRectangleVerifyCallbackStruct 145, 151
XintSymbolLocation 155
XintSymbolScale 155
XintTextLocation 162
XintTextScale 162
XintTextVerifyCallbackStruct 163

Defined Constants
EastGravity 154
NorthGravity 154
SouthGravity 154
WestGravity 154
XC_crosshair 84
XintACTION_EDITOR 113
XintADJACENT 254, 255
XintANCHOR_CENTER 212
XintANCHOR_EAST 212

XintANCHOR_NORTH 212
XintANCHOR_NORTH_EAST 212
XintANCHOR_NORTH_WEST 212
XintANCHOR_SOUTH 212
XintANCHOR_SOUTH_EAST 212
XintANCHOR_SOUTH_WEST 212
XintANCHOR_WEST 212
XintANNOTATION_CROSS 226
XintANNOTATION_INSIDE 226
XintANNOTATION_NONE 226
XintANNOTATION_OUTSIDE 225, 226
XintATTRIBUTE_EDITOR 113
XintBACK 111
XintBACK_TO_FRONT 280
XintCGM_VDC_TYPE_INTEGER 74
XintCGM_VDC_TYPE_REAL 74
XintCGM_WIDTH_MODE_ABSOLUTE 73, 74
XintCGM_WIDTH_MODE_SCALED 73, 74
XintCHART_COMPONENT_CHART 219
XintCHART_COMPONENT_FOOTER 218, 219
XintCHART_COMPONENT_HORIZONTAL_A

XIS 218, 219, 252
XintCHART_COMPONENT_LEGEND 218, 219
XintCHART_COMPONENT_PLOT 218, 219,

252
XintCHART_COMPONENT_SERIES 219
XintCHART_COMPONENT_TITLE 218, 219
XintCHART_COMPONENT_USER_OBJECT

219
XintCHART_COMPONENT_VERTICAL_AXIS

218, 219, 252
XintCHART_TYPE_AREA 209
XintCHART_TYPE_BAR 207, 209
XintCHART_TYPE_BAR_3D 209
XintCHART_TYPE_CELL_ARRAY 209
XintCHART_TYPE_COMBINATION 209
XintCHART_TYPE_HIGH_LOW 209
XintCHART_TYPE_HISTOGRAM 209
XintCHART_TYPE_LINE 209
XintCHART_TYPE_PIE 209
XintCHART_TYPE_SCATTERED 209
XintCHART_TYPE_SURFACE_3D 209
284 ChartObject Programming Guide

Index

XintCOLOR 77, 78
XintCOLOR_EDITOR 113
XintCOLOR_LIST_MODE 259
XintCOMPLEX_ROMAN 242
XintCONSTRAIN_PLACEMENT 212
XintCONTOUR_COLORED_LINE 275
XintCONTOUR_FILL 274, 276
XintCONTOUR_LINE 275
XintCONTOUR_MESH 276
XintCOPY 111
XintCOURIER 161
XintCROSS_HAIR_CURSOR 85, 100
XintCUT 111
XintDASH_TYPE 112
XintDATA_TYPE_DOUBLE 175, 190, 198
XintDATA_TYPE_FLOAT 174, 175, 189, 190,

197, 198
XintDATA_TYPE_INTEGER 175, 190, 198
XintDATA_TYPE_LONG 175, 190, 198
XintDATA_TYPE_SHORT 175, 190, 198
XintDEFAULT 161
XintDOUBLE_ARROW 140
XintEDIT_ADJUST 87
XintEDIT_INSERT 87, 103
XintEDIT_MOVE 87
XintEDIT_NONE 84, 87
XintEDIT_RUBBERBAND 87, 88
XintEDIT_SHAPE 87
XintEDIT_SIZE 87
XintEND_ARROW 140
XintFILL_COLOR 112
XintFILL_NONE 124, 126, 234
XintFILL_OPAQUE_STIPPLED 126, 272
XintFILL_SOLID 126, 239, 250, 256, 267
XintFILL_STIPPLED 126
XintFILL_STYLE 112
XintFILLED 139
XintFONT_SIZE_DEFAULT 161
XintFRONT 111
XintFRONT_TO_BACK 279, 280
XintGROUP 111
XintHALIGN_CENTER 161

XintHALIGN_LEFT 160, 161
XintHALIGN_RIGHT 161
XintHANDLE_BOUNDS 143
XintHANDLE_POINTS 143
XintHELVETICA 160, 161
XintHERSHEY_SIMPLEX 245
XintHERSHEY_TRIPLEX 244
XintHIGHLIGHT_COLOR 127
XintHIGHLIGHT_HANDLE 124, 127, 143, 229,

234, 239, 250
XintHIGHLIGHT_NONE 127
XintHORIZONTAL 110, 254, 279
XintIMAGE_FIXED 136
XintIMAGE_INTERPOLATE 135, 136
XintLABEL_X 182, 183
XintLABEL_Y 183
XintLABEL_Z 183
XintLINE_COLOR 112
XintLINE_DOUBLE_DASH 125, 127, 228, 233
XintLINE_ENDS 112
XintLINE_NONE 127, 225, 228, 232, 233, 239,

251
XintLINE_ON_OFF_DASH 125, 127, 228, 233
XintLINE_SOLID 124, 127, 228, 229, 233, 234,

256, 264, 267, 272
XintLINE_STYLE 112
XintLINE_WIDTH 112
XintLOWER 111
XintMONOCHROME 77, 78
XintMONOCHROME_MESH 275, 276
XintMOSAIC_FILL 276
XintMOVE_ANY 125, 128
XintMOVE_HORIZONTAL 128
XintMOVE_VERTICAL 128
XintNEW_CENTURY_SCHOOLBOOK 161
XintNO_ARROW 139, 140
XintNO_CONTOUR_LINE 274, 275

Defined Constants (continued)
XintNO_FILL 80, 276
XintNO_MESH 276
ChartObject Programming Guide 285

Index

XintOBJECT_EDITOR 113
XintORIENTATION _AUTOMATIC 78, 79
XintORIENTATION _LANDSCAPE 78, 79
XintORIENTATION_PORTRAIT 78, 79
XintOVERLAPPED 255
XintPASTE 111
XintPATTERN_COLOR 112
XintPIXMAP_EDITOR 113
XintPLACEMENT_BOTTOM 235, 236
XintPLACEMENT_INSIDE 236, 237, 238
XintPLACEMENT_LEFT 235, 238
XintPLACEMENT_LEFT_RIGHT 238
XintPLACEMENT_NONE 236, 238
XintPLACEMENT_RIGHT 238
XintPLACEMENT_TOP 236
XintPLACEMENT_TOP_BOTTOM 236
XintPLOT_TYPE_AREA 252
XintPLOT_TYPE_BAR 252
XintPLOT_TYPE_BAR_3D 252
XintPLOT_TYPE_HIGH_LOW 252
XintPLOT_TYPE_HISTOGRAM 252
XintPLOT_TYPE_LINE 252
XintPLOT_TYPE_PIE 252
XintPLOT_TYPE_SCATTERED 252
XintPLOT_TYPE_SURFACE_3D 252
XintRAISE 111
XintROUND_MIN_MAX 235, 236, 238
XintSHADED_FILL 276
XintSHADOW_IN 233
XintSHADOW_OUT 233
XintSIMPLEX_ROMAN 242
XintSLANT_DEFAULT 161
XintSLANT_OBLIQUE 161
XintSLANT_REGULAR 160, 161
XintSTACKED 255
XintSTART_ARROW 140
XintSYMBOL 161
XintSYMBOL_CIRCLE 144, 148, 211
XintSYMBOL_DATA 144
XintSYMBOL_DIAMOND 144, 148, 211
XintSYMBOL_FILLED_CIRCLE 144, 148, 211
XintSYMBOL_FILLED_DIAMOND 144, 148,

211
XintSYMBOL_FILLED_SQUARE 144, 148, 211
XintSYMBOL_FILLED_TRIANGLE 144, 148,

211
XintSYMBOL_PLUS 143, 144, 148, 211, 268
XintSYMBOL_SQUARE 144, 148, 211
XintSYMBOL_TRIANGLE 144, 148, 211
XintSYMBOL_X 144, 148, 211
XintTICK_CROSS 228
XintTICK_INSIDE 228
XintTICK_NONE 228
XintTICK_OUTSIDE 225, 228
XintTIME_DAY 204
XintTIME_HOUR 204
XintTIME_MINUTE 204
XintTIME_MONTH 204
XintTIME_SECOND 203, 204
XintTIME_YEAR 204
XintTIMES 161
XintUNDEFINED_DOUBLE 14
XintUNDEFINED_FLOAT 14, 237
XintUNDEFINED_INTEGER 14
XintUNDEFINED_LONG 14
XintUNDEFINED_SHORT 14
XintUNGROUP 111
XintUSE_MIN_MAX 236, 238
XintVALIGN_BOTTOM 162
XintVALIGN_CENTER 162
XintVALIGN_TOP 160, 162
XintVERTICAL 110, 111, 254, 279
XintWARNING_NONE 71
XintWARNING_POST 70, 71
XintWARNING_PRINT 71
XintWEIGHT_BOLD 161
XintWEIGHT_DEFAULT 161
XintWEIGHT_MEDIUM 160, 161
XintX_VECTOR 174, 176
XintXY_PLANE 243, 245
XintXZ_PLANE 243, 245
XintY_VECTOR 176
XintYZ_PLANE 243, 245
XintZ_VALUE_MODE 259
286 ChartObject Programming Guide

Index

XmUNSPECIFIED_PIXMAP 135, 249

Functions
XintAxisObjectPixelToUser 231
XintAxisObjectUserToPixel 230, 240
XintCGMDrawBox 72
XintCGMGetDimensions 73
XintCGMPixelToInch 73
XintCGMSetEdgeWidthMode 73
XintCGMSetLineWidthMode 74
XintCGMSetVDCType 74
XintChartAssociateData 216
XintChartCreateColorRecord 216
XintChartDisassociateAllData 216
XintChartDisassociateData 217
XintChartFreezeUpdates 217
XintChartGetComponent 217
XintChartGetDataList 218
XintChartGetDataOfSeries 218
XintChartGetSelectedComponent 219
XintChartGetSeriesOfData 220
XintChartInitializeClassConverter 220
XintChartInsertObject 220
XintChartIsTransposed 221
XintChartPick 221
XintChartReadTemplate 221
XintChartSaveTemplate 222
XintChartWidgetGetObject 223
XintChartZoom 59, 222
XintComboPlotCreateNewPlot 251
XintComboPlotGetComponent 252
XintCreateChart 216
XintCreateChartWidget 223
XintCreateDataGrid 179
XintCreateDataGroup 171
XintCreateDataLabel 186
XintCreateDataSampled 193
XintCreateDataSeries 200
XintCreateEditObject 100
XintCreateGroup 134
XintCreateImageObject 137

XintCreateLine 141
XintCreateObjectEditor 116
XintCreateOval 145
XintCreatePolyline 149
XintCreateRectangle 151
XintCreateSymbol 158
XintCreateText 163
XintDataBatchUpdate 171
XintDataGridDataReplace 180
XintDataGridGetGridArray 179
XintDataGroupFind 172
XintDataGroupIterate 172
XintDataLabelExtend 186
XintDataLabelReplace 187
XintDataLabelShift 187
XintDataRangeX 172
XintDataRangeY 172
XintDataRangeZ 172
XintDataSampledDataExtend 193
XintDataSampledDataReplace 194
XintDataSampledDataShift 195
XintDataSampledGetDataArray 194
XintDataSampledGetSampledArray 194
XintDataSeriesDataExtend 201
XintDataSeriesDataReplace 201
XintDataSeriesDataShift 202
XintDataSeriesGetXArray 202
XintDataSeriesGetYArray 202
XintDrawCursorFromData 100
XintEditObjectBack 100
XintEditObjectCopy 100
XintEditObjectCurrent 101
XintEditObjectCut 101
XintEditObjectDeselectAll 101
XintEditObjectDeselectObject 101
XintEditObjectDestroyObject 101
XintEditObjectFreeze 102
XintEditObjectFront 102
Functions (continued)
XintEditObjectGetIntersectList 102
XintEditObjectGetList 103
ChartObject Programming Guide 287

Index

XintEditObjectGroup 103
XintEditObjectInsert 103
XintEditObjectLower 104
XintEditObjectManageResourceDialog 104
XintEditObjectMove 104
XintEditObjectNew 105
XintEditObjectOpen 105
XintEditObjectPaste 105
XintEditObjectRaise 105
XintEditObjectReadFile 105, 108
XintEditObjectSave 106
XintEditObjectSaveAs 106
XintEditObjectSelectAll 106
XintEditObjectSelectList 106
XintEditObjectSelectObject 106
XintEditObjectSetEditMode 107
XintEditObjectSize 107
XintEditObjectUngroup 107
XintEditObjectWriteFile 107
XintGetWidgetSize 75
XintGraphicGetViewPortList 131
XintGraphicUnmanageDialog 131
XintHorizontalPixelToUser 75
XintHorizontalUserToPixel 75
XintIsAxisObject 231
XintIsBar3D 260
XintIsBarLine 256
XintIsCellArray 249
XintIsChart 222
XintIsComboPlot 252
XintIsDataGrid 180
XintIsDataGroup 172
XintIsDataLabel 187
XintIsDataSampled 195
XintIsDataSeries 202
XintIsGraphic 131
XintIsGroup 134
XintIsHighLow 263
XintIsHistogram 266
XintIsImageObject 137
XintIsLegend 234
XintIsLine 141

XintIsOval 145
XintIsPie 271
XintIsPolyline 149
XintIsRectangle 151
XintIsSurface3D 277
XintIsSymbol 158
XintIsText 163
XintIsXYPlot 280
XintObjectEditorAddEditObjectToList 119
XintObjectEditorGetDefinedPixmap 116
XintObjectEditorRemoveEditObjectFromList 119
XintOutputCGM 76
XintOutputMontageCGM 76
XintOutputMontagePostscript 77
XintOutputPostscript 78
XintPieExplodeWedge 271
XintPostscriptGetDefaults 79
XintPostscriptSetBackground 80
XintPostscriptSetDefaults 80
XintResEditGetBox 36
XintResEditGetLabel 37
XintResEditGetMenuButton 37
XintSymbolCreate 158
XintSymbolFree 158
XintVerticalPixelToUser 80
XintVerticalUserToPixel 80

Resources
XintHERSHEY_SIMPLEX 244
XintHERSHEY_TRIPLEX 245
XmN3dPerspectiveDepth 242
XmN3dRotation 242
XmN3dScale 242
XmNactionList 110
XmNactionNumColumns 110
XmNactionOrientation 110
XmNallowDrag 84
XmNallowDrop 84
XmNannotationAngle 225
XmNannotationFont 225
XmNannotationFormat 225
288 ChartObject Programming Guide

Index

XmNannotationPlacement 225
XmNannotationStrokeFont 242
XmNannotationStrokeFontSize 242
XmNareaSelectionCallback 84, 93, 94
XmNarrowLength 139
XmNarrowStyle 139
XmNattributeList 110
XmNattributeNumColumns 110
XmNattributeOrientation 110
XmNaxisLineThickness 225
XmNaxisSpacing 207
XmNbarColorMode 259
XmNbarLength 266
XmNbarLineColor 259
XmNbarLineThickness 259
XmNbarOrientation 254
XmNbarStyle 254
XmNbaseAngle 139
XmNchartFooter 207
XmNchartMargins 207
XmNchartTitle 207
XmNchartType 207
XmNclipGrid 124
XmNcloseEndPoints 147
XmNclusterHeight 259
XmNclusterWidth 254, 259
XmNcolor 124, 229, 234, 239, 250, 257, 264, 267,

272, 281
XmNcolorAttributeList 110
XmNcolorList 110, 207
XmNcolorNumColumns 110
XmNcolorOrientation 110
XmNcolumns 232
XmNconstraint 208, 213
XmNcontourLineColor 274
XmNcontourLineMode 274
XmNcontourLineThickness 274
XmNcopyCallback 84, 93, 95
XmNcopyData 174, 182, 189, 197
XmNcount 189, 197
XmNcursorType 84
XmNcutCallback 84, 93, 95

XmNdashList 124, 229, 234, 239, 250, 257, 264,
267, 272, 281

XmNdataArray 189
XmNdataGroup 174, 182, 189, 197
XmNdataType 174, 189, 197
XmNdisplayName 124
XmNdisplayPatterns 248
XmNdoubleBuffer 207
XmNdragDropCallback 84, 93, 95
XmNdrawCandlestick 262
XmNdrawFrame 235
XmNdrawShadow 254, 259, 270
XmNdrawSymbolCallback 147, 148, 281
XmNeditable 174, 189, 197
XmNeditList 110
XmNeditObjectCallback 84, 93, 94
XmNeditObjects 110
XmNendPoints 225
XmNfillColor 124, 234, 239, 250, 257, 267, 272,

281
XmNfillFilename 124, 234, 239, 250, 257, 267,

272, 281
XmNfillMode 274
XmNfillPixmap 124, 234, 239, 250, 257, 267, 272,

281
XmNfillStyle 124, 234, 239, 250, 257, 267, 272,

281
XmNflip 84
XmNfont 124, 229, 234, 239, 250
XmNfontFamily 160
XmNfontPath 70
XmNfontSize 160
XmNfontSlant 160
XmNfontWeight 160
XmNfreePixmap 135
XmNgainColor 264
XmNgeometry 207
Resources (continued)
XmNgridArray 174
XmNgridOrder 174
XmNgroup 124
ChartObject Programming Guide 289

Index

XmNhandleColor 84
XmNhandleMode 143
XmNhandleSize 84
XmNhighlightMode 124, 229, 234, 239, 250
XmNhistoryLength 167
XmNhorizontalAxis 124
XmNhorizontalTextAlignment 160
XmNiconWidth 232
XmNimageColorRecord 135
XmNimageDisplayMode 135
XmNimagePixmap 135
XmNinclination 254, 270
XmNincrements 225
XmNinsertObjectCallback 84, 93, 96
XmNlabel 225
XmNlabelCount 182
XmNlabelFont 225
XmNlabelGravity 154
XmNlabelOrientation 182
XmNlabelPositionArray 182
XmNlabelSpacing 154
XmNlabelStrings 182
XmNlabelStrokeFont 242
XmNlabelStrokeFontSize 242
XmNlastViewDestroy 167, 174, 182, 189, 197
XmNlegendAnnotationFormat 248
XmNlegendLocation 232
XmNlegendTitle 232
XmNlimits 225
XmNlimitsX 167
XmNlimitsY 167
XmNlimitsZ 167
XmNline 139
XmNlineEnd 139
XmNlineStyle 124, 229, 232, 234, 239, 251, 257,

264, 267, 272, 281
XmNlineThickness 125, 229, 234, 239, 251, 257,

264, 267, 272, 281
XmNlist 134
XmNlistCount 134
XmNlocatorCallback 84, 93, 97
XmNlogScale 225

XmNlossColor 264
XmNmajorGridLineStyle 225
XmNmarginHeight 160, 232
XmNmarginWidth 160, 232
XmNmeshColor 274
XmNmeshDrawX 274
XmNmeshDrawY 274
XmNmeshLineThickness 275
XmNmeshMode 275
XmNminimumLabelSpacing 225
XmNminorGridLineStyle 225
XmNmove 125, 229, 234, 239, 251
XmNmoveDirection 125
XmNname 125
XmNnullValue 147
XmNnumColumns 110
XmNnumEditObjects 110
XmNnumGridX 275
XmNnumGridY 275
XmNnumGridZ 275
XmNobjectClassList 110
XmNobjectDeselectionCallback 84, 93, 96
XmNobjectEditMode 84
XmNobjectSelectionCallback 84, 93, 96
XmNorientation 110
XmNpasteCallback 84, 93, 95
XmNpatternList 248
XmNperspectiveDepth 254, 270
XmNpieSize 270
XmNpixmapList 111
XmNpixmapNumColumns 111
XmNpixmapOrientation 111
XmNplotOrientation 279
XmNpointArray 147
XmNpointCount 147
XmNpointSelectionTolerance 85
XmNpropagate 134, 207, 235
XmNproportional 254
XmNrectangle 150
XmNresourceDialog 125
XmNresourceDialogCallback 85, 93, 97
XmNreverseOrder 225
290 ChartObject Programming Guide

Index

XmNrotateAngle 150, 160
XmNrotation 254
XmNroundEdge 150
XmNrubberbandCallback 85, 93, 98
XmNsampledRange 182, 189
XmNselectionCallback 85, 93, 94
XmNsensitive 125, 229, 234, 239, 251, 257, 264,

267, 272, 281
XmNshape 125, 229, 234, 239, 251
XmNshowAttributeLabels 111
XmNshowClose 262
XmNshowCumulative 266
XmNshowDistribution 266
XmNshowGainLoss 262
XmNshowLegend 207
XmNshowOpen 262
XmNshowPieName 270
XmNshowWedgeLabels 270
XmNsolidSurface 275
XmNstackingOrder 279
XmNstippleColor 125, 229, 234, 239, 251, 257,

267, 272, 281
XmNsurfaceBottomColor 275
XmNsurfaceTopColor 275
XmNsymbol 143, 257, 268, 279, 281
XmNsymbolColor 143, 257, 268, 281
XmNsymbolCount 207
XmNsymbolData 143, 154
XmNsymbolHeight 154
XmNsymbolList 207
XmNsymbolLocation 154
XmNsymbolScale 154
XmNsymbolSize 143, 257, 268, 279, 281
XmNsymbolType 143, 257, 268, 281
XmNsymbolWidth 154
XmNtextLocation 160
XmNtextScale 160
XmNtextString 160
XmNtickLength 262
XmNtickPlacement 225
XmNtimeBase 203
XmNtimeLabelFormat 203

XmNtimeMeasure 203
XmNtipAngle 139
XmNtranspose 207
XmNupdateCallback 174, 182, 189, 197
XmNuserData 125
XmNverifyCallback 125, 130, 145
XmNverticalAxis 125
XmNverticalTextAlignment 160
XmNviewScale 242
XmNvisible 125
XmNvisibleEntryCount 232
XmNwallColor 243
XmNwarning 70
XmNxAnnotation 242
XmNxAnnotationFormat 242
XmNxArray 197
XmNxAutoRangeMode 235
XmNxAxisOffset 242
XmNxAxisPlacement 235
XmNxCount 174
XmNxGridLines 243
XmNxIncrements 235, 243
XmNxInsidePlacement 235
XmNxLabel 243
XmNxLimits 235, 243
XmNxRange 174
XmNxTranslation 243
XmNyAnnotation 242
XmNyAnnotationFormat 242
XmNyArray 197
XmNyAutoRangeMode 235
XmNyAxisOffset 243
XmNyAxisPlacement 235
XmNyCount 174
XmNyGridLines 243
XmNyIncrements 235, 243
XmNyInsidePlacement 235
Resources (continued)
XmNyLabel 243
XmNyLimits 235, 243
XmNyRange 174
ChartObject Programming Guide 291

Index

XmNyTranslation 243
XmNzAnnotation 242
XmNzAnnotationFormat 242
XmNzAxisOffset 243
XmNzGridLines 243
XmNzIncrements 243
XmNzLabel 243
XmNzLimits 243
XmNzValueColorRecord 207
292 ChartObject Programming Guide

Index
ChartObject Programming Guide 293

Index
Callback Reasons
XintCR_AREA_SELECTION 93
XintCR_COPY 85, 93
XintCR_CUT 86, 93
XintCR_DATA_BATCH 170, 178, 185, 192,

200
XintCR_DATA_EXTEND 192, 200
XintCR_DATA_GROUP_DELETE_CHILD 170
XintCR_DATA_GROUP_INSERT_CHILD 170
XintCR_DATA_GROUP_UPDATE_CHILD

170
XintCR_DATA_REPLACE 178, 192, 200
XintCR_DATA_SHIFT 192, 200
XintCR_DATA_UPDATE 178, 185, 192, 200
XintCR_DRAG 93
XintCR_DROP 93
XintCR_INSERT_OBJECT 93
XintCR_LOCATOR 93
XintCR_MANAGE_RESOURCE_DIALOG 93
XintCR_OBJECT_ADD_POINT 130
XintCR_OBJECT_DELETE_POINT 130
XintCR_OBJECT_DESELECTION 93
XintCR_OBJECT_EDIT 93
XintCR_OBJECT_EDIT_END 93
XintCR_OBJECT_EDIT_START 93
XintCR_OBJECT_MOVE 130
XintCR_OBJECT_SELECTION 87, 93
XintCR_OBJECT_SHAPE 130
XintCR_PASTE 88, 93
XintCR_RUBBERBAND 93
XintCR_RUBBERBAND_END 93
XintCR_RUBBERBAND_START 93
XintCR_SELECTION 88, 93
284 ChartObject Programming Guide

Index
ChartObject Programming Guide 285

Index
Data Structures
Xint3DRotation 244
Xint3DScale 244
XintChartMargins 208
XintConstraint 212
XintDataGridUpdateCallbackStruct 177
XintDataGroupUpdateCallbackStruct 169
XintDataLabelUpdateCallbackStruct 185
XintDataSampledUpdateCallbackStruct 191
XintDataSeriesUpdateCallbackStruct 199
XintEditObjectAreaSelectionCallbackStruct 94
XintEditObjectCallbackStruct 94
XintEditObjectDragDropCallbackStruct 95
XintEditObjectEditCallbackStruct 95
XintEditObjectInsertCallbackStruct 96
XintEditObjectLocatorCallbackStruct 97
XintEditObjectResourceDialogCallbackStruct 97
XintEditObjectRubberbandCallbackStruct 98
XintEditObjectSelectionCallbackStruct 96
XintGeometry 210
XintGraphicVerifyCallbackStruct 130
XintIncrements 237, 246
XintLimits 168, 227, 237, 246
XintLine 140
XintLineVerifyCallbackStruct 141
XintLocation 233
XintPolylineDrawSymbolCallbackStruct 148
XintPolylinePoint 147
XintRange 177, 184, 191
XintRectangle 150
XintRectangleVerifyCallbackStruct 145, 151
XintSymbolLocation 155
XintSymbolScale 155
XintTextLocation 162
XintTextScale 162
XintTextVerifyCallbackStruct 163
286 ChartObject Programming Guide

Index
ChartObject Programming Guide 287

Index
Defined Constants
E
EastGravity 154
NorthGravity 154
SouthGravity 154
WestGravity 154
XC_crosshair 84
XintACTION_EDITOR 113
XintADJACENT 254, 255
XintANCHOR_CENTER 212
XintANCHOR_EAST 212
XintANCHOR_NORTH 212
XintANCHOR_NORTH_EAST 212
XintANCHOR_NORTH_WEST 212
XintANCHOR_SOUTH 212
XintANCHOR_SOUTH_EAST 212
XintANCHOR_SOUTH_WEST 212
XintANCHOR_WEST 212
XintANNOTATION_CROSS 226
XintANNOTATION_INSIDE 226
XintANNOTATION_NONE 226
XintANNOTATION_OUTSIDE 225, 226
XintATTRIBUTE_EDITOR 113
XintBACK 111
XintBACK_TO_FRONT 280
XintCGM_VDC_TYPE_INTEGER 74
XintCGM_VDC_TYPE_REAL 74
XintCGM_WIDTH_MODE_ABSOLUTE 73, 74
XintCGM_WIDTH_MODE_SCALED 73, 74
XintCHART_COMPONENT_CHART 219
XintCHART_COMPONENT_FOOTER 218,

219
XintCHART_COMPONENT_HORIZONTAL_A

XIS 218, 219, 252
XintCHART_COMPONENT_LEGEND 218,

219
XintCHART_COMPONENT_PLOT 218, 219,

252
XintCHART_COMPONENT_SERIES 219
XintCHART_COMPONENT_TITLE 218, 219

XintCHART_COMPONENT_USER_OBJECT
219

XintCHART_COMPONENT_VERTICAL_AXIS
218, 219, 252

XintCHART_TYPE_AREA 209
XintCHART_TYPE_BAR 207, 209
XintCHART_TYPE_BAR_3D 209
XintCHART_TYPE_CELL_ARRAY 209
XintCHART_TYPE_COMBINATION 209
XintCHART_TYPE_HIGH_LOW 209
XintCHART_TYPE_HISTOGRAM 209
XintCHART_TYPE_LINE 209
XintCHART_TYPE_PIE 209
XintCHART_TYPE_SCATTERED 209
XintCHART_TYPE_SURFACE_3D 209
XintCOLOR 77, 78
XintCOLOR_EDITOR 113
XintCOLOR_LIST_MODE 259
XintCOMPLEX_ROMAN 242
XintCONSTRAIN_PLACEMENT 212
XintCONTOUR_COLORED_LINE 275
XintCONTOUR_FILL 274, 276
XintCONTOUR_LINE 275
XintCONTOUR_MESH 276
XintCOPY 111
XintCOURIER 161
XintCROSS_HAIR_CURSOR 85, 100
XintCUT 111
XintDASH_TYPE 112
XintDATA_TYPE_DOUBLE 175, 190, 198
XintDATA_TYPE_FLOAT 174, 175, 189,

190, 197, 198
XintDATA_TYPE_INTEGER 175, 190, 198
XintDATA_TYPE_LONG 175, 190, 198
XintDATA_TYPE_SHORT 175, 190, 198
XintDEFAULT 161
XintDOUBLE_ARROW 140
XintEDIT_ADJUST 87
XintEDIT_INSERT 87, 103
XintEDIT_MOVE 87
288 ChartObject Programming Guide

Index
XintEDIT_NONE 84, 87
XintEDIT_RUBBERBAND 87, 88
XintEDIT_SHAPE 87
XintEDIT_SIZE 87
XintEND_ARROW 140
XintFILL_COLOR 112
XintFILL_NONE 124, 126, 234
XintFILL_OPAQUE_STIPPLED 126, 272
XintFILL_SOLID 126, 239, 250, 256, 267
XintFILL_STIPPLED 126
XintFILL_STYLE 112
XintFILLED 139
XintFONT_SIZE_DEFAULT 161
XintFRONT 111
XintFRONT_TO_BACK 279, 280
XintGROUP 111
XintHALIGN_CENTER 161
XintHALIGN_LEFT 160, 161
XintHALIGN_RIGHT 161
XintHANDLE_BOUNDS 143
XintHANDLE_POINTS 143
XintHELVETICA 160, 161
XintHERSHEY_SIMPLEX 245
XintHERSHEY_TRIPLEX 244
XintHIGHLIGHT_COLOR 127
XintHIGHLIGHT_HANDLE 124, 127, 143,

229, 234, 239, 250
XintHIGHLIGHT_NONE 127
XintHORIZONTAL 110, 254, 279
XintIMAGE_FIXED 136
XintIMAGE_INTERPOLATE 135, 136
XintLABEL_X 182, 183
XintLABEL_Y 183
XintLABEL_Z 183
XintLINE_COLOR 112
XintLINE_DOUBLE_DASH 125, 127, 228,

233
XintLINE_ENDS 112
XintLINE_NONE 127, 225, 228, 232, 233,

239, 251

XintLINE_ON_OFF_DASH 125, 127, 228,
233

XintLINE_SOLID 124, 127, 228, 229, 233,
234, 256, 264, 267, 272

XintLINE_STYLE 112
XintLINE_WIDTH 112
XintLOWER 111
XintMONOCHROME 77, 78
XintMONOCHROME_MESH 275, 276
XintMOSAIC_FILL 276
XintMOVE_ANY 125, 128
XintMOVE_HORIZONTAL 128
XintMOVE_VERTICAL 128
XintNEW_CENTURY_SCHOOLBOOK 161
XintNO_ARROW 139, 140
XintNO_CONTOUR_LINE 274, 275
XintNO_FILL 80, 276
XintNO_MESH 276
XintOBJECT_EDITOR 113
XintORIENTATION _AUTOMATIC 78, 79
XintORIENTATION _LANDSCAPE 78, 79
XintORIENTATION_PORTRAIT 78, 79
XintOVERLAPPED 255
XintPASTE 111
XintPATTERN_COLOR 112
XintPIXMAP_EDITOR 113
XintPLACEMENT_BOTTOM 235, 236
XintPLACEMENT_INSIDE 236, 237, 238
XintPLACEMENT_LEFT 235, 238
XintPLACEMENT_LEFT_RIGHT 238
XintPLACEMENT_NONE 236, 238
XintPLACEMENT_RIGHT 238
XintPLACEMENT_TOP 236
XintPLACEMENT_TOP_BOTTOM 236
XintPLOT_TYPE_AREA 252
XintPLOT_TYPE_BAR 252
XintPLOT_TYPE_BAR_3D 252
XintPLOT_TYPE_HIGH_LOW 252
XintPLOT_TYPE_HISTOGRAM 252
XintPLOT_TYPE_LINE 252
ChartObject Programming Guide 289

Index
XintPLOT_TYPE_PIE 252
XintPLOT_TYPE_SCATTERED 252
XintPLOT_TYPE_SURFACE_3D 252
XintRAISE 111
XintROUND_MIN_MAX 235, 236, 238
XintSHADED_FILL 276
XintSHADOW_IN 233
XintSHADOW_OUT 233
XintSIMPLEX_ROMAN 242
XintSLANT_DEFAULT 161
XintSLANT_OBLIQUE 161
XintSLANT_REGULAR 160, 161
XintSTACKED 255
XintSTART_ARROW 140
XintSYMBOL 161
XintSYMBOL_CIRCLE 144, 148, 211
XintSYMBOL_DATA 144
XintSYMBOL_DIAMOND 144, 148, 211
XintSYMBOL_FILLED_CIRCLE 144, 148,

211
XintSYMBOL_FILLED_DIAMOND 144, 148,

211
XintSYMBOL_FILLED_SQUARE 144, 148,

211
XintSYMBOL_FILLED_TRIANGLE 144, 148,

211
XintSYMBOL_PLUS 143, 144, 148, 211, 268
XintSYMBOL_SQUARE 144, 148, 211
XintSYMBOL_TRIANGLE 144, 148, 211
XintSYMBOL_X 144, 148, 211
XintTICK_CROSS 228
XintTICK_INSIDE 228
XintTICK_NONE 228
XintTICK_OUTSIDE 225, 228
XintTIME_DAY 204
XintTIME_HOUR 204
XintTIME_MINUTE 204
XintTIME_MONTH 204
XintTIME_SECOND 203, 204
XintTIME_YEAR 204

XintTIMES 161
XintUNDEFINED_DOUBLE 14
XintUNDEFINED_FLOAT 14, 237
XintUNDEFINED_INTEGER 14
XintUNDEFINED_LONG 14
XintUNDEFINED_SHORT 14
XintUNGROUP 111
XintUSE_MIN_MAX 236, 238
XintVALIGN_BOTTOM 162
XintVALIGN_CENTER 162
XintVALIGN_TOP 160, 162
XintVERTICAL 110, 111, 254, 279
XintWARNING_NONE 71
XintWARNING_POST 70, 71
XintWARNING_PRINT 71
XintWEIGHT_BOLD 161
XintWEIGHT_DEFAULT 161
XintWEIGHT_MEDIUM 160, 161
XintX_VECTOR 174, 176
XintXY_PLANE 243, 245
XintXZ_PLANE 243, 245
XintY_VECTOR 176
XintYZ_PLANE 243, 245
XintZ_VALUE_MODE 259
XmUNSPECIFIED_PIXMAP 135, 249
290 ChartObject Programming Guide

Index
ChartObject Programming Guide 291

Index
Functions
XintAxisObjectPixelToUser 231
XintAxisObjectUserToPixel 230, 240
XintCGMDrawBox 72
XintCGMGetDimensions 73
XintCGMPixelToInch 73
XintCGMSetEdgeWidthMode 73
XintCGMSetLineWidthMode 74
XintCGMSetVDCType 74
XintChartAssociateData 216
XintChartCreateColorRecord 216
XintChartDisassociateAllData 216
XintChartDisassociateData 217
XintChartFreezeUpdates 217
XintChartGetComponent 217
XintChartGetDataList 218
XintChartGetDataOfSeries 218
XintChartGetSelectedComponent 219
XintChartGetSeriesOfData 220
XintChartInitializeClassConverter 220
XintChartInsertObject 220
XintChartIsTransposed 221
XintChartPick 221
XintChartReadTemplate 221
XintChartSaveTemplate 222
XintChartWidgetGetObject 223
XintChartZoom 59, 222
XintComboPlotCreateNewPlot 251
XintComboPlotGetComponent 252
XintCreateChart 216
XintCreateChartWidget 223
XintCreateDataGrid 179
XintCreateDataGroup 171
XintCreateDataLabel 186
XintCreateDataSampled 193
XintCreateDataSeries 200
XintCreateEditObject 100
XintCreateGroup 134
XintCreateImageObject 137
XintCreateLine 141

XintCreateObjectEditor 116
XintCreateOval 145
XintCreatePolyline 149
XintCreateRectangle 151
XintCreateSymbol 158
XintCreateText 163
XintDataBatchUpdate 171
XintDataGridDataReplace 180
XintDataGridGetGridArray 179
XintDataGroupFind 172
XintDataGroupIterate 172
XintDataLabelExtend 186
XintDataLabelReplace 187
XintDataLabelShift 187
XintDataRangeX 172
XintDataRangeY 172
XintDataRangeZ 172
XintDataSampledDataExtend 193
XintDataSampledDataReplace 194
XintDataSampledDataShift 195
XintDataSampledGetDataArray 194
XintDataSampledGetSampledArray 194
XintDataSeriesDataExtend 201
XintDataSeriesDataReplace 201
XintDataSeriesDataShift 202
XintDataSeriesGetXArray 202
XintDataSeriesGetYArray 202
XintDrawCursorFromData 100
XintEditObjectBack 100
XintEditObjectCopy 100
XintEditObjectCurrent 101
XintEditObjectCut 101
XintEditObjectDeselectAll 101
XintEditObjectDeselectObject 101
XintEditObjectDestroyObject 101
XintEditObjectFreeze 102
XintEditObjectFront 102
XintEditObjectGetIntersectList 102
XintEditObjectGetList 103
XintEditObjectGroup 103
292 ChartObject Programming Guide

Index
XintEditObjectInsert 103
XintEditObjectLower 104
XintEditObjectManageResourceDialog 104
XintEditObjectMove 104
XintEditObjectNew 105
XintEditObjectOpen 105
XintEditObjectPaste 105
XintEditObjectRaise 105
XintEditObjectReadFile 105, 108
XintEditObjectSave 106
XintEditObjectSaveAs 106
XintEditObjectSelectAll 106
XintEditObjectSelectList 106
XintEditObjectSelectObject 106
XintEditObjectSetEditMode 107
XintEditObjectSize 107
XintEditObjectUngroup 107
XintEditObjectWriteFile 107
XintGetWidgetSize 75
XintGraphicGetViewPortList 131
XintGraphicUnmanageDialog 131
XintHorizontalPixelToUser 75
XintHorizontalUserToPixel 75
XintIsAxisObject 231
XintIsBar3D 260
XintIsBarLine 256
XintIsCellArray 249
XintIsChart 222
XintIsComboPlot 252
XintIsDataGrid 180
XintIsDataGroup 172
XintIsDataLabel 187
XintIsDataSampled 195
XintIsDataSeries 202
XintIsGraphic 131
XintIsGroup 134
XintIsHighLow 263
XintIsHistogram 266
XintIsImageObject 137
XintIsLegend 234

XintIsLine 141
XintIsOval 145
XintIsPie 271
XintIsPolyline 149
XintIsRectangle 151
XintIsSurface3D 277
XintIsSymbol 158
XintIsText 163
XintIsXYPlot 280
XintObjectEditorAddEditObjectToList 119
XintObjectEditorGetDefinedPixmap 116
XintObjectEditorRemoveEditObjectFromList

119
XintOutputCGM 76
XintOutputMontageCGM 76
XintOutputMontagePostscript 77
XintOutputPostscript 78
XintPieExplodeWedge 271
XintPostscriptGetDefaults 79
XintPostscriptSetBackground 80
XintPostscriptSetDefaults 80
XintResEditGetBox 36
XintResEditGetLabel 37
XintResEditGetMenuButton 37
XintSymbolCreate 158
XintSymbolFree 158
XintVerticalPixelToUser 80
XintVerticalUserToPixel 80
ChartObject Programming Guide 293

Index
Resources
XintHERSHEY_SIMPLEX 244
XintHERSHEY_TRIPLEX 245
XmN3dPerspectiveDepth 242
XmN3dRotation 242
XmN3dScale 242
XmNactionList 110
XmNactionNumColumns 110
XmNactionOrientation 110
XmNallowDrag 84
XmNallowDrop 84
XmNannotationAngle 225
XmNannotationFont 225
XmNannotationFormat 225
XmNannotationPlacement 225
XmNannotationStrokeFont 242
XmNannotationStrokeFontSize 242
XmNareaSelectionCallback 84, 93, 94
XmNarrowLength 139
XmNarrowStyle 139
XmNattributeList 110
XmNattributeNumColumns 110
XmNattributeOrientation 110
XmNaxisLineThickness 225
XmNaxisSpacing 207
XmNbarColorMode 259
XmNbarLength 266
XmNbarLineColor 259
XmNbarLineThickness 259
XmNbarOrientation 254
XmNbarStyle 254
XmNbaseAngle 139
XmNchartFooter 207
XmNchartMargins 207
XmNchartTitle 207
XmNchartType 207
XmNclipGrid 124
XmNcloseEndPoints 147
XmNclusterHeight 259
XmNclusterWidth 254, 259

XmNcolor 124, 229, 234, 239, 250, 257,
264, 267, 272, 281

XmNcolorAttributeList 110
XmNcolorList 110, 207
XmNcolorNumColumns 110
XmNcolorOrientation 110
XmNcolumns 232
XmNconstraint 208, 213
XmNcontourLineColor 274
XmNcontourLineMode 274
XmNcontourLineThickness 274
XmNcopyCallback 84, 93, 95
XmNcopyData 174, 182, 189, 197
XmNcount 189, 197
XmNcursorType 84
XmNcutCallback 84, 93, 95
XmNdashList 124, 229, 234, 239, 250, 257,

264, 267, 272, 281
XmNdataArray 189
XmNdataGroup 174, 182, 189, 197
XmNdataType 174, 189, 197
XmNdisplayName 124
XmNdisplayPatterns 248
XmNdoubleBuffer 207
XmNdragDropCallback 84, 93, 95
XmNdrawCandlestick 262
XmNdrawFrame 235
XmNdrawShadow 254, 259, 270
XmNdrawSymbolCallback 147, 148, 281
XmNeditable 174, 189, 197
XmNeditList 110
XmNeditObjectCallback 84, 93, 94
XmNeditObjects 110
XmNendPoints 225
XmNfillColor 124, 234, 239, 250, 257, 267,

272, 281
XmNfillFilename 124, 234, 239, 250, 257,

267, 272, 281
XmNfillMode 274
XmNfillPixmap 124, 234, 239, 250, 257,
294 ChartObject Programming Guide

Index
267, 272, 281
XmNfillStyle 124, 234, 239, 250, 257, 267,

272, 281
XmNflip 84
XmNfont 124, 229, 234, 239, 250
XmNfontFamily 160
XmNfontPath 70
XmNfontSize 160
XmNfontSlant 160
XmNfontWeight 160
XmNfreePixmap 135
XmNgainColor 264
XmNgeometry 207
XmNgridArray 174
XmNgridOrder 174
XmNgroup 124
XmNhandleColor 84
XmNhandleMode 143
XmNhandleSize 84
XmNhighlightMode 124, 229, 234, 239, 250
XmNhistoryLength 167
XmNhorizontalAxis 124
XmNhorizontalTextAlignment 160
XmNiconWidth 232
XmNimageColorRecord 135
XmNimageDisplayMode 135
XmNimagePixmap 135
XmNinclination 254, 270
XmNincrements 225
XmNinsertObjectCallback 84, 93, 96
XmNlabel 225
XmNlabelCount 182
XmNlabelFont 225
XmNlabelGravity 154
XmNlabelOrientation 182
XmNlabelPositionArray 182
XmNlabelSpacing 154
XmNlabelStrings 182
XmNlabelStrokeFont 242
XmNlabelStrokeFontSize 242

XmNlastViewDestroy 167, 174, 182, 189, 197
XmNlegendAnnotationFormat 248
XmNlegendLocation 232
XmNlegendTitle 232
XmNlimits 225
XmNlimitsX 167
XmNlimitsY 167
XmNlimitsZ 167
XmNline 139
XmNlineEnd 139
XmNlineStyle 124, 229, 232, 234, 239, 251,

257, 264, 267, 272, 281
XmNlineThickness 125, 229, 234, 239, 251,

257, 264, 267, 272, 281
XmNlist 134
XmNlistCount 134
XmNlocatorCallback 84, 93, 97
XmNlogScale 225
XmNlossColor 264
XmNmajorGridLineStyle 225
XmNmarginHeight 160, 232
XmNmarginWidth 160, 232
XmNmeshColor 274
XmNmeshDrawX 274
XmNmeshDrawY 274
XmNmeshLineThickness 275
XmNmeshMode 275
XmNminimumLabelSpacing 225
XmNminorGridLineStyle 225
XmNmove 125, 229, 234, 239, 251
XmNmoveDirection 125
XmNname 125
XmNnullValue 147
XmNnumColumns 110
XmNnumEditObjects 110
XmNnumGridX 275
XmNnumGridY 275
XmNnumGridZ 275
XmNobjectClassList 110
XmNobjectDeselectionCallback 84, 93, 96
ChartObject Programming Guide 295

Index
XmNobjectEditMode 84
XmNobjectSelectionCallback 84, 93, 96
XmNorientation 110
XmNpasteCallback 84, 93, 95
XmNpatternList 248
XmNperspectiveDepth 254, 270
XmNpieSize 270
XmNpixmapList 111
XmNpixmapNumColumns 111
XmNpixmapOrientation 111
XmNplotOrientation 279
XmNpointArray 147
XmNpointCount 147
XmNpointSelectionTolerance 85
XmNpropagate 134, 207, 235
XmNproportional 254
XmNrectangle 150
XmNresourceDialog 125
XmNresourceDialogCallback 85, 93, 97
XmNreverseOrder 225
XmNrotateAngle 150, 160
XmNrotation 254
XmNroundEdge 150
XmNrubberbandCallback 85, 93, 98
XmNsampledRange 182, 189
XmNselectionCallback 85, 93, 94
XmNsensitive 125, 229, 234, 239, 251, 257,

264, 267, 272, 281
XmNshape 125, 229, 234, 239, 251
XmNshowAttributeLabels 111
XmNshowClose 262
XmNshowCumulative 266
XmNshowDistribution 266
XmNshowGainLoss 262
XmNshowLegend 207
XmNshowOpen 262
XmNshowPieName 270
XmNshowWedgeLabels 270
XmNsolidSurface 275
XmNstackingOrder 279

XmNstippleColor 125, 229, 234, 239, 251,
257, 267, 272, 281

XmNsurfaceBottomColor 275
XmNsurfaceTopColor 275
XmNsymbol 143, 257, 268, 279, 281
XmNsymbolColor 143, 257, 268, 281
XmNsymbolCount 207
XmNsymbolData 143, 154
XmNsymbolHeight 154
XmNsymbolList 207
XmNsymbolLocation 154
XmNsymbolScale 154
XmNsymbolSize 143, 257, 268, 279, 281
XmNsymbolType 143, 257, 268, 281
XmNsymbolWidth 154
XmNtextLocation 160
XmNtextScale 160
XmNtextString 160
XmNtickLength 262
XmNtickPlacement 225
XmNtimeBase 203
XmNtimeLabelFormat 203
XmNtimeMeasure 203
XmNtipAngle 139
XmNtranspose 207
XmNupdateCallback 174, 182, 189, 197
XmNuserData 125
XmNverifyCallback 125, 130, 145
XmNverticalAxis 125
XmNverticalTextAlignment 160
XmNviewScale 242
XmNvisible 125
XmNvisibleEntryCount 232
XmNwallColor 243
XmNwarning 70
XmNxAnnotation 242
XmNxAnnotationFormat 242
XmNxArray 197
XmNxAutoRangeMode 235
XmNxAxisOffset 242
296 ChartObject Programming Guide

Index
XmNxAxisPlacement 235
XmNxCount 174
XmNxGridLines 243
XmNxIncrements 235, 243
XmNxInsidePlacement 235
XmNxLabel 243
XmNxLimits 235, 243
XmNxRange 174
XmNxTranslation 243
XmNyAnnotation 242
XmNyAnnotationFormat 242
XmNyArray 197
XmNyAutoRangeMode 235
XmNyAxisOffset 243
XmNyAxisPlacement 235
XmNyCount 174
XmNyGridLines 243
XmNyIncrements 235, 243
XmNyInsidePlacement 235
XmNyLabel 243
XmNyLimits 235, 243
XmNyRange 174
XmNyTranslation 243
XmNzAnnotation 242
XmNzAnnotationFormat 242
XmNzAxisOffset 243
XmNzGridLines 243
XmNzIncrements 243
XmNzLabel 243
XmNzLimits 243
XmNzValueColorRecord 207
ChartObject Programming Guide 297

	ChartObject Programming Guide
	How to Use This Manual
	Chapter 1- ChartObject Components
	Chapter 2- Widget Reference
	Chapter 3- Graphic Object Reference
	Chapter 4- DataObject Reference
	Chapter 5- Chart Object Reference
	preface.pdf
	How to Use This Manual
	Overview
	Introduction
	Document Road Map
	Notation Conventions

	intro.pdf
	ChartObject Components 1
	Overview
	Introduction to ChartObject
	MVC architecture
	Figure 1. Multiple Views of a Data Object

	ChartObject library
	Object Architecture

	Xt Object Class
	Parent widget
	Graphic Object Library Components
	Coordinate System
	Class Hierarchy
	Figure 2. GraphicObject Library Class Hierarchy

	Object Interface

	Using Xt creation functions
	Code
	Changing object attributes
	Destroying an object
	Pointer Resources

	Example
	Hello World Example

	Example
	Figure 3. Hello World Example
	DataObject
	DataObject Components
	Examples
	Figure 4. Bar Chart View of Grouped DataSampled Objects

	Example
	Understanding Groups
	Figure 5. Example of a DataObject Group

	Linked Views
	Drag and Drop
	Missing Values
	Creating a View
	Data Editing

	Replacing a sample in a type float object
	Inserting new DataSampled objects
	Memory Allocation
	Navigating Inside a DataGroup

	Printing name of all data objects
	Components of ChartObject

	Object classes
	Creating a 2D Bar Chart Example

	Code
	Figure 6. Horizontal Stacked Bars
	Chart Components for 2D Plots
	Figure 7. Components Created by Chart for a 2D Plot
	Figure 8. Components of a 2D Chart

	Components created when displaying a 2D plot
	Chart Components for 3D Plots
	Figure 9. Components Created by Chart for a 3D Plot
	Figure 10. Components of a 3D Chart

	Components created when displaying a 3D plot
	Class Hierarchy
	Figure 11. Class Inheritance Diagram

	Customizing Chart Components

	Code
	Code
	Transposition
	Figure 12. Transposition Example

	Combination of Plots
	Figure 13. Combination Plot Example

	Combining plots
	Combination Plot Example

	Plot composition
	Figure 14. Relationship Between Objects Created in Combination Plot Example
	Auto-scaling
	Creating And Using Templates
	Object Editing
	Object Selection

	Example
	Moving and Resizing Objects
	Verify Callback
	Built-in Resource Editor
	Figure 15. Built-in Chart Editor

	Code
	Customization of a Built-In Resource Editor

	Code
	Creating Your Own Resource Editor

	Code
	Code
	Code
	Setting Resources
	Using Hardcoded Resources
	Resource File

	Setting a value to an INT constant
	Changing resources for all TextObjects
	Changing only chart title resources
	Restricted Resources
	Resource File Example
	Figure 16. Simple Bar Chart Without a Resource File
	Figure 17. Bar Chart With a Resource File

	Resource file
	Graphic Attributes

	ObjectEditor widget
	ObjectEditor Example
	Figure 18. ObjectEditor Example Output

	Editing Functions

	Implementing functionality
	Drag and Drop

	Default behavior
	Hardcopy
	PostScript Output

	Layout example
	Figure 19. Composite Layout Example
	Figure 20. Composite PostScript Output Example
	CGM Output
	Real-time Applications

	Example
	Code
	Zoom
	Figure 21. Chart Zoom Example
	Data Viewport

	Code
	Chart Zoom Example

	Code
	Customizing or Creating New Chart Types
	Inserting Application’s Defined Objects

	Example
	Customizing an Existing Chart

	Example
	Figure 22. Customized Chart
	Creating a New Chart Type

	Code
	Figure 23. Creating a New Chart Type

	widget.pdf
	Widget Reference 2
	Overview
	CompBase Widget Metaclass
	Inherited Behavior and Resources
	CompBase Resources
	XmNfontPath
	XmNwarning

	CompBase Functions
	XintCGMDrawBox
	XintCGMGetDimensions
	XintCGMPixelToInch
	XintCGMSetEdgeWidthMode
	XintCGMSetLineWidthMode
	XintCGMSetVDCType
	XintGetWidgetSize
	XintHorizontalPixelToUser
	XintHorizontalUserToPixel
	XintOutputCGM
	XintOutputMontageCGM
	XintOutputMontagePostscript
	XintOutputPostscript
	XintPostscriptGetDefaults
	XintPostscriptSetBackground
	XintPostscriptSetDefaults
	XintVerticalPixelToUser
	XintVerticalUserToPixel

	EditObject Widget Class
	Coordinate System
	Object Selection
	Object Editing
	Object Display
	Input/Output
	Clipboard
	Locator
	EditObject Widget Appearance
	Figure 24. EditObject Containing a Chart and Various Graphic Objects

	Inherited Behavior and Resources
	EditObject Resources
	XmNallowDrag
	XmNallowDrop
	XmNareaSelectionCallback
	XmNcopyCallback
	XmNcursorType
	XmNcutCallback
	XmNdragDropCallback
	XmNeditObjectCallback
	XmNflip
	XmNhandleColor
	XmNhandleSize
	XmNinsertObjectCallback
	XmNlocatorCallback
	XmNobjectDeselectionCallback
	XmNobjectEditMode
	XmNobjectSelectionCallback
	XmNpasteCallback
	XmNpointSelectionTolerance
	XmNresourceDialogCallback
	XmNrubberbandCallback
	XmNselectionCallback

	EditObject Actions
	EditObject Translations
	EditObject Callbacks
	XintEditObjectAreaSelectionCallbackStruct
	XintEditObjectCallbackStruct
	XintEditObjectDragDropCallbackStruct
	XintEditObjectEditCallbackStruct
	XintEditObjectSelectionCallbackStruct
	XintEditObjectInsertCallbackStruct
	XintEditObjectLocatorCallbackStruct
	XintEditObjectResourceDialogCallbackStruct
	XintEditObjectRubberbandCallbackStruct

	EditObject Functions
	XintCreateEditObject
	XintDrawCursorFromData
	XintEditObjectBack
	XintEditObjectCopy
	XintEditObjectCurrent
	XintEditObjectCut
	XintEditObjectDeselectAll
	XintEditObjectDeselectObject
	XintEditObjectDestroyObject
	XintEditObjectFreeze
	XintEditObjectFront
	XintEditObjectGetIntersectList
	XintEditObjectGetList
	XintEditObjectGroup
	XintEditObjectInsert
	XintEditObjectLower
	XintEditObjectManageResourceDialog
	XintEditObjectMove
	XintEditObjectNew
	XintEditObjectOpen
	XintEditObjectPaste
	XintEditObjectRaise
	XintEditObjectReadFile
	XintEditObjectSave
	XintEditObjectSaveAs
	XintEditObjectSelectAll
	XintEditObjectSelectList
	XintEditObjectSelectObject
	XintEditObjectSetEditMode
	XintEditObjectSize
	XintEditObjectUngroup
	XintEditObjectWriteFile

	Macros

	ObjectEditor Widget Class
	Object Editor Layout
	ObjectEditor Widget Appearance

	.
	Figure 25. ObjectEditor Widget Configured as a Dialog Box
	Inherited Behavior and Resources
	ObjectEditor Resources
	XmNactionList
	XmNactionNumColumns
	XmNattributeList
	XmNattributeNumColumns
	XmNcolorAttributeList
	XmNcolorList
	XmNcolorNumColumns
	XmNeditList
	XmNeditObjects
	XmNnumColumns
	XmNnumEditObjects
	XmNobjectClassList
	XmNorientation
	XmNpixmapList
	XmNpixmapNumColumns
	XmNshowAttributeLabels

	ObjectEditor Functions
	XintCreateObjectEditor
	XintObjectEditorGetDefinedPixmap

	Pixmaps names
	Figure 26. Default Patterns
	XintObjectEditorAddEditObjectToList
	XintObjectEditorRemoveEditObjectFromList

	graph.pdf
	Graphic Object Reference 3
	Overview
	GraphicObject Library
	Summary of Components

	Graphic Object Metaclass
	Interactive Editing
	Visual Attributes
	Coordinate System
	Inherited Behavior and Resources

	Resources
	XmNclipGrid
	XmNcolor
	XmNdashList
	XmNdisplayName
	XmNfillColor
	XmNfillFilename
	XmNfillPixmap
	XmNfillStyle
	XmNfont
	XmNgroup
	XmNhighlightMode
	XmNhorizontalAxis
	XmNlineStyle
	XmNlineThickness
	XmNmove
	XmNmoveDirection
	XmNname
	XmNresourceDialog
	XmNsensitive
	XmNshape
	XmNstippleColor
	XmNuserData
	XmNverifyCallback
	XmNverticalAxis
	XmNvisible
	Defined Callbacks
	Graphic Functions
	XintGraphicUnmanageDialog
	XintGraphicGetViewPortList

	Macros
	Group Object Class
	Interactive Grouping
	Example

	Code
	Figure 27. Group Created from a Text and a Line Object
	Group Resources
	XmNlist
	XmNlistCount
	XmNpropagate

	Group Functions
	Macros
	Image Object Class
	Image Resources
	XmNimageColorRecord
	XmNimageDisplayMode
	XmNimagePixmap
	XmNfreePixmap

	Defined Functions
	Macros

	Line Object Class
	Arrow Shape
	Figure 28. Arrow Shape Resources

	Line Resources
	XmNarrowLength
	XmNarrowStyle
	Figure 29. XmNarrowStyle Constants

	XmNbaseAngle
	XmNline
	XmNlineEnd
	XmNtipAngle

	Line Callbacks
	Line Functions
	Macros

	MultiPoint Object Metaclass
	MultiPoint Object Interactive Creation
	MultiPoint Object Editing
	Inherited Behavior and Resources
	XmNhandleMode
	XmNsymbol
	XmNsymbolColor
	XmNsymbolData
	XmNsymbolSize
	XmNsymbolType

	Oval Object Class
	Inherited Behavior and Resources
	Oval Callbacks
	Oval Functions
	Macros

	Polyline Object Class
	Creation
	Editing
	Optimization
	Inherited Behavior and Resources

	Resources
	XmNcloseEndPoints
	XmNdrawSymbolCallback
	XmNnullValue
	XmNpointArray
	XmNpointCount
	Polyline Callbacks
	Polyline Functions
	Macros
	Rectangle Object Class
	Inherited Behavior and Resources

	Resources
	XmNrectangle
	XmNrotateAngle
	XmNroundEdge
	Rectangle Callbacks
	Rectangle Functions
	Macros
	Symbol Object Class
	Symbol Editor
	Figure 30. Symbol Editor Example

	Symbol Resources

	Resources
	XmNlabelGravity
	XmNlabelSpacing
	XmNsymbolData
	XmNsymbolHeight
	XmNsymbolLocation
	XmNsymbolScale
	Symbol Keywords
	Symbol Description Syntax

	Code
	Symbol Callbacks
	Symbol Functions
	XintCreateSymbol
	XintSymbolCreate
	XintSymbolFree

	Macros
	Text Object Class
	f
	Figure 31. Scalable Text

	Font description directories
	Text Resources

	Resources
	XmNfontFamily
	XmNfontSize
	XmNfontSlant
	XmNfontWeight
	XmNhorizontalTextAlignment
	XmNmarginHeight
	XmNmarginWidth
	XmNrotateAngle
	XmNtextLocation
	XmNtextScale
	XmNtextString
	XmNverticalTextAlignment
	Text Callbacks
	Defined Functions
	Macros

	dataobj.pdf
	DataObject Reference 4
	Overview
	DataObject
	Summary of Components

	DataGroup Object Class
	Inherited Behavior and Resources

	Resources
	XmNhistoryLength
	XmNlastViewDestroy
	XmNlimitsX
	Callback Structure
	Functions
	XintCreateDataGroup
	XintDataBatchUpdate
	XintDataRangeX, XintDataRangeY, and XintDataRangeZ
	XintDataGroupFind
	XintDataGroupIterate

	Macros
	DataGrid Object

	Data type
	Example

	Code
	Inherited Behavior and Resources

	Resources
	XmNcopyData
	XmNdataGroup
	XmNdataType
	XmNeditable
	XmNgridArray
	XmNgridOrder
	Figure 32. Grid Orientation

	XmNlastViewDestroy
	XmNupdateCallback
	XmNxCount
	XmNyCount
	XmNxRange
	XmNyRange
	Callback
	Functions
	XintCreateDataGrid
	XintDataGridGetGridArray
	XintDataGridDataReplace

	Macros
	DataLabel Object
	Example
	Inherited Behavior and Resources

	Resources
	XmNcopyData
	XmNdataGroup
	XmNlabelCount
	XmNlabelOrientation
	XmNlabelPositionArray
	XmNlabelStrings
	XmNlastViewDestroy
	XmNsampledRange
	XmNupdateCallback
	Callback
	Functions
	XintCreateDataLabel
	XintDataLabelExtend
	XintDataLabelReplace
	XintDataLabelShift

	Macros
	DataSampled Object Class
	Figure 33. Example of DataSampled Array
	Example
	Inherited Behavior and Resources

	Resources
	XmNcopyData
	XmNcount
	XmNdataArray
	XmNdataGroup
	XmNdataType
	XmNeditable
	XmNlastViewDestroy
	XmNsampledRange
	XmNupdateCallback
	Callback for Data Updates
	Functions
	XintCreateDataSampled
	XintDataSampledDataExtend
	XintDataSampledGetDataArray
	XintDataSampledGetSampledArray
	XintDataSampledDataReplace
	XintDataSampledDataShift
	Figure 34. Data Shift

	Macros
	DataSequentialSeries Object Class

	Resources
	DataSeries Object Class
	Example
	Inherited Behavior and Resources

	Resources
	XmNcopyData
	XmNcount
	XmNdataGroup
	XmNdataType
	XmNeditable
	XmNlastViewDestroy
	XmNupdateCallback
	XmNxArray
	Callbacks
	Defined Functions
	XintCreateDataSeries
	XintDataSeriesDataExtend
	XintDataSeriesDataReplace
	XintDataSeriesDataShift
	XintDataSeriesGetXArray

	Macros
	DataTimeLabel Object Class
	Example
	Inherited Behavior and Resources

	Resources
	XmNtimeBase
	XmNtimeMeasure
	XmNtimeLabelFormat

	chart.pdf
	Chart Object Reference 5
	Overview
	ChartObject Library
	Object classes
	Chart Object Class
	Inherited Behavior and Resources

	Resources
	XmNaxisSpacing
	XmNchartFooter
	XmNchartMargins
	XmNchartTitle
	XmNchartType
	XmNcolorList
	XmNdoubleBuffer
	XmNgeometry
	XmNpropagate
	XmNshowLegend
	XmNsymbolCount
	XmNsymbolList
	XmNtranspose
	XmNzValueColorRecord
	Constraint Resources

	Code
	Chart Callbacks
	XintChartLayoutCallbackStruct
	XintPlotLayoutCallbackStruct

	Functions
	XintCreateChart
	XintChartAssociateData
	XintChartCreateColorRecord
	XintChartDisassociateAllData
	XintChartDisassociateData
	XintChartFreezeUpdates
	XintChartGetComponent
	XintChartGetDataList
	XintChartGetDataOfSeries
	XintChartGetSelectedComponent
	XintChartGetSeriesOfData
	XintChartInitializeClassConverter
	XintChartInsertObject
	XintChartIsTransposed
	XintChartPick
	XintChartReadTemplate
	XintChartSaveTemplate
	XintChartZoom

	Macros
	ChartWidget Widget Class
	Inherited Behavior and Resources
	Functions
	XintChartWidgetGetObject
	XintCreateChartWidget

	AxisObject Object Class
	Axis Limits and Increments
	Resources

	Resources
	XmNannotationAngle
	XmNannotationFont
	XmNannotationFormat
	XmNannotationPlacement
	XmNaxisLineThickness
	XmNendPoints
	XmNincrements
	XmNlabel
	XmNlabelFont
	XmNlimits
	XmNlogScale
	XmNmajorGridLineStyle
	XmNminorGridLineStyle
	XmNminimumLabelSpacing
	XmNreverseOrder
	XmNtickPlacement
	Inherited Resources
	AxisObject Callbacks
	XintAxisObjectColorLabelCallbackStruct

	Functions
	XintAxisObjectUserToPixel
	XintAxisObjectPixelToUser

	Macros
	Legend Object Class
	Figure 35. Plot With a Legend
	Inherited Behavior and Resources

	Resources
	XmNiconWidth
	XmNcolumns
	XmNlegendLocation
	XmNlegendTitle
	XmNlineStyle
	XmNmarginHeight
	XmNmarginWidth
	XmNvisibleEntryCount

	Resources
	Macros
	Plot2D Object Metaclass
	Inherited Behavior and Resources

	Object class resources
	XmNdrawFrame
	XmNpropagate
	XmNxAutoRangeMode
	XmNxAxisPlacement
	XmN[xy]Increments
	XmN[xy]InsidePlacement
	XmN[xy]Limits
	XmNyAutoRangeMode
	XmNyAxisPlacement

	Graphic class resources
	Functions
	XintPlotInsertObject

	Plot3D Object Metaclass
	Rotation, Translation and Scaling
	Inherited Behavior and Resources

	Object class resources
	XmN3dPerspectiveDepth
	XmN3dRotation
	XmN3dScale
	XmNannotationStrokeFont
	XmNannotationStrokeFontSize
	XmNlabelStrokeFont
	XmNlabelStrokeFontSize
	XmNviewScale
	XmN[xyz]Annotation
	XmN[xyz]AnnotationFormat
	XmN[xyz]AxisOffset
	XmN[xyz]GridLines
	XmN[xyz]Increments
	XmN[xyz]Label
	XmN[xyz]Limits
	XmN[xy]Translation
	XmNwallColor
	CellArray Object Class
	Figure 36. CellArray Chart Type
	Data
	Inherited Behavior and Resources

	Resources
	XmNdisplayPatterns
	XmNlegendAnnotationFormat
	XmNpatternList
	Inherited Resources
	Macros
	ComboPlot Object Class
	Resources
	Inherited Resources
	Functions
	XintComboPlotCreateNewPlot
	XintComboPlotGetComponent

	Macros

	BarLine Object Class
	.
	Figure 37. BarLine Chart Type
	Data
	Inherited Behavior and Resources
	XmNbarOrientation
	XmNbarStyle
	XmNclusterWidth
	XmNdrawShadow
	XmNinclination
	XmNperspectiveDepth
	XmNproportional
	XmNrotation

	Inherited Resources
	Macros
	BarLine Series

	BarSeries resources
	Polyline series resources
	Bar3D Object
	Figure 38. Bar3D Chart
	Data
	Inherited Behavior and Resources
	XmNbarColorMode
	XmNbarLineColor
	XmNbarLineThickness
	XmNclusterHeight
	XmNclusterWidth
	XmNdrawShadow

	Inherited Resources
	Macros

	HighLow Object Class
	.
	Figure 39. HighLow Chart type
	Data
	Inherited Behavior and Resources
	XmNdrawCandlestick
	XmNshowClose
	XmNshowGainLoss
	XmNshowOpen
	XmNtickLength

	Inherited Resources
	Macros
	HighLow Series
	Histogram Object
	Figure 40. Histogram Chart Type
	Data
	Inherited Behavior and Resources

	Resources
	XmNbarLength
	XmNshowCumulative
	XmNshowDistribution
	Inherited Resources
	Macros
	Histogram Series

	Graphic class resources
	PolyLine class resources
	Pie Object Class
	Figure 41. Pie Chart Type
	Data
	Inherited Behavior and Resources

	Resources
	XmNdrawShadow
	XmNinclination
	XmNpieSize
	XmNperspectiveDepth
	XmNshowPieName
	XmNshowWedgeLabels
	Inherited Resources
	Functions
	Macros
	Pie Series
	Surface3D Object
	Figure 42. Surface3D Chart Type
	Data
	Inherited Behavior and Resources

	Resources
	XmNcontourLineColor
	XmNcontourLineMode
	XmNcontourLineThickness
	XmNfillMode
	XmNmeshColor
	XmNmeshDrawX
	XmNmeshDrawY
	XmNmeshMode
	XmNmeshLineThickness
	XmNnumGridX
	XmNnumGridY
	XmNnumGridZ
	XmNsolidSurface
	XmNsurfaceBottomColor
	XmNsurfaceTopColor
	Inherited Resources
	Macros
	XYPlot Object Class
	Figure 43. Scattered Plot Chart Type
	Data
	Inherited Behavior and Resources

	Resources
	XmNplotOrientation
	XmNsymbol
	XmNsymbolSize
	XmNstackingOrder
	Inherited Resources
	Macros
	PolySeries

