
Replay Xcessory™ User’s Guide
Replay Xcessory User’s Guide i



ii Replay Xcessory User’s Guide



Copyright © 1995-2010 Integrated Computer Solutions, Inc.

Integrated Computer Solutions, Inc. (ICS) reserves the right to make changes in specifications and other 
information contained in this publication without prior notice. The reader should in all cases consult ICS 
to determine whether any such changes have been made.

This Manual contains proprietary information that is the sole property of Integrated Computer Solutions, 
Inc. This Manual is furnished to authorized users of Replay Xcessory solely to facilitate the use of Replay 
Xcessory as specified in written agreements.

No part of this publication may be reproduced, stored in a retrieval system, translated, transcribed, or 
transmitted, in any form, or by any means without prior explicit written permission from Integrated 
Computer Solutions.

The software programs described in this document are copyrighted and are confidential information and 
proprietary products of Integrated Computer Solutions, Inc.

CenterLine-C, CenterLine-C++, CodeCenter, CenterStage, CodeVision, ObjectCenter, QualityCenter, 
QC/Coverage, QC/Recall, QC/Replay, TestCenter, and Replay Xcessory and are trademarks of Integrated 
Computer Solutions, Inc.

Motif and UNIX are registered trademarks of The Open Group.

PostScript is a registered trademark of Adobe Systems, Inc. in the USA and other countries.

Tcl is a copyright of The Regents of the University of California.

X Window System and X11 are trademarks of the Massachusetts Institute of Technology.

Other trademarks mentioned in this document are trademarks or registered trademarks of their respective 
holders.

Integrated Computer Solutions, Inc.
54 B Middlesex Turnpike, Bedford, MA 01730
Tel: 617.621.0060
Fax: 617.621.9555
E-mail: info@ics.com
WWW: http://www.ics.com
Replay Xcessory User’s Guide iii

http://www.ics.com


iv Replay Xcessory User’s Guide



Preface

Overview
This manual is a guide to the use of the Replay Xcessory product. It also includes 
reference information.
Replay Xcessory User’s Guide v



What This Manual is About
We have organized the manual as follows:

• Chapter 1 provides an overview of the Replay Xcessory product capabilities 
and usage model. It also includes a brief example of how to run tests of your 
application in Replay Xcessory.

• Chapter 2 provides a detailed description of concepts you need to understand 
all of Replay Xcessory’s features.

• Chapter 3 focuses on the Replay Xcessory Test Manager, describing how to set 
up your environment and how to create and use test packages.

• Chapter 4 describes the new Replay Xcessory Test Manager and how it differs 
from the old Test Manger.

• Chapter 5 describes how to record and play back tests using the Replay 
Xcessory record and play control panels. It also describes the use of the 
command line interface to the record and play features.

• Chapter 6 is an introduction to Tcl (tool command language), which is used for 
writing Replay Xcessory test scripts.

• Chapter 7 provides information about the commands used by the Replay 
Xcessory command language—the language used to create Replay Xcessory 
scripts. This command language is based on Tcl.

• Chapter 8 describes extended commands of the Replay Xcessory command 
language.

• Chapter 9 tells you how to use the Replay Xcessory Script Debugger, and 
provides reference information for all the debugger commands.

• Chapter 10 provides information about several advanced topics, such as the 
use of custom widgets, that go beyond the every day usage model.

Using Sample Programs
See the Replay Xcessory Quick Start guide for a brief introduction to the use of the 
sample programs that are part of Replay Xcessory. See Chapters 1-5 of this book 
for additional details.

What You Should Know Before Starting
This book is designed for readers who are familiar with UNIX/Linux, X-based 
applications, and the use of an OSF/Motif® Graphical User Interface.
vi Replay Xcessory User’s Guide



For More Information
See the Replay Xcessory Quick Start guide for information that will help you get 
started with Replay Xcessory quickly.

See the installation notes for Replay Xcessory for information about installing this 
product and for troubleshooting tips concerning the license manager.

See the Release Notes for information specific to a particular release of Replay 
Xcessory, such as system requirements and supported platforms, and additional 
information needed to install Replay Xcessory. 

Documentation Conventions
Unless otherwise noted in the text, we use the following symbolic conventions:
literal names Bold words or characters in command descriptions represent 

words or values that you must use literally.

user-supplied 
values

Italic words or characters in command descriptions represent 
values that you must supply. Italic words in text also indicate 
the first use of a new term, or emphasis

sample user 
input

In interactive examples, information that you must enter 
appears in this typeface.

output/source 
code

Information that the system displays appears in this 
typeface.

... Horizontal ellipsis points indicate that you can repeat the 
preceding item one or more times.
Replay Xcessory User’s Guide vii



viii Replay Xcessory User’s Guide



Preface......................................................................................v
List of Figures .......................................................................xiii
List of Tables........................................................................xvii
Chapter 1—Getting Started

Introduction .................................................................................................................. 2
License File Notes ....................................................................................................... 2
Replay Xcessory Capabilities ...................................................................................... 3
Replay Xcessory Roadmap ......................................................................................... 3
Tutorials ....................................................................................................................... 6

Chapter 2—Concepts of Operation
Introduction ................................................................................................................ 30
Replay Xcessory architecture .................................................................................... 30
Results Verification .................................................................................................... 41
Event Synchronization ............................................................................................... 44

Chapter 3—Replay Xcessory Test Manager
Introduction ................................................................................................................ 48
Setting up the Environment ....................................................................................... 48
Starting the Test Manager ......................................................................................... 51
Test Suite Commands ............................................................................................... 51
Test Package Commands ......................................................................................... 57
Test Case Commands ............................................................................................... 65

Chapter 4—The New Replay Xcessory Test Manager
Introduction ................................................................................................................ 68
Starting the New Replay Xcessory Test Manager (rtm) ............................................ 68
Preferences ............................................................................................................... 73
Replay Xcessory Tag Manager ................................................................................. 79
Vrdump Editor Window .............................................................................................. 94

Chapter 5—Record and Play Sessions
Introduction ................................................................................................................ 98
Preparing Applications for Replay Xcessory.............................................................. 98
Understanding the Replay Xcessory Property Files ................................................ 101
Controlling Session Properties ................................................................................ 103
Controlling Snapshot Scope and Granularity........................................................... 122
Image Snapshots..................................................................................................... 128
Record Control Panel .............................................................................................. 130
Replay Xcessory User’s Guide ix



Recording Widget Tags ........................................................................................... 142
Tag File Generation ................................................................................................. 145
Streamlined Recorded Scripts ................................................................................. 148
Play Control Panel ................................................................................................... 150
Replay Xcessory Driver — Command-Line Interface .............................................. 161
Obtaining a Test Suite Report.................................................................................. 167

Chapter 6—Introduction to the Scripting Language
Introduction .............................................................................................................. 170
Command and Script Basics.................................................................................... 170
Controlling Character Interpretation......................................................................... 173
Variable Manipulation Commands ........................................................................... 176
Expressions ............................................................................................................. 177
Control Flow Commands ......................................................................................... 180
Procedures............................................................................................................... 184
List Commands ........................................................................................................ 187
String Manipulation Commands............................................................................... 191
File Access Commands ........................................................................................... 193
Extended Tcl Commands......................................................................................... 196

Chapter 7—Replay Xcessory Command Language
Introduction .............................................................................................................. 198
User Interaction Commands .................................................................................... 198
Test Management Commands................................................................................. 204
Widget Information Commands ............................................................................... 206
Session Management Commands........................................................................... 213
Initialization Scripts .................................................................................................. 219
Accessing Command-Line Arguments..................................................................... 219
Accessing Run Time Parameters ............................................................................ 219

Chapter 8—Replay Xcessory Extended Commands
Introduction .............................................................................................................. 224
Menu Selection Commands..................................................................................... 224
Scroll Bar Commands .............................................................................................. 227
Scale Commands..................................................................................................... 229
List Commands ........................................................................................................ 230
Text Manipulation Commands ................................................................................. 232
Tabs Control Commands ......................................................................................... 234
XmTree Control Commands .................................................................................... 235
XmContainer Control Commands ............................................................................ 235
x Replay Xcessory User’s Guide



Chapter 9—Script Debugger
Introduction .............................................................................................................. 238
Debugger Interfaces ................................................................................................ 238
Debugger Commands.............................................................................................. 247
Enhanced Tcl Debugger .......................................................................................... 252
Debugging Using the Command-Line...................................................................... 259

Chapter 10—Advanced Topics
Using Terminal Emulators ....................................................................................... 262
Using VNC, Nested and Virtual X Servers............................................................... 263
Monitoring Background Tests .................................................................................. 268
Using Replay Xcessory with Source Debuggers ..................................................... 268
Using Custom Widgets ............................................................................................ 269
Using Type Converters ............................................................................................ 269

Index......................................................................................279
Replay Xcessory User’s Guide xi



xii Replay Xcessory User’s Guide



List of Figures

Figure 1 Test Manager Window: Suite Directory Listing 7

Figure 2 Test Package Dialog Box 8

Figure 3 A New Test Package 9

Figure 4 Deleting a Test Package 9

Figure 5 Record Control Panel, Description Tab 10

Figure 6 Record Control Panel, Settings Tab 11

Figure 7 The Calculator 12

Figure 8 Record Control Panel, Record Tab 13

Figure 9 Test Package After Recording 14

Figure 10 Test Package, “Show All” 15

Figure 11 Play Control Panel 16

Figure 12 Examining the Report File 18

Figure 13 Examining the Script File 19

Figure 14 Examining the Baseline and Result Snapshots 20

Figure 15 Replay Xcessory Architecture 30

Figure 16 Test Package Report for Calculator Example 34

Figure 17 Widget Hierarchy 38

Figure 18 Test Suite Window 51

Figure 19 Change Test Suite Directory 52

Figure 20 Test Package Dialog Box 53

Figure 21 Open Test Package and its Icons 54

Figure 22 Utility Preferences 56
Replay Xcessory User’s Guide xiii



Figure 23 Test Package Window for xmcalc 58

Figure 24 Batch File Creation Dialog 61

Figure 25 Script and Snapshot View Panes 62

Figure 26 Report View Pane 64

Figure 27 Test Case Popup Menu 65

Figure 28 Test Case Icon 65

Figure 29 The New Test Manager 68

Figure 30 Test Manager File Menu 69

Figure 31 New Test Suite Dialog Box 70

Figure 32 Open Test Suite Dialog Box 71

Figure 33 New Test Package Dialog Box 72

Figure 34 Utility Preferences Dialog Box 73

Figure 35 Edit Menu 75

Figure 36 Record/Play Menu 75

Figure 37 Batch File Dialog Box 77

Figure 38 Snapshot Pane 78

Figure 39 Tcl File Editor 79

Figure 40 Tags Editor Window 80

Figure 41 Tag Button After Modification 82

Figure 42 Tag Button After Modification Confirmation 83

Figure 43 Information for “fake_widget” 84

Figure 44 Tag Manager Sub-Menu 85

Figure 45 Start Custom App File Selection Box 86

Figure 46 Tag Manager Sub-Menu After the Application Starts 86

Figure 47 xmcalc Flash Widget 87
xiv Replay Xcessory User’s Guide



Figure 48 Failed Widget Search 88

Figure 49 Add Widget Dialog Box 89

Figure 50 Widget Deletion Warning Box 90

Figure 51 Widget After Deletion 91

Figure 52 Rename Widget Dialog Box 92

Figure 53 Save Changes Warning Box 93

Figure 54 Vrdump Editor Window 94

Figure 55 Session Properties Window, General Tab 104

Figure 56 Session Properties Window, Record Tab 105

Figure 57 Session Properties Window, Playback Tab 106

Figure 58 Session Properties Window, Recognition Tab 107

Figure 59 Session Properties Window, Recognition Tab (additional 
fonts) 108

Figure 60 Replay Properties Page 119

Figure 61 Snapshot Properties Window for xmcalc1 Snapshot 124

Figure 62 Record Control Panel, Description Tab 131

Figure 63 Record Control Panel, Settings Tab 132

Figure 64 Record Control Panel, Record Tab 133

Figure 65 Record Control Panel While Recording 138

Figure 66 Snapshot Specification Entry 141

Figure 67 Learn Widget Tag Name 143

Figure 68 Displaying a Tagged Widget During a Record Session 144

Figure 69 Delete Tag Dialog Box 145

Figure 70 Play Control Panel, Settings Tab 151

Figure 71 Play Control Panel—While Playing 157
Replay Xcessory User’s Guide xv



Figure 72 Play Control Panel- Debug Tab 158

Figure 73 Snapshot Mismatch Window 159

Figure 74 Image Mismatch Window 160

Figure 75 Text Area 232

Figure 76 The Test Manager Main Window 239

Figure 77 The Test Package Window 239

Figure 78 The Main Debug Play Control Panel 240

Figure 79 The Replay Xcessory Debugger Window 243

Figure 80 The Replay Xcessory Debugger Window Record View 244

Figure 81 Ask Dialog 245

Figure 82 Replay Xcessory Tcl Debugger Showing Line Numbers 253

Figure 83 The Debugger Popup Menu 255

Figure 84 Changing one line of Tcl Code 256

Figure 85 Changing Multiple Lines of Tcl Code 257

Figure 86 Popup Menu 257

Figure 87 The Tcl Editor 258
xvi Replay Xcessory User’s Guide



List of Tables

Table 1  Property Filenames 102

Table 2  Debug Play Control Panel Entities 241

Table 3  The Replay Xcessory Debugger Window Buttons 245
Replay Xcessory User’s Guide xvii



xviii Replay Xcessory User’s Guide



Getting Started 1
Overview

After a brief overview of Replay Xcessory’s capabilities, short tutorials in this 
chapter will take you step-by-step through record and play and programmatic 
testing sessions.
Replay Xcessory User’s Guide 1



GETTING STARTED
Introduction1
Introduction
Developing automated tests for Graphical User Interface (GUI) applications is 
both complex and challenging. One reason for this complexity is that—unlike 
command-line applications—the user, rather than the application, controls the 
interaction. In addition, many changes in an evolving user interface, such as 
fonts and color, may not logically affect results but may complicate result 
verification.

Replay Xcessory is part of ICS’s product family of tools that accelerate Motif 
development. Replay Xcessory supports the automated testing of X Toolkit 
applications, including applications that use OSF/Motif. Replay Xcessory 
systematically lessens the difficulty of the automation process by removing the 
need for manual tests, while avoiding the pitfalls of other automated testing 
technologies which use attributes that are not portable, for example, image 
dumps and absolute screen coordinates.

License File Notes
Replay Xcessory binaries expect the license file to be placed in the HOME 
directory of the user that uses the application, with a name of form `uname 
-n`.lic. However, the name of the license file only has a logical meaning and is 
intended to be used to determine the license file station easily.

In the case that the license file is placed in some other place, the 
ICS_LICENSE_FILE environment variable can be used to specify the license 
file location as:

export ICS_LICENSE_FILE=/work/this_station_name.lic

for bash.
2 Replay Xcessory User’s Guide



GETTING STARTED
1

Replay Xcessory Capabilities
Replay Xcessory can be used to:

• facilitate the generation and organization of automated tests within an 
integrated test environment

• enable the tester to work with high-level GUI elements, such as dialog 
boxes and push buttons, rather than with bitmaps and coordinates

• provide for flexible verification of screen results; for example, tests can 
ignore physical rearrangement of GUI elements, changes in background 
color, and changes in font size or style of text. This flexibility enables the 
tester to focus on relevant elements of the interface specific to the current 
test application, rather than the underlying windowing interface

• support both record and playback as well as programmatic testing via a 
non-proprietary scripting language called Tcl 

• provide test portability for applications that will be released on multiple 
platforms

• provide for ease of test modification and extensibility, which enables 
Replay Xcessory tests to remain useful over the entire life cycle of an 
application, and throughout the extensive revisions typical of most 
software products

Replay Xcessory Roadmap
Descriptions of the following topics are written at the same level and assumed 
experience of the person who will be using the following tutorial. Refer to 
Chapters 2-5 for a thorough explanation of the same topics. The following 
sections provide an overview of:

• the Replay Xcessory usage model

• Replay Xcessory Test Manager

• command line interface

Following these descriptions are tutorials that provide step-by-step instructions 
for:

• setting up and starting the Test Manager

• running a record and play session

• programmatic testing
Replay Xcessory’s User’s Guide 3



GETTING STARTED
Replay Xcessory Roadmap1

Screen shots of Replay Xcessory windows, panes, menus, and icons, as well as 
program samples, provide a quick and easy way to familiarize yourself with 
the Replay Xcessory product.

Usage Model
As an application evolves, retesting can be performed periodically using 
Replay Xcessory. The new version of the application is replayed using the 
original input actions that have been recorded in a script. The results of the 
new tests are programmatically compared with previously verified results 
(known as baselines), and the success of the new tests is reported in a Subtest 
Report.

Capturing Input 
Actions—Scripts

Replay Xcessory operates by capturing input actions as the user operates a 
mouse and keyboard to interact with application objects. Actions and objects 
on the application’s processes are captured by Replay Xcessory commands 
using Tcl (the Replay Xcessory scripting language). Specifically, command 
names represent input actions; for example:

• click (a single click of the mouse button)

• dblclick (a double click of the mouse button)

• drag (drag motion of the mouse button)

• text (for text entry)

Command objects are the widgets of the application’s interface—an OK push 
button, a Question dialog box, an Open … menu item.

Note: Most applications are implemented as single UNIX/Linux system 
processes. However, some complex applications may be implemented as a set 
of cooperating processes. For example, some applications launch a help 
browser when the Help button is selected. Testing such an application involves 
multi-process testing.

Capturing 
Application 
Results—
Snapshots

Just as input actions are captured by the script, an application’s results are 
captured by snapshots. At verification points during the application’s 
execution, the tester must verify the correctness of results displayed on the 
screen. Replay Xcessory snapshots provide one basis for result verification. 
4 Replay Xcessory User’s Guide



GETTING STARTED
Usage Model 1
The snapshot is a “picture” of the screen, although not necessarily a literal 
image. Replay Xcessory supports two types of snapshots: image and widget 
snapshots.

• An image snapshot is a literal picture of the relevant screen area using the 
standard xwd format to capture the screen.

• A widget snapshot is a logical picture; that is, it provides the values of 
selected widget attributes as opposed to an actual screen image.

The Snapshot button is pressed to request a snapshot. This process designates 
verification points that control where results will be verified during a play 
session. By editing a control file (the .Vrdump file), the granularity of the 
snapshots can be controlled by specifying whether a specific resource should 
be dumped for each widget class or widget instance.

Verifying Results—
Baselines

When the collection of snapshots from a record session have been determined 
to be correct, they can be used as baseline snapshots. Baseline snapshots serve 
as a standard against which snapshots in future regression tests will be judged. 
Other methods used to verify correctness include checking for expected results 
programmatically and querying the process itself (see Chapter 2 for more 
information on verification methods).

Updating Baselines If a mismatch is found when comparing baselines and results, it is necessary to 
determine whether the mismatch points to an error in the new results—which 
would require a correction in the process under test—or whether the mismatch 
resulted from the baseline being obsolete or incorrect, in which case it is 
necessary to update the baseline.
Replay Xcessory’s User’s Guide 5



GETTING STARTED
Tutorials1

Replay Xcessory Test Manager
The Replay Xcessory Test Manager provides a graphical user interface that can 
be used to organize and conduct tests. The Test Manager enables you to:

• create a test case-an individual testing instance, usually a single record 
and play session, several of which make up a test package

• create a test package—a directory that organizes the files and directories 
of a set of test cases

• navigate among test suites—a directory that contains a number of related 
test packages

• select and open a test package within a test suite

• start a record or play session

• customize Replay Xcessory options

• view multiple, related elements of a particular test case—its script, 
baseline and result snapshots, and related information

Although the Test Manager provides a convenient facility for managing test 
suites, the core Replay Xcessory functionality can be accessed without using 
the Test Manager; this makes it possible to use Replay Xcessory in conjunction 
with custom or third-party test harnesses, or in batch mode.

Command-line Interface
In addition to running under the Test Manager, record and play sessions may 
also be utilized using a command-line interface. The command-line interface is 
especially important for its support of unattended Replay Xcessory sessions.

Tutorials
The following tutorials provide a hands-on introduction to Replay Xcessory 
without the need to understand the descriptions provided in the rest of the 
user’s guide. 

Setting Up and Starting the Test Manager

Some environmental variables need to be set or added permanently to your 
.profile, .bash_profile, or .cshrc file before running the Replay Xcessory 
user command interface. The examples in this section are designed for sh or 
ksh users. Users of csh should make the appropriate adjustment.
6 Replay Xcessory User’s Guide



GETTING STARTED
Tutorial 1—A Record/Play Session 1
To use Replay Xcessory you must make sure that your application links to the 
version of the Xt library supplied by ICS for use with Replay Xcessory, in case 
it is linked statically.

Tutorial 1—A Record/Play Session
The tutorial leads you through record and play sessions of a calculator 
program, covering the following topics:

• setting up and starting the Replay Xcessory Test Manager

• creating a test package

• conducting a record session (creating a test case)

• conducting a play session

• examining the report file and other output

Starting the Replay 
Xcessory Test 
Manager

Start the Replay Xcessory Test Manager in the background by entering the 
following command:

replaytm

The replaytm command is in the $REPLAYHOME/bin directory, which 
must be in your path for you to start Replay Xcessory Test Manager. replaytm, 
allows the name of a test package to be specified on the command line (-p 
option) so that the specified test package is already open when the Test 
Manager starts.

Creating a Test 
Package

The main window of the Test Manager appears and displays a directory listing 
similar to the following illustration:

Figure 1 Test Manager Window: Suite Directory Listing
Replay Xcessory’s User’s Guide 7



GETTING STARTED
Tutorials1

Each line in the listing represents a test package, which is a directory that holds 
all the files and directories associated with a set of test cases. Two or more test 
packages grouped by some criteria make up a test suite.

Before running a record session, for example with the calculator, you need to 
create a test package to hold session files and directories. To create a test 
package for the tutorial sessions:
1. Select New… on the Test Pkg menu. 

You will see a Test Package dialog box, as shown:

Figure 2 Test Package Dialog Box

The dialog box accepts information about the test package to be created. 
2. For this tutorial enter the following—or something similar—in the dialog 

box:

• In the Test Package Name: area, enter xmcalctest as the name 
of the directory for the new test package. 

• In the Title: area, enter a short annotation. The single-line 
description entered here appears as one of the lines in a directory 
listing.

• In the Description: area, describe the test package in as much 
detail as necessary. Replay Xcessory places this information, 
along with the Title: information, in a testpackagename.tpd file 
in the new test package.

3. Press OK to complete test package creation.
A Test Package window appears, as shown:
8 Replay Xcessory User’s Guide



GETTING STARTED
Tutorial 1—A Record/Play Session 1
Figure 3 A New Test Package

The Test Package window is empty.

Deleting a Test 
Package

You can delete a whole test package if you do not need it.

Figure 4 Deleting a Test Package

To do this, you should go to the “Test Package” menu and select “Delete Test 
Package Item.” Be sure that you properly confirm the deletion of the test 
package- you will not have the ability to restore it!
Replay Xcessory’s User’s Guide 9



GETTING STARTED
Tutorials1
Conducting a 
Record Session

You are now ready to start a record session with the calculator.
1. Select Record … from the Record/Play menu.

The Record Control Panel consists of three pages: Descriptions, Settings, 
and Record. The first page (Figure 5) contains general information about 
the current test case, such as test case Name, Title, and Description. Test 
Name is the only required field, and after you have filled it out, you can 
select the second tab (Figure 6) and fill out the needed settings. 

Figure 5 Record Control Panel, Description Tab
10 Replay Xcessory User’s Guide



GETTING STARTED
Tutorial 1—A Record/Play Session 1
Figure 6 Record Control Panel, Settings Tab

1. For this tutorial, enter the following information in the panel:

• In the Application Under Test area, place the cursor in the Start 
Application box and enter xmcalc, the name of the calculator 
test application.

• The Application Display area should indicate the location of the 
display being used.

All fields about files and paths which Replay Xcessory will use will be filled 
automatically once the test case name is entered. The user can change any of 
these options as desired, or leave them as is.
2. Press Record to complete this part of the record session.
Replay Xcessory’s User’s Guide 11



GETTING STARTED
Tutorials1

Several things will occur: 

• The buttons along the bottom of the record control panel change 
to a new set of buttons that allow you to control the record 
session itself; for example, by marking the beginning of a 
subtest, taking a snapshot, pause, and so on.

• The main window of the calculator appears, as shown:

Figure 7 The Calculator

• The replay switches to the third page and disables Description 
and Settings pages.
12 Replay Xcessory User’s Guide



GETTING STARTED
Tutorial 1—A Record/Play Session 1
Figure 8 Record Control Panel, Record Tab

3. Enter the first subtest as follows:

• Press the Subtest button to indicate the start of a new subtest. 
Enter the name of the subtest (1).

• Press AC (clear) and then 4 * 5 * 6 and =. 

• Press the Snapshot button, at the bottom of the Record Control 
Panel, to save the results of the first test.

• Since the snapshot scope defaults to Object, the cursor changes 
to resemble a camera. 

• Move the cursor over the LCD area of the calculator and click.

• Replay Xcessory takes a snapshot of the LCD widget only.
Replay Xcessory’s User’s Guide 13



GETTING STARTED
Tutorials1

4. Enter the second subtest as follows:

• Press Subtest.

• Press AC, then 7, /, and 2 keys. 

• Press Snapshot (or use Ctrl+i) to save the screen results of the 
second test.

5. To exit from the calculator, either choose Quit from the window manager 
menu, or click the right mouse button on AC.

6. To end the record session, press the Stop button at the bottom of the 
Record Control Panel.

7. To dismiss the Record Control Panel, press the Cancel button 

In the Test Package window there are new icons that represent the files and 
directories created by the record session. By default, the filter for only showing 
the test case icons is activated.

Figure 9 Test Package After Recording

As you can see, only the test case icon is now in the main replaytm window. 
You can change the current view mode by clicking the right mouse button on 
clear space and select “Show All”

Now you can see all icons generated by replay files and directories.
14 Replay Xcessory User’s Guide



GETTING STARTED
Tutorial 1—A Record/Play Session 1
Figure 10 Test Package, “Show All”

Conducting a Play 
Session

In the record session, you created a script file, divided the script into subtests, 
and created baseline snapshots for subtest verification. You now have 
everything necessary for a play session. 

To begin a play session:
1. In the test package window, select the testname.tcd icon and select Play 

from the Record/Play menu, or just double click on the icon.

A play control panel appears, as shown:
Replay Xcessory’s User’s Guide 15



GETTING STARTED
Tutorials1
Figure 11 Play Control Panel
16 Replay Xcessory User’s Guide



GETTING STARTED
Tutorial 1—A Record/Play Session 1
2. For this tutorial, enter the following in the panel:

• Under Application Under Test leave the toggle “Run 
application specified in Test Script” on.

• Leave the Baseline Snapshot (Dir), Results Snapshot (Dir), 
and Report File fields with their present values, or change them 
as desired. Note that if you change the Baseline Dir name, 
previously generated baseline snapshots will be inaccessible.

• Select display, the graphical output to which Replay must send.

Press Play in the Play Control Panel. Replay will switch to the second page, 
making the first page disabled. 

As the playback begins, the script scrolls through the script view area. The 
cursor moves over the calculator buttons being pressed.

The play speed will seem slow if there were pauses between entries. To rerun 
the play session at a faster rate, adjust the play speed scale on the play control 
panel. Drag the slider to the right towards 1.0 before pressing the Play button.
3. Exit from the Play Control Panel by selecting Stop and then Cancel.

Note: Be sure to exit the calculator by selecting Quit on the window manager 
menu; otherwise new calculators may appear stacked on top of each other.

Examining the 
Report File

Since you provided baseline snapshots and requested a report file, the report 
file should indicate—based on snapshot comparisons—whether the tests were 
successful. To look at the test results, double click on the report icon in the test 
package window. 

A window containing the report file appears, and displays information similar 
to the following illustration:
Replay Xcessory’s User’s Guide 17



GETTING STARTED
Tutorials1
Figure 12 Examining the Report File

In the current version of Replay Xcessory, the user can generate reports in 
HTML format. Such a report will be generated based on the xml report file for 
the test case/test package and placed in the test case/test package directory. If 
there is not an xml report file, an HTML report file will not be generated. To 
generate an HTML report, right click the desired test case or test package in 
the test suite tree and select the menu item “Full report...” Replay Xcessory 
will generate an HTML report for the selected test case or test package using 
the replayrep console utility. The HTML report will be automatically opened 
with user’s default browser. To change the browser where the report will be 
18 Replay Xcessory User’s Guide



GETTING STARTED
Tutorial 1—A Record/Play Session 1
displayed, click the File->Preferences menu item in the main Replay Xcessory 
window and fill in “HTML Browser” with the path to the correct browser 
application.

Examining the 
Script File

Double clicking on the script icon will open a script view panel:

Figure 13 Examining the Script File

The script is the same as the one you saw scrolling by during the record 
session, only the replay settings created at the record stage are added as 
comments at the beginning. 
Replay Xcessory’s User’s Guide 19



GETTING STARTED
Tutorials1
Examining the 
Baseline and Result 
Snapshots

Double clicking on the baseline and result icons opens view panes for these 
directories. Each pane initially shows a list of the files contained in the 
baseline or result directory. Each snapshot taken results in a separate ASCII 
file containing the logical snapshot.

The name of each snapshot file corresponds to an entry in the script file. These 
files have a.snp suffix. Double click on a snapshot entry to see the format of 
the snapshot file. 

As you can see in the following illustration, the format of a logical snapshot is 
identical to that of an X resource file.

Figure 14 Examining the Baseline and Result Snapshots

If image snapshots had been taken, they would have also appeared here. An 
image viewer comes up when double clicking on an image snapshot; image 
snapshots can be recognized by their .xwd suffixes.
20 Replay Xcessory User’s Guide



GETTING STARTED
Tutorial 1—A Record/Play Session 1
Error Handling Replay Xcessory reports the name of the script file and line number for script 
syntax and run time errors. However, syntax errors are not recoverable; the 
user will have to correct the script and restart the play session.
Replay Xcessory’s User’s Guide 21



GETTING STARTED
Tutorials1

Tutorial 2—Programmatic Testing
Test scripts can be manually written to take advantage of Tcl’s programming 
constructs. Such scripts can also be generated before the application’s 
processes are ready for testing. Recorded scripts can be edited to include 
control flow statements.

The following sections describe a calculator test driver in which the input data 
is read from a file. The script converts each input line into clicks on the 
calculator buttons and compares the result against the expected result, which is 
given as the last number on each input line, such as:

10 + 2 = 5

1 + 1 = 2

5 - 2 = 3

3 * 7 = 21

The input file makes it easy to separate the input data from the script itself. It is 
also a straightforward way to generate large numbers of portable subtests 
because the data is reusable across different scripts or applications under test. 
The script and input file simulate the actions of the person doing the testing.

Step-by-step directions are included in the next section, followed by a 
description of the test results. Following the results is a listing and an analysis 
of the script itself.

Running the 
Calculator Test 
Driver

Here are the steps to run the calculator test driver:
1. Double click on the xmcalc test package in the replaytm main window.

The xmcalc test package is displayed in the Test Package window. 
2. Select the xmcalc.tcd icon; then select Play… from the Record/Play 

menu.

The play control panel appears, with Play Script set to xmcalc.tcl.
3. Snapshots will not be used for result verification. Instead, direct compari-

son of actual and expected results will be used.
4. Press Play at the bottom of the Play Control Panel to start the session.

Note: An erroneous result of 5 has been assigned to the calculation 10 + 2, in 
order to make one subtest fail. 
22 Replay Xcessory User’s Guide



GETTING STARTED
Tutorial 2—Programmatic Testing 1
A subtest report summary similar to the following is generated and saved 
(unless the report file is null) in an xmcalc.rpt file:

Subtest 1 (10 + 2 = 5)  FAILED

Subtest 2 (1 + 1 = 2)  Passed

Subtest 3 (5 - 2 = 3) Passed

Subtest 4 (3 * 7 = 21) Passed

Subtest 5 (10 / 2 = 5) Passed

Subtest 6 (1 * 9 = 9) Passed

Subtest 7 (1 + 1 + 1 = 2) Passed

Subtest 8 (5 * ( 1 + 4 ) = 25) Passed

Subtest 9 (1.1 + 2.3 = 3.4) Passed

Subtest 10 (4.4 / 2 = 2.2) Passed

Percent Subtests Passed: 90.0% (9/10)

Calculator Test 
Script

Here is a listing of the script that has just run; it begins with some support 
procedures, followed by the main loop. A description of the script logic 
follows immediately after the listing.

# This Tcl script read an input file, breaks each 
input line

# into the elements of an arithmetic equation. All 
elements

# except the last one are entered into the 
calculator. The last

# element of each line is the expected result. 
This script

# only handles number input data.

proc enter_digit { digit } {

if { $digit == “.” } {

click /\. Button1

} else {
Replay Xcessory’s User’s Guide 23



GETTING STARTED
Tutorials1
click “/$digit” Button1

}

}

proc enter_operator { operator } {

if { $operator == “*” } {

click {/\*} Button1

} else {

click “/$operator” Button1

}

}

proc clear_lcd {} {

click {/AC} Button1

}

}

# Procedure to extract digits out of number string

proc enter_number { number } {

set digits [ split $number {} ]

foreach i $digits {

enter_digit $i

}

}

# Start program and open input file

startup xmcalc
24 Replay Xcessory User’s Guide



GETTING STARTED
Tutorial 2—Programmatic Testing 1
activate {xmcalc}

currentwin {/xmcalc}

set File [open test.data r]

set testnum 0

gets $File buff

while { [ eof $File ] != 1 } {

incr testnum 1

subtest “$testnum ($buff)”

# Separate the elements of the buffer into a list

set token_list [split $buff { }]

# Get the expected result (last element in list)

set last_element_no [expr { [ llength 
$token_list ] -1} ]

set expected [lindex $token_list 
$last_element_no ]

incr last_element_no -1

# Enter each element in list

for {set i 0} { $i <= $last_element_no } { incr i 
1 } {

set current_element [lindex $token_list $i]

if { [regexp {^[0-9.]+$} $current_element ] } 
then {
Replay Xcessory’s User’s Guide 25



GETTING STARTED
Tutorials1
enter_number $current_element

} else {

enter_operator $current_element

}

}

# Compare value in calculator’s LCD against 
expected result

set result [getvalue {*LCD} {label} ]

if { $expected == $result } then {

pass “$expected == $result”

} else {

fail “$expected != $result”

}

# Clear display prior to next line of input

clear_lcd

gets $File buff

}

close $File

Description of the 
Calculator Script

The following is a description of the general flow of the script previously 
shown. The main loop of the script is preceded by actions that:

• clear the calculator

• convert a number into its component digits

• convert a digit in the input to a click command on a calculator button

• convert an operator to a click command on a calculator button
26 Replay Xcessory User’s Guide



GETTING STARTED
Tutorial 2—Programmatic Testing 1
Each time through the main loop the following occurs:

• The subtest commands mark the beginning of a new subtest. The subtest 
name can be any string; in this case, it is the concatenation of the test 
sequence number and the test data.

• The loop begins with a new calculation in $buff. The read action actually 
occurs at the end of the loop, using the gets $File buff command to read a 
line from the test.data file. Items of the line become list elements.

The following line is typical:

5 * ( 1 + 4 ) = 25

The first items, separated by white space, are calculations for the calculator. 
The last item provides the expected answer for subtest verification.

• The lindex list function picks up the last element in the list—the expected 
answer for results verification. The script loops through the elements of 
the list. Each element is either a number— integer digits and, optionally, a 
decimal point—or an operator. 

• If the element is a number, the enter_number procedure converts its 
digits to click commands on digit keys. If the element is an operator, the 
enter_operator command converts the operator to a click command on 
the operator key.

• The script uses getvalue to get the answer posted by the calculator.

• The script compares the calculator’s answer with the correct answer and, 
depending on the comparison, issues either a pass or a fail command.
Replay Xcessory’s User’s Guide 27



GETTING STARTED
Tutorials1
28 Replay Xcessory User’s Guide



Concepts of Operation 2
Overview

This chapter describes the concepts, elements, and terminology of Replay 
Xcessory. Although some of the same material was presented briefly in 
Chapter 1, we recommend that this chapter be used as the primary reference 
for Replay Xcessory concepts and terminology.
Replay Xcessory User’s Guide 29



CONCEPTS OF OPERATION
Introduction2
Introduction
Following the tutorial introduction of Chapter 1, this chapter proceeds 
systematically through the features, concepts, and terminology of Replay 
Xcessory. The discussion is divided into the following major topics:

• Replay Xcessory architecture

• script language

• results verification

• event synchronization

• code coverage

Replay Xcessory architecture
Figure 15  illustrates the elements of the Replay Xcessory architecture.

Figure 15 Replay Xcessory Architecture

Test Manager

Instrumented Xt

Driver

Tcl Scripts

Snapshots

Control files,

Reports

Test Package

data files

Test Case

(replaytm)

(replay)

Applications
Under Test

QC/Replay

QC/Replay
30 Replay Xcessory User’s Guide



CONCEPTS OF OPERATION
Applications Under Test 2
As shown in Figure 15, the application processes under test communicate with 
the Replay Xcessory driver via hooks in an instrumented X Toolkit library 
provided by Replay Xcessory.

The Replay Xcessory driver controls all record and play sessions (start session, 
stop session, take snapshot, and so on) using a private protocol recognized by 
the instrumented X Toolkit library.

All files and directories created during the record or play session are saved to 
files in the current test case directory. These files and directories comprise the 
test case which is targeted to cover a single record session.

The Test Manager provides an optional GUI to the test package. The set of test 
packages constitute the test suite, which is targeted to cover one application’s 
processes or subsystem.

Applications Under Test
Replay Xcessory operates by using an instrumented version of the X Toolkit 
library. The application under test can be linked with this library in two ways:

• If the application is dynamically linked with the X Toolkit library, then no 
additional rebuilding is necessary. The instrumented library is located by 
setting the library path environment variable directly or indirectly prior to 
starting the processes of the application under test.
Exceptions to this instrumentation include those dynamically-
linked applications which ignore the standard library path environment 
variable, for example, setuid programs and programs that use 
LD_RUN_PATH.

• If the application is normally linked statically with the X Toolkit library, it 
must be relinked if it was compiled using the same header files as they use 
now (compiled against the same Xt version Library). The rebuilt 
application can still be used normally, independently from any capture or 
replay session. Otherwise the application must be recompiled too. If the 
application is sensitive to the speed of the Xt library, the user can specify 
any value for the RX_NATIVE_XT environment variable to disable 
processing of additional events. 
Replay Xcessory User’s Guide 31



CONCEPTS OF OPERATION
Replay Xcessory architecture2

Multi-Process Testing
Replay Xcessory supports regression testing of multiple X Toolkit application 
processes. There are three ways to select a new application for testing:

• Use the Start Up button to start a new application that is to be tested and 
recorded. The Start Up button prompts for the command line of the new 
application. A startup command is recorded and inserted within the script 
for each application selected with the Start Up button.

• Secondary processes can be started by the current application under test 
(using the fork or exec system calls).

• Use the Connect button to connect to all applications currently being 
executed that use the Replay Xcessory instrumented X Toolkit; a connect 
command will be recorded.

Regardless of how the processes are started, all Replay Xcessory actions, such 
as snapshots and resource merges, take place on the current active application; 
the current active application is displayed in the Replay Xcessory message 
line.

Replay Xcessory Driver
The Replay Xcessory driver provides the controls for the record or play 
session. It also records or interprets the scripting language and converts the 
commands into the low-level X events which must be received by the 
application’s event queue.

The driver can be invoked directly by using the replay command. The driver 
must always be started in either the record or play mode. It can be invoked 
interactively or in batch. Batch mode is useful for running unattended sessions. 
The replay command is not explicitly invoked when running under the Test 
Manager. The driver can also be started with a Tcl debugger when in the play 
mode. The driver is described in detail in Chapter 5; the Tcl debugger is 
described in Chapter 9.
32 Replay Xcessory User’s Guide



CONCEPTS OF OPERATION
Replay Xcessory Test Manager 2
Replay Xcessory Test Manager
The Test Manager places all the features of Replay Xcessory under the control 
of a graphical user interface (GUI). See Chapters 3 and 4 for comprehensive 
information regarding the Test Manager’s GUI. The test package and test suite 
concepts are basic to understanding the Test Manager.

The Test Manager:

• provides a directory listing that displays the test packages of a test suite 
and menus to change test suites and open test packages

• provides and organizes an iconic view of a test package as a collection of 
related test scripts, baseline and result snapshots, application data files, 
and reports

• starts record and play sessions and enables users to customize their 
interactions with Replay Xcessory

Use of the Test Manager is not required for operation of the core Replay 
Xcessory functionality. This enables Replay Xcessory to be easily integrated 
into existing test management facilities or shell scripts.

Test Suites A test suite is a directory that contains a number of related test packages. The 
Test Manager displays the test packages of the current test suite and enables 
you to navigate from test suite to test suite.

Test Packages A test package is a directory that holds and organizes the files and directories 
associated with a record or play session. We recommend that a test package be 
restricted to the files associated with a single record or play session.

Test Cases A test case is a xml file that contains a custom test case definition - the set of 
the settings (which applied only to this test). Several test case definitions may 
have the same settings (for example, they might have the same script path or 
baseline directory) and differ in others.

Subtests A subtest is a single script file in a test package that can contain more than one 
test. By using a subtest command, the script can be partitioned into multiple 
subtests. The results in a Reports file are summarized subtest by subtest, as 
shown in the following illustration:
Replay Xcessory User’s Guide 33



CONCEPTS OF OPERATION
Replay Xcessory architecture2
Figure 16 Test Package Report for Calculator Example

Replay Xcessory Script Language

The Replay Xcessory script language is based on the nonproprietary Tool 
Command Language (Tcl). Tcl was initially developed by John Ousterhout of 
the University of California at Berkeley and has quickly gained acceptance in 
the technical community, especially in testing organizations. Tcl is a powerful 
shell-like interpretive programming language that combines simplicity and 
flexibility.
34 Replay Xcessory User’s Guide



CONCEPTS OF OPERATION
Script Command Actions and Objects 2
A basic script consists of commands that specify actions on objects, plus 
additional command-specific information. The script is used to simulate input 
actions. In the case of a recorded script, the script enables a session to be 
played back. In the case of a handwritten script, the script represents what a 
user would do.

The following sections explain the various aspects of scripts and script 
commands:

• command actions and objects

• names of command objects (widget names)

• command delay

• programmability of scripts

• editability of recorded scripts

• portability of scripts

Script Command Actions and Objects
The command actions of the script are those actions that occur while using a 
particular application. Each user action is represented by a command. The 
following are the script commands, summarized by command category:

User Interaction 
Commands

click dblclick multiclick 
press release 
drag key text move resize 
iconify deiconify 
raise lower closewin popdown popup 
message

Test Management
Commands

subtest 
pass fail 
snapshot 
mergespec loadspec
Replay Xcessory User’s Guide 35



CONCEPTS OF OPERATION
Replay Xcessory architecture2
Command objects represent the widgets with which the tester interacts, for 
example the menu items and push buttons. 

Replay Xcessory also provides a set of extended commands that can be used 
for programmatic testing. The extended commands allow for more compact 
representation of interactions involving OSF/Motif. Additional information 
about extended commands can be found in Chapter 8.

Widget Names and Tags

Note: The editres program, available under X11R6 and later systems, can be 
used on X11-based applications operating under Replay Xcessory. This 
program provides a graphical view of the widget hierarchy and displays the 
widget names. The editres program is a useful tool for understanding the 
widget hierarchy in X11R6 (and later) applications. If editres is not available 
on your system, ftp the source for building it from ftp.x.org in the following 
directory: /pub/R5 
Also useful is the program in OpenMotif demos, "getsubres", that shows a list 
of most of the general widget resources and their values.

Widget Names In the script, a widget is identified by its name as assigned by the developer of 
the application’s user interface. An easy way to determine widget names is to 
start a record session. As you click on a widget (for example, the Help button), 
its name scrolls through the script view area, and would look similar to the 
following:

click {*help}Button1@26,15 2695

Widget 
Information
Commands

currentwin getcurrentwin
getclass getchildren getpopups 
ismanaged ismapped iswidget
getparent getfocuswidget
widgetid widgetname widgettag
getvalue setvalue 
getproperty
windowid alias

Session 
Management
Commands

echo echoreport 
narrative activate
delay pause termsync 
startup connect system exec
36 Replay Xcessory User’s Guide



CONCEPTS OF OPERATION
Widget Names and Tags 2
Widget Tags An alternate way to identify a widget is to list the widget’s tag. A widget tag is 
always preceded by a forward slash (/). A tag can be extracted automatically 
by Replay Xcessory from widgets that have obvious and logical names—for 
example, specific push button labels, or shell titles—where the tag is the button 
name or a window title.

An exception is made for label widgets. Their default is equal to the label 
string plus a _label suffix. With the Record Tag Names option toggled on, 
clicking on the Help button during a record session lists a widget’s tag (in this 
case {/Help}), if the widget had a unique tag.

click {/Help}Button1@31,19 2080

A widget tag can be explicitly assigned using the Learn Tag facility 
(described in Chapter 5) which can be used to assign tags to widgets that do 
not have an easily identifiable label, for example, text fields or scroll bars.It is 
also possible to use the names of the parent widgets as part of the full widget 
tap name, if it is necessary: .xmcalc.*./0 or .xmclac.ti./9. Using widgets in 
record mode is also described in the “Recording Widget Tags” section on page 
142.

Fully-Qualified 
Versus Minimized 
Widget Names

The style of names that Replay Xcessory uses in scripts and snapshots, as well 
as many other properties, can be modified or defined. (Refer to Chapter 5 for 
detailed information on customizing record/play properties.) Two styles of 
widget names are present in scripts: fully-qualified and minimized.

The fully-qualified name is based on the widget hierarchy. A portion of the 
widget hierarchy for the calculator program (see the tutorial in Chapter 1) is 
shown in Figure 17 .
Replay Xcessory User’s Guide 37



CONCEPTS OF OPERATION
Replay Xcessory architecture2
Figure 17 Widget Hierarchy

At the top of the hierarchy is xmcalc, the application shell: an ancestor of all 
the other widgets. The buttons are all children of ti. More complex applications 
can have multiple widget trees, each with its own application shell.

The fully-qualified name consists of the basic widget name qualified by each 
of its parents; for the first button: xmcalc.ti.button1.

The minimized name is the name of the widget prefixed by the minimum 
number of ancestor widgets needed to uniquely identify the widget. The 
asterisk (*) wildcard is used in the script to replace the omitted name 
components. The wildcard can only represent some number levels in the 
widget hierarchy, and cannot be a part of the widget name on a particular level. 
For example, .xmcalc*button24 is equal to xmcalc.button24, 
.xmcalc.level.button24, .xmcalc.level.level2.button24, and so on, but is not 
equal to .xmcalc_widget.button24. This limitation exists because of the X 
resources files standard that Replay Xcessory uses for tag representation. If the 
name of the widget is unique for the whole widget tree, no ancestor widget 
name will be prefixed to the widget name. The minimized name of the first 
button is *button1.

Recorded events may present a subwindow field. Each subwindow name is 
appended to the primary widget name. For details about widget subwindows, 
refer to the “Specifying the Target Widget” section on page 199.

xmcalc
(Application 

ti

button1 button2 button3
…

button40 …

Shell)
38 Replay Xcessory User’s Guide



CONCEPTS OF OPERATION
Command Delay 2
Recording Name 
Components

The X Toolkit does not impose or enforce any restrictions on valid name 
components. Since Replay Xcessory relies on being able to uniquely identify a 
widget instance solely by its name, the following convention is used when 
recording widget names:

• Components that are duplicated at the same level are suffixed. The first 
instance is the component name. The second instance is suffixed by [2], 
the third by [3], and so forth. If a set of buttons had all been named 
‘‘button,’’ the minimized names would have been *button, *button[2], 
*button[3], and so on.
The instance number always corresponds to the component’s initial posi-
tion in the children list. Thus instance [3] will always be instance [3] 
even if instance [2] and instance are destroyed during the session.

• Components that are null are replaced by a single space.

• Certain characters with special significance to X, Tcl, or Replay Xcessory 
are escaped by the backslash character (\) if found in the widget name. 
These characters are: period ( . ), 
asterisk ( * ), dollar sign( $ ), backslash ( \ ), and left and right brackets ([ 
]).

• If the application under test has multiple application shells, the application 
shell name is always recorded as part of the name, including minimized 
names.

Widget tags and names can be intermixed in the fully-qualified or minimized 
names. However, even with the Record Tag Names option toggled on, Replay 
Xcessory uses widget names if a widget tag cannot be found or is not unique 
enough to identify the widget instance.

Although Replay Xcessory can operate on any widget name, it is 
recommended that application developers give widgets unique, non-null, 
specific names in order to improve script readability.

Command Delay

The delay between most actions is recorded and used in play sessions to 
approximate the speed of the initial record session. The delay between the tcl 
commands can be forced to the default value (1 sec.) if the user sets the 
Replay.omitDelay resource to True in 
REPLAYHOME/lib/appdefaults/Replayfile. However, the play speed can be 
adjusted before starting a play session. The actual play speed depends on the 
desired play speed, system load, and whether widgets are in the proper state to 
accept the recorded action.
Replay Xcessory User’s Guide 39



CONCEPTS OF OPERATION
Replay Xcessory architecture2

Note, however, that the tcl commands determine whether this option works 
and not. TCL commands that cannot take a variable amount of parameters 
often ignore the delay value when Replay Xcessory makes the script record as 
short as possible by considering default values.

For example, the full form of the click command is click widget state [location 
[delay] ], but only “widget” is obligatory when clicking on a widget other than 
XmDrawingArea, so using the default Replay Xcessory parameters will record 
the click command as click “widget”, which is equivalent to clicking “widget” 
Button1 center_location 0.

In such cases, to make the script more readable, Replay may omit the delay 
even if the omitDelay option is set to False.

On the other hand, the “drag” command always records a delay value because 
of especial handling of the command.

Each action is an atomic transaction. An action recorded as a double click will 
be played back as a double click regardless of the system or network load; two 
consecutive single clicks will not become a double click simply because the 
play back is done on a faster machine. (See Chapter 6 for more information.)

Command-Specific Information
In addition to specifying the action, widget, and time delay, most commands 
contain additional information. For example, a text command contains a string 
with the text entered, as well as the name of the widget where the text was 
entered. The resize command includes the new size of the window, as well as 
the widget name identifying the window.

Script Programmability
Tcl provides all the control flow constructs needed to support structured 
programming as well as many high-level built-in functions (string, array, and 
list processing, file input/output (I/O), regular expressions). Scripts can be 
written as modular units that contain user-defined procedures, and these scripts 
can be placed into reusable libraries. The file I/O functions add a powerful way 
to test, because input data can be read from external files rather than embedded 
in the script itself.
40 Replay Xcessory User’s Guide



CONCEPTS OF OPERATION
Script Editability 2
Script Editability
A recorded script file can be edited using any ASCII editor. The session can be 
programmed independently from the actual program if the specification for the 
user interface is known. Sensitivity to the actual widget tree can be minimized 
through the use of tags (see Chapter 5) and by using wild card notations in the 
name whenever possible.

Script Portability
The script file is portable across platforms and environments. For example, a 
session recorded on Red Hat Enterprise Linux 3.0 running the KDE window 
manager can be played back on a Sun SPARCStation™ running under an CDE 
window manager.

Results Verification
When regression tests run unattended, screen results must be programmatically 
verified. Comparing snapshot files is an important and straightforward 
programmatic method, as described in the following sections.

Snapshots
Snapshots provide a fast, convenient substitute for visual inspection by 
capturing the current screen when the snapshot is requested. During a record 
session, the Replay Xcessory tester selects snapshot as results are displayed on 
the screen. There are two types of snapshots: widget snapshots and image 
snapshots. (See Chapter 5 for more information about snapshots.)

Note: Subtests default to a Pass result if there are no snapshots taken and there 
are no explicit pass/fail commands invoked in the subtest. It is not possible to 
obtain a result of Unknown.

Widget Snapshots A widget snapshot is an ASCII representation of the application’s widget tree 
(or a portion of a tree) at a particular time. One can control which widgets, 
widget classes, and resource values for a widget class are included. This makes 
it possible to ensure that the string value of text fields are identical while 
ignoring differences in font, color, or other attributes. The resources are 
dumped in the standard X resource file format. The hierarchical relationships 
between the widgets is optionally preserved using pseudo resources. (See 
Chapter 5 for more information about pseudo resources.)
Replay Xcessory User’s Guide 41



CONCEPTS OF OPERATION
Results Verification2

Widget snapshots are the recommended means of verifying results that occur 
as values (or other ASCII resources) within widgets. Comparisons of values 
that involve only ASCII comparisons are fast and reliable, and widget snapshot 
files are usually an order of magnitude smaller than image snapshots. Since 
values are referenced by the names of their widgets, such comparisons can be 
made insensitive to many changes in the application interface, such as the 
repositioning of a button or dialog box.

Image Snapshots An image snapshot is a screen that has been captured as an xwd bitmap file. 
An application that displays its results as graphics, rather than as ASCII values, 
requires an image snapshot; for example, an application that draws or paints. 
Image snapshots can be optionally compressed to conserve disk storage.

Baselines
When the collection of snapshots from a record session have been verified as 
correct, they constitute a baseline snapshot. Baseline snapshots serve as a 
standard against which snapshots in future regression tests will be judged.

Replay Xcessory 4.6 supports a new feature - a set of valid baseline snapshots. 
If there is more than one correct snapshot for comparing tests and baselines or 
the snapshot content could be different for different time intervals, the user can 
replace the baseline snapshot file with a set of files. The user needs to create a 
directory named like a snapshot file and place all valid snapshots in that 
directory. Replay Xcessory will process the directory in special way. Each file 
will be compared with the target snapshots from the playback session. 
Directories with incorrect names will be ignored. Replay Xcessory will report 
mismatch errors only when all the snapshots are incorrect.

Users can create a set of valid baseline snapshots with the GUI version of 
Replay Xcessory in playback mode. Click the “Add” button on “mismatch 
error dialog” and Replay Xcessory will create the proper directory and place 
all available files in it. In case such a directory already exists, the files will be 
added to it automatically.

Regression Testing
As processes within an application evolve, they can be retested periodically 
using Replay Xcessory. The new version of the application is replayed using 
the original test actions, as recorded in the script. At each verification point 
during the play session, new snapshots are taken and compared with the 
baseline snapshots. If the snapshots are identical, the tests are successful. If 
not, the discrepancies can help determine the source of the problem.
42 Replay Xcessory User’s Guide



CONCEPTS OF OPERATION
Determining Subtest Success 2
Replay Xcessory compares new and baseline snapshots programmatically— 
depending on the type of snapshot—by using the diff(1) or xwddiff(1) 
utilities.

• The diff(1) utility compares widget snapshots.

• The xwddiff(1) utility compares image snapshots.

Replay Xcessory makes widget or image comparisons, or both, depending on 
what was requested during the test. The user can change the program for taking 
widget or image snapshots for the whole test package, by correcting the needed 
properties in the package settings dialog. 

Determining Subtest Success
Replay Xcessory supports multiple subtests within a single test script. The 
success or failure of each subtest can be determined by any of the following 
mechanisms:

• Comparison of baseline and result snapshots provides the simplest method 
of determining success or failure. It is based on the assumption that there 
are verification points in a process execution where the screen contents 
can be checked to verify that they are correct. The snapshots can be widget 
snapshots, image snapshots, or both.

• Direct comparison of the widget contents with its expected value is more 
efficient than snapshot comparison. By using the getvalue and setvalue 
commands (which are analogous to XtGetValues and XtSetValues), it is 
possible to obtain the attribute of interest and compare the result directly 
against the expected value. 
The getvalue command returns the requested widget resource; for exam-
ple:

set result [ getvalue {*LCD} {label} ]
sets the value of the label resource for the widget with the minimized 
name *LCD and places it in variable result.
Similarly,
Replay Xcessory User’s Guide 43



CONCEPTS OF OPERATION
Event Synchronization2
setvalue {dialog_box_m} {background} “green”
sets the value resource to the color green of the widget named 
dialog_box_m.

• System commands and shell scripts can be invoked using the system or 
exec command. This allows the verification of states that are best verified 
externally.

• Custom resource type converters can be written to extract application data 
in a form that can be processed by the Tcl script (refer to “Advanced 
Topics” on page 261 for more information).

• Custom Tcl commands can be written to utilize existing libraries for result 
verification, for example, directly querying the database to verify that a 
database update took place.

Event Synchronization
With graphical user interfaces, events that occur out of the normal order can 
cause havoc. One example is a click command executed on a dialog box that 
has not yet appeared. Replay Xcessory addresses synchronization in two ways:

• automatic widget synchronization

• programmed synchronization

Automatic Widget Synchronization
Replay Xcessory uses widget status information to automatically:

• synchronize play events; the play speed can be adjusted to play at an 
accelerated rate to maximize usage of the available machine resources

• generate popup and popdown commands during a record session to force 
synchronization with pop up and pop down of shell widgets

Programmed Synchronization
Program synchronization points can be inserted into the script using any 
arbitrary state, described in terms of widget resource values. For example, it is 
straightforward to issue a press command and wait in a loop to issue the 
release command—that is, hold down a button until a slider reaches a certain 
value, as determined by the getvalue command. 

For example, the following fragment shows a script that presses on a scale 
scrollbar until the scale value reads 70.
44 Replay Xcessory User’s Guide



CONCEPTS OF OPERATION
Programmed Synchronization 2
# press on slider in loop

while { [getvalue {tester.rc.scale} {value}] < 70 
} { 

press {tester.rc.scale.scale_scrollbar} Button1 
12 10

}

release {tester.rc.scale.scale_scrollbar} 
Btn1down+Button1 12 10

In the preceding example, the getvalue command is used to retrieve the value 
resource of the slider widget. When the value becomes less than or equal to 70, 
the loop terminates.

Note: Replay Xcessory provides automatic synchronization for all keyboard 
and mouse input events. However, widget information commands, such as 
getvalue and getchildren, are executed immediately. 

To ensure that Replay Xcessory maps a widget being queried by a widget 
information command, force a synchronization programmatically. 

For instance, 

while { [ismapped somewidget ] != “TRUE” { 
...}
Replay Xcessory User’s Guide 45



CONCEPTS OF OPERATION
Event Synchronization2
46 Replay Xcessory User’s Guide



Replay Xcessory Test 
Manager 3

Overview
The Test Manager places all the features of Replay Xcessory under the control 
of a graphical user interface. The material presented in this chapter assumes 
that you have already read Chapter 2, which introduces the concepts and 
terminology used here.
Replay Xcessory User’s Guide 47



REPLAY XCESSORY TEST MANAGER
Introduction3
Introduction
Use of the Test Manager is not required for operation of the core Replay 
Xcessory functionality; however, this enables Replay Xcessory to be easily 
integrated into existing test management facilities or shell scripts. The Test 
Manager is designed to:

• partition a test suite into test packages

• provide a user interface for managing test suites

• organize and display a test package as a collection of test case definitions, 
related test scripts, baseline and result snapshots, application data files, 
and reports

• start file utilities, and record and play sessions

After starting the Test Manager, the directory listing for the current test suite is 
available. From this list you can open a test package that provides an iconic 
view of test package elements. Several test packages can be opened 
simultaneously. A variety of commands are available through menus of the test 
package window.

The following sections of this chapter describe:

• setting up the environment

• starting the Test Manager

• test suite commands

• test package commands

• test case commands

Setting up the Environment
In order to use Replay Xcessory you must make sure that your application uses 
a Replay Xcessory version of the necessary Xt library, instead of the regular 
version. You must also make sure that your path is correctly set to find the 
required Replay Xcessory executables and manpages.
48 Replay Xcessory User’s Guide



REPLAY XCESSORY TEST MANAGER
Setting REPLAYHOME 3
Setting REPLAYHOME
You can set the REPLAYHOME environment variable in order to easily 
specify all other variables, or you can just use the path where you installed 
Replay Xcessory:

REPLAYHOME=/path_to_replay_root_dir

where path_to is the directory where Replay Xcessory is installed .

Consider placing the following appropriate environment specifications in your 
.profile or .cshrc file:

For sh or ksh, enter:

REPLAYHOME=/path_to_repalay_root_dir/ 
export REPLAYHOME

For csh, enter:

setenv REPLAYHOME 
/path_to_replay_root_dir/Setting PATH

To set PATH, include the appropriate commands, below, in your .profile or 
.cshrc file:

Setting MANPATH
In order to access the on-line Replay Xcessory reference manual pages 
(manpages), include the following in your environment.

For sh or ksh:

MANPATH=$MANPATH:$REPLAYHOME/man; export MANPATH

For csh:

setenv MANPATH /$REPLAYHOME/man:$MANPATH

Using Whatlib
If you are unsure of whether you are linked with the instrumented Xt library, 
use the whatlib. For example, type the following:

whatlib $REPLAYHOME/examples/bin/tester

1. If the application is linked against the correct instrumented libXt, the user 
will see the message: Application linked properly. You can run Replay 
now.
Replay Xcessory User’s Guide 49



REPLAY XCESSORY TEST MANAGER
Setting up the Environment3

2. If the application is linked against the wrong libXt, the user will see the 

message: Application linked statically against the wrong version 
libXt.You should relink it against the instrumented libXt and try again. If 
the application is linked with a shared libXt, this script will check the 
environment and report whether the Replay instrumented libXt is being 
used.

Multiple Library Paths
Dynamically-linked multiple processes usually have the same library path 
requirements for Replay Xcessory. However, one application may be based on 
Motif and another based on non-Motif widgets. If this situation occurs, 
potential problems can be avoided by statically linking one application with 
the appropriate Replay Xcessory instrumented Xt library and setting the library 
path to the appropriate library for the second application.

Setting Test Suite Properties
Test suite-wide properties can be placed in a single directory by setting the 
REPLAY_TESTSUITE_PROPS environment variable to the name of the 
directory that will be used to hold the test suite properties. The procedures 
pertaining to test suite-wide properties files, relative to similar files specified 
in local or home directories, or system defaults are described in detail in 
“Record and Play Sessions” on page 97.

Setting the Automatic Evaluation of Environment 
Variables
This is the procedure for automatic evaluation environment variables on the 
startup of the Replay Xcessory Driver and Replay Xcessory Test Manager. The 
main idea is that the user will not change the directory structure after the 
Replay Xcessory install. 
1. When binary starts, it is trying to get the full path to itself.
2. It trims from the path binary file name and “/bin/”.
3. Put to the environment REPLAYHOME variable - it is the place where 

Replay was installed.
4. Add “/lib/Xt” and export LD_LIBRARY_PATH with the additional value 

of the already existing variable.
5. Add “/xcessory/examples/bin/” and “/bin” and the export PATH with the 

additional value of the already existing variable.
50 Replay Xcessory User’s Guide



REPLAY XCESSORY TEST MANAGER
Setting the Automatic Evaluation of Environment Variables 3
Starting the Test Manager
To start the Replay Xcessory Test Manager, enter the following command:

replaytm &

The main window of the Test Manager appears with a test suite directory 
listing, as shown:

Figure 18 Test Suite Window

The directory listing displays the test packages in the current test suite. Each 
directory entry lists the name and a one-line description of a test package.

Test suites can be nested. If the line in the main replaytm window represents a 
test suite, it will be bold. 

The user can move between nested test suites by clicking on the bold line and 
pressing the Backspace keyboard key (for entering one level higher).

Test Suite Commands
The following paragraphs describe how to use menus of the test suite window 
to: 

• change the test suite directory

• create a test package

• open a test package

• customize utility commands
Replay Xcessory User’s Guide 51



REPLAY XCESSORY TEST MANAGER
Test Suite Commands3

Changing Test Suite Directory
To display a different test suite, select Change… on the Test Suite menu. A 
dialog box appears, as shown:

Figure 19 Change Test Suite Directory

To display a new, unrelated set of directories, enter the test suite directory 
name in the Selection field and click on OK; or, when you see the test suite 
directory of your choice in the Directories list box, click on it and then click 
on OK. Double clicking on a list-box entry also selects a directory. When you 
have finished, the Test Manager main window displays the test suite of your 
choice.
52 Replay Xcessory User’s Guide



REPLAY XCESSORY TEST MANAGER
Creating a Test Package 3
Creating a Test Package
To create a new test package, select New… on the Test Package menu. A Test 
Package dialog box appears, as shown:

Figure 20 Test Package Dialog Box

Enter the following information in the dialog box:

• In the Test Package Name: area, enter a directory name for the new test 
package. 

• In the Title: area, write a one-line description of the test package. The 
contents of Title: are displayed beside the test package name in a 
directory listing. 

• In the Description: area, type in as much information as you like about 
the test package. This description, along with the title information, 
available through the View menu in the test package window.

When you press OK, the new package is created and opened. Refer to the next 
section for a description of an open test package.

The files and directories of a test package are created at various times:

• The physical name of the file is testpackagename.tpd, and it is created 
when the test package is created.

• The script file and the baseline directory are created at record time.

• The report file and the results directory are created at play time.
Replay Xcessory User’s Guide 53



REPLAY XCESSORY TEST MANAGER
Test Suite Commands3

Opening a Test Package
To open a test package:
1. Find the test package in the directory listing of the appropriate test suite.
2. Click on it.
3. Select Open on the Test Package menu.

You can also open the test package by double clicking on an entry in the 
directory listing. When a test package opens, you see a test package window 
similar to the following illustration:

Figure 21 Open Test Package and its Icons

Here is a description of the icons shown in this Test Package:

Test case definition file

The script file is represented by a cartridge tape icon. 

Suffix: .tcl

The baseline snapshots directory is represented by a framed 
picture icon.

Suffix: .bsl
54 Replay Xcessory User’s Guide



REPLAY XCESSORY TEST MANAGER
Customizing Utility Commands 3
Customizing Utility Commands
The Edit, View, and Print commands that are used in the test package window 
can be customized. To change one or more of these commands, select 
Utilities… on the Properties menu. A Utility Preferences dialog box appears, 
as shown:

The results snapshots directory is represented by an instant 
picture icon.

Suffix: .res

The report file is represented by a report binder icon.

Suffix: .rpt

Any nondirectory file that does not have a recognized 
suffix is given the file icon (a sheet of paper).

Any directory that does not have a recognized suffix is 
given the directory icon (a file folder).

File that contains the definition of widget tags of a custom 
application
Replay Xcessory User’s Guide 55



REPLAY XCESSORY TEST MANAGER
Test Suite Commands3
Figure 22 Utility Preferences

Press Save to use the new commands in the current session, and to save the 
values in the .Replaytm file for subsequent sessions.

Here are the commands that you can change and their default settings:

• Edit command. The default command to bring up an edit window with vi 
is:

xterm -title $title -e vi $file

• View command for ASCII files. The default command to bring up a 
window using the view utility is:

xterm -title $title -e view $file

Note: Avoid using viewers that exit automatically when they reach the end of 
the file, such as versions of more on some platforms.

• View command for image (xwd) files. The default command for viewing 
an image file is:

xwud -in $file
56 Replay Xcessory User’s Guide



REPLAY XCESSORY TEST MANAGER
Viewing Test Package Elements 3
• Print command. The default command for printing is:

lp $file

• Initial test suite: indicates the directory to be used as the test suite when 
the test manager is initiated. This eliminates having to cd to the test suite 
directory before starting the test manager. If this field is empty, the Replay 
Xcessory Test Manager will save the current testsuite at the end of the 
session and restore it at the beginning of the next one.

Special tokens $title and $file will be replaced by Replay Xcessory prior to the 
actual command invocation—$title, by a descriptive title; $file, by the name of 
the file.

The editor and ASCII viewer commands should run in the X environment. If 
the command is not X-based, as with vi, you must initiate the command within 
an X terminal emulator, as done in the default commands previously shown.

Test Package Commands
The following paragraphs describe the commands available from the Package 
window:

• viewing test package elements—shows how to view various elements of 
the test package simultaneously

• using menu bar commands—explains the menu commands available from 
the menu bar

• using additional menu commands—explains the menu commands 
available from additional panes of the test package window

Viewing Test Package Elements
The following illustration shows a Test Package window, with views opened of 
the script file and the snapshot directories.
Replay Xcessory User’s Guide 57



REPLAY XCESSORY TEST MANAGER
Test Package Commands3
Figure 23 Test Package Window for xmcalc

Test Package Menu Bar
The following sections describe commands invoked through the menus in the 
menu bar of the Test Package window. These menus govern only the pane with 
test package icons. See “Test Package View Panes” on page 61 for information 
about menus for the other panes.
58 Replay Xcessory User’s Guide



REPLAY XCESSORY TEST MANAGER
Test Package Menu Bar 3
Note: Some menu options require that some test package icons be selected (or 
deselected). To select an icon and deselect all others, click on the icon with the 
left mouse button. To add other icons to the currently selected set, use 
Shift+Button1.

Record/Play Menu The following commands are available from the Record/Play menu in the Test 
Package Window menu bar:

For detailed information regarding the Record and Play commands, refer to 
Chapter 5. For information about running with the Tcl debugger, see Chapter 9.

Edit Menu The following commands are available on the Edit menu of the Test Package 
window. 

Record... Starts a record session.

Play... Starts a play session.

Close Closes the Test Package window.

Edit Object When the script or a file icon is selected, Edit Object 
creates an independent edit window. Use this window to 
edit the file and save the changes.

Link/Copy This items allows the user to copy, move, or create a 
link on the file system to the appropriate test case into a 
test package other than the current one. This is active 
only when the test case icon is selected. 

Print When you select any directory element representing an 
ASCII file, Print will print the file.

Delete Deletes the files represented by selected icons. For 
example, if you select the baseline directory icon and 
then select Delete, the baseline directory and all its 
included files are deleted.
Replay Xcessory User’s Guide 59



REPLAY XCESSORY TEST MANAGER
Test Package Commands3
View Menu The following choices are available from the View menu in the Test Package 
window menu bar:

For detailed information regarding the Session Props and Snapshot Props 
commands, refer to Chapter 4.

Options Menu

View Object Creates a view-only display of a file or a snapshot 
directory. If the object selected is a Tcl script, a Replay 
Xcessory report, or a snapshot directory, the view is 
opened as a new pane within the test package window. 
Otherwise, an independent window is brought up.

Package 
Description…

Displays the description of the test package in a dialog 
box like the one used to create the test package.

Rescan Causes the Test Manager to redisplay the test package. 
This is useful when new icons have been created since 
the test package was opened.

Show only 
Test Cases

Filters main icon area to show only test case 
definitions.

Show All Shows all files related to the test cases.

Session 
Props...

Brings up the Session Properties form which allows you 
to change various parameters for the record or play 
session.

Snapshot 
Props...

Creates a text editor window for the snapshot dump 
control file (.Vrdump) for the current test package. If the 
file does not exist, it is copied from $HOME/.Vrdump 
or from /usr/lib/X11/app-defaults.

Batch 
Creation...

Allows the user to choose which test cases inside the 
current test package to save into the xml batch file, which 
can be used later for unattended sessions. 
60 Replay Xcessory User’s Guide



REPLAY XCESSORY TEST MANAGER
Test Package View Panes 3
Figure 24 Batch File Creation Dialog

Test Package View Panes
The following paragraphs describe the panes of the Test Package window and 
what actions can be taken from each of the following panes:

• report view pane

• script view pane

• baseline and result snapshot view pane

Aside from the menus in the menu bar of the Test Package window, menus are 
available through the menu button of the mouse. These menus are available 
only when you press the right mouse button in one of the additional panes. 

See “Customizing Utility Commands” on page 55 for information on 
customizing the operation of these menu commands.

Script View Pane The Script View pane enables you to scroll through the script. You can also 
view each pair of snapshot files (baseline and results) in side-by-side views:
1. Open the script view pane and both snapshots view panes.
2. Select the three icons and then the View command or double click on each 

icon.
3. In the Script View pane, scroll until a snapshot command—shown in ital-

ics—is visible.
4. Double click on the snapshot command in the script view window.

The baseline and results files that correspond to this snapshot command are 
displayed in the baseline and results snapshot view panes, respectively. This 
feature enables you to proceed through all the snapshot commands in the 
script and directly view the corresponding snapshot files, as shown:
Replay Xcessory User’s Guide 61



REPLAY XCESSORY TEST MANAGER
Test Package Commands3
Figure 25 Script and Snapshot View Panes

Baseline and 
Result Snapshot 
View Panes

The baseline snapshot view pane lists the widget and image snapshot files in 
the baseline snapshots directory. Alternatively, double clicking on one of these 
file entries displays the contents of the widget or image file in the view pane.

Similarly, the result snapshot view pane lists the widget and image snapshot 
files in the baseline snapshots directory. Alternatively, if you double click on 
one of these file entries, the view pane displays the contents of the widget or 
image file.
62 Replay Xcessory User’s Guide



REPLAY XCESSORY TEST MANAGER
Test Package View Panes 3
Double clicking on an ASCII file in the baseline or results snapshot view panes 
is equivalent to selecting the view option from the popup menus. Double 
clicking on an image file (.xwd extension) causes the image viewer to be 
called.

The size of the view panes for result and baseline snapshots varies. If you view 
only one directory, the view pane occupies the full width of the test package 
window; if you view both directories, the view panes co-exist side by side.

The following commands are available through the right button of the mouse 
and apply to the highlighted directory element:

Report View Pane The report view pane enables you to scroll through any report file. This option 
is especially useful when reviewing the output from batch runs. 

Here is an illustration of a Report View pane:

view For a widget snapshot, an image snapshot, or any ASCII 
file, the view command brings up an independent viewing 
window; double clicking on a directory element also 
brings up the viewing window.

edit For any ASCII file, edit brings up an independent edit 
window (with the ASCII editor of your choice).

print For widget snapshot files, or other ASCII files, the file is 
printed, using the print commands of your choice.

close Closes this view pane.
Replay Xcessory User’s Guide 63



REPLAY XCESSORY TEST MANAGER
Test Package Commands3
Figure 26 Report View Pane

Note that:

• Differences that have been found in the widget snapshots are included in 
the report.

• Differences that have been found in the image snapshots are referenced in 
the report. Double clicking on this line displays a composite (XOR) 
image of the differences.

The close command, on the menu of the right mouse button, closes this view 
pane.
64 Replay Xcessory User’s Guide



REPLAY XCESSORY TEST MANAGER
Test Package View Panes 3
Test Case Commands
The key icon in the main replaytm's work area is the test case definition icon. 

It represents the custom test case defined by the user, and can be invoked to 
start record or playback session by selecting the icon and the appropriate item 
in the popup menu (which shows in result of a right click) or choosing Record 
or Playback item in Record/Play menu.

Figure 27 Test Case Popup Menu

The playback session also can be running by double-clicking on the test case 
icon.

Figure 28 Test Case Icon
Replay Xcessory User’s Guide 65



REPLAY XCESSORY TEST MANAGER
Test Case Commands3

You are able to choose which view you wants to see at the current moment. 
Three alternates are available:
1. Clicking on the tcd icon brings up a popup menu which has as a list item 

button “Show by test case” - by selecting this item, Replay will fill the test 
package view only with files and directories which are related to the tcd 
file on which right click was occurred.

2. Clicking on a empty space will bring up a popup menu which has an 
option to “Show only tcd files” - this will fill the package view only with 
icons which represent a particular test case - this can be useful if the pack-
age has a lot of tests. 

3. Another option available is to “Show All”. It will fill the view with all the 
files which are related to all test cases, under the condition that Replay test 
Manager knows what that file is.

Each Test Case has its own line and sequence of showed icons. The first icon is 
always test case definition, the second is tcl script, the third is the baselines dir, 
the fourth is the snapshots dir, and the fifth is the report file. 
66 Replay Xcessory User’s Guide



The New Replay
Xcessory Test Manager 4

Overview
This chapter discusses the new Replay Xcessory Test Manager. If you are 
using an older version of Replay, you should refer to Chapter 3.
Replay Xcessory User’s Guide 67



THE NEW REPLAY XCESSORY TEST MANAGER
Introduction4
Introduction
The following sections of this chapter describe:

• starting the new Replay Xcessory test manager

• preferences

• Replay Xcessory tag manager

• Vrdump editor window

Starting the New Replay Xcessory Test Manager 
(rtm)

To start the Replay Xcessory Test Manager, enter the following command:

rtm 

The main window of the new Test Manager appears as shown:

Figure 29 The New Test Manager
68 Replay Xcessory User’s Guide



THE NEW REPLAY XCESSORY TEST MANAGER
Creating the Test Suite Directory 4
The test suite tree on the left hand side shows all the test packages and their 
test cases of the currently opened test suite in the tree hierarchy. Each first 
level node of the tree represents a test package and has an appropriate directory 
on the disk that contains the tpd file describing the test package. Each second 
level node of the tree represents the test case and has an appropriate directory 
on the disk that contains tcd file describing the test case.

The following sections describe how to use rtm main window menus to:

• manage test suites

• create a test package

• customize utility commands

• run playback/record sessions

• edit vrdump file

• work with tag files

Figure 30 Test Manager File Menu

Creating the Test Suite Directory
To create another test suite, select “Create Test Suite” from the File menu. A 
dialog box appears, as shown:
Replay Xcessory User’s Guide 69



THE NEW REPLAY XCESSORY TEST MANAGER
Starting the New Replay Xcessory Test Manager (rtm)4
Figure 31 New Test Suite Dialog Box

Enter the test suite name and the desired directory in the path field and click on 
OK; When you have finished, a new test suite will be created and the hierarchy 
tree will be changed according to your input.
70 Replay Xcessory User’s Guide



THE NEW REPLAY XCESSORY TEST MANAGER
Changing the Test Suite Directory 4
Changing the Test Suite Directory
To display a different test suite, select “Open Test Suite” from the File menu. A 
dialog box appears, as shown:

Figure 32 Open Test Suite Dialog Box

To display a new, unrelated set of directories, enter the test suite directory 
name in the Selection field and click on OK; or, when you see the test suite 
directory of your choice in the Directories list box, click on it and then click 
on OK. Double clicking on a list-box entry also selects a directory. When you 
have finished, the hierarchy tree will be changed according to your selection.
Replay Xcessory User’s Guide 71



THE NEW REPLAY XCESSORY TEST MANAGER
Starting the New Replay Xcessory Test Manager (rtm)4

Creating a Test Package
To create a new test package, select New Test Package… from the File menu. 
A Test Package dialog box appears, as shown:

Figure 33 New Test Package Dialog Box

Enter the following information in the dialog box:

• In the Test Package Name: area, enter a directory name for the new test 
package.

• In the Title: area, write a one-line description of the test package. The 
contents of Title: are displayed beside the test package name in a directory 
listing.

• In the Description: area, type in as much information as you like about 
the test package. This description, along with the title information, is 
available through the View menu in the test package window.

When you press OK, the new package is created and opened. Refer to the next 
section for a description of an open test package.
72 Replay Xcessory User’s Guide



THE NEW REPLAY XCESSORY TEST MANAGER
Creating a Test Package 4
The files and directories of a test package are created at various times:

• The physical name of the file is testpackagename.tpd, and it is created 
when the test package is created.

• The script file and the baseline directory are created at record time.

• The report file and the results directory are created at play time.

To update the hierarchy tree explicitly, the user can select “Rescan” from the 
File menu to force an update.

Preferences
The Edit, View, and Print commands in the rtm window can be customized. 
To change one or more of these commands, select Preferences… from the File 
menu. A Utility Preferences dialog box appears, as shown:

Figure 34 Utility Preferences Dialog Box

Press Save to use the new commands in the current session, and to save the 
values in the .Replaytm file for subsequent sessions.

Below are the commands that you can change and their default settings:

edit The default command to bring up the edit window with vi 
is:

xterm -title $title -e vi $file
Replay Xcessory User’s Guide 73



THE NEW REPLAY XCESSORY TEST MANAGER
Preferences4
Special tokens $title and $file will be replaced by Replay Xcessory prior to the 
actual command invocation—$title, by a descriptive title, and $file, by the 
name of the file.

The editor and ASCII viewer commands should run in the X environment. If 
the command is not X-based, as with vi, the user must initiate the command 
within an X terminal emulator, as done in the default commands previously 
shown.

view for 
ASCII files

The default command to bring up a window using the 
view utility is:

xterm -title $title -e view $file

Note: Avoid using viewers that exit automatically when 
they reach the end of the file, such as versions of more on 
some platforms.

view for 
image (xwd) 
files

The default command for viewing an image file is:

xwud -in $file

Print The default command for printing is:

lp $file

Initial test 
suite

Indicates the directory to be used as the test suite when the 
test manager is initiated. This eliminates having to cd to 
the test suite directory before starting the test manager. If 
this field is empty, the Replay

Xcessory Test Manager will save the current test suite at 
the end of the session and restore it at the beginning of the 
next one.

Html 
browser 
command

When selected to generate xml reports rather then plain txt 
this command will be used to open html representation of 
xml report.

Node 
settings

Please refer to the“Controlling Session Properties” on 
page 103. 

Exit Close the rtm window to stop working with the test suite.
74 Replay Xcessory User’s Guide



THE NEW REPLAY XCESSORY TEST MANAGER
Edit Menu 4
Edit Menu
The edit menu contains two items that allow printing and deletion of the test 
suite tree items.

Figure 35 Edit Menu

If a Print menu item is selected, Replay Xcessory’s test manager will try to 
print the definition file for the selected node item (tpd file for a test package 
and a tcd file for test cases). The print command can be adjusted in the 
preferences menu.

If a Delete menu item is selected, then after the confirmation dialog the Replay 
test manager will try to delete the entire test package/test case that was 
selected. Please note that it will be deleted using general system utilities, e.g. 
as though the rm -r directory was invoked. It can potentially be difficult to 
restore any deleted data. 

Record/Play Menu

Figure 36 Record/Play Menu

The Record/Play menu allows the user to run the actual recording or playback 
sessions. The behavior of the menu items depends on what the current tree 
item is when a menu item selected. The same menu is accessible as a popup 
(context) menu by right clicking on the tree node.
Replay Xcessory User’s Guide 75



THE NEW REPLAY XCESSORY TEST MANAGER
Preferences4
Full report If the generating xml reports option was selected, this 
option will bring up the html browser specified in the 
Preferences dialog to show an html representation of the 
generated xml report.

Record... Runs recording session. When selected on the test package 
node, it runs a recording of the new test case. When 
selected on the test case node, it runs a record session 
using the settings stored in the appropriate tcd file (for the 
current test case node).

Record new 
case... 

Runs a record session for new test case, regardless of the 
node selected in the hierarchy tree.

Play... Runs a playback session. When selected on the test 
package node, it runs all the test cases that belong to the 
selected test package sequentially, as if the -tpd option was 
specified for the Replay driver. When selected on the test 
case node, it runs a general playback session.

Batch play... Runs a batch playback session. Its behavior is the same as 
for the “Play...” item, but with the batch mode also 
enabled.

Create 
batch file... 

Allows the user to choose which test cases inside the 
current test package to save into the xml batch file, which 
can be used later for unattended sessions, using the -tbf 
option for the Replay driver.
76 Replay Xcessory User’s Guide



THE NEW REPLAY XCESSORY TEST MANAGER
Window Menu 4
Figure 37 Batch File Dialog Box

Window Menu

Snapshots Pane
The snapshot pane at the bottom of the rtm window is divided into two 
sections - one for baselines and another for the resulting snapshots.

Settings.. This item shows a dialog with session properties for a test 
package/test case depending on the hierarchy tree node 
selected. Please refer to the section“Controlling Session 
Properties” on page 103 for further information.

Toggle tree 
pane

This item toggles the left tree pane visibility.

Toggle info 
pane

This item toggles the center work area pane visibility.

Toggle 
snapshots 
pane

This item toggles the bottom snapshots pane visibility.
Replay Xcessory User’s Guide 77



THE NEW REPLAY XCESSORY TEST MANAGER
Preferences4

Selecting some test case in the tree hierarchy will cause the snapshot lists to be 
updated accordingly. There is a set of actions that can be performed on the 
snapshot items. The user can open the popup context menu by right clicking on 
the item in the list.

Figure 38 Snapshot Pane

The “View” item brings up an xwd viewer for image snapshots and the text 
viewer that was specified in Preferences dialog to view the snapshot content. 
This action can also be activated by double clicking on the list item.

The “View diff” item forces Replay Xcessory to generate a diff of snapshots 
with a given name by comparing the appropriate files from the baseline and 
result directory and opening the correct viewer for the diff result (xwd for 
image files and a text editor for logical snapshots).

Description Tab
When the user selects a node in the hierarchy tree, relevant information about 
the selected node is shown in the center work area (description tab). This 
information is stored on the disk in the tpd/tcd file of the selected node. The 
user can update this information by changing the title and description fields. 
After any change, the buttons Ok and Cancel at the bottom of the window 
became accessible and can be pressed to commit to or revert changes. An 
appropriate confirmation dialog will be shown in each case.

Tcl Files Tab
This tab contains a list of all the tcl files from the test case directory and the list 
widget that can display the content of a particular tcl file in highlight mode.
78 Replay Xcessory User’s Guide



THE NEW REPLAY XCESSORY TEST MANAGER
Tcl Files Tab 4
Clicking any tcl file that is specified in the top list of the files listing widget 
will update the content of the tcl file. If users want to edit the selected tcl file in 
some external editor, they can double click the list item to bring it onto an 
editor.

Figure 39 Tcl File Editor

Replay Xcessory Tag Manager
The Tag Manager is a part of the Replay Xcessory that helps users and test case 
creators create and manage tags for the widgets used in applications under test. 
Each application under test has its own tag file with proper keys such as:

full_widget_name.vrTag: widget_tag

Currently, users can easily create such tag files by clicking the “Learn Tags“ 
button in the “Tag Manager” menu. For more information on this, see the 
description below.
Replay Xcessory User’s Guide 79



THE NEW REPLAY XCESSORY TEST MANAGER
Replay Xcessory Tag Manager4

It is very important for the X server (which will load and treat tag records) to 
have the tag file in the proper X resource format. Tag files can also be edited in 
hand - mode, so it is possible when a tag file has malformed records that it will 
not act as expected.

The tag manager can be used for creating, managing, and validating tag 
records in vrTag files.

Figure 40 Tags Editor Window

There is a widget tree on the left part of the “Tags Editor” tab that represents 
the application’s widget hierarchy. Please note that this hierarchy can be 
changed if the code of application is changed. In such a case, the widget tree 
should be updated to include all the proper widget names and tags for the 
widgets that will be used while conducting record or playback sessions.

When starting the application, Replay loads and merges tags from several 
places. The “Merged tag files” area shows the list of tag files that will be used 
for the current Test Case. For more information, see Understanding the 
Replay Xcessory Property Files on page 101.
80 Replay Xcessory User’s Guide



THE NEW REPLAY XCESSORY TEST MANAGER
Tcl Files Tab 4
There are fields with information available for users on the right of the tree 
widget.

Name of the 
widget

The full name of the widget that contains concatenated 
names of each level in the hierarchy separated by a dot.

Short name 
of the 
widget

Name of the widget itself.

Tag The alias or pseudonym of the particular widget that is 
currently selected in the widget tree. When a particular 
item is selected, this field will contain the information of 
the item’s tag. If the user changes the tag information 
button to the right of the field, the field also changes. See 
Figure 41 .

There are two buttons with “s” and “x” letters on them. 
The first “s” button allows the user to confirm that the 
change is correct and store new tag name in the memory 
representation of the widget tree. When clicked, the 
second button with the “x” reverts the changed tag name 
to the what it was before the last load or confirmed 
change.

After confirmation of the change, the color of the changed 
tag will be red, so that it will be visually separated from 
the rest of the tags. See Figure 42 .
Replay Xcessory User’s Guide 81



THE NEW REPLAY XCESSORY TEST MANAGER
Replay Xcessory Tag Manager4
Figure 41 Tag Button After Modification
82 Replay Xcessory User’s Guide



THE NEW REPLAY XCESSORY TEST MANAGER
Tcl Files Tab 4
Figure 42 Tag Button After Modification Confirmation

Author This field can be filled with any string that is to be 
considered the author name.

Time of 
Last Edit

This field is automatically filled with the time of the last 
change of the widget tag or author.

Widget 
Class

When the application is run using “Start original app” or 
“Start custom app” from the Tag Manager menu, this field 
shows the string representation of the widget class that the 
current widget belongs to. If the application is not 
accessible or the current widget cannot be found on 
runtime, this field will contain the message “Widget is not 
accessible”.
Replay Xcessory User’s Guide 83



THE NEW REPLAY XCESSORY TEST MANAGER
Replay Xcessory Tag Manager4
Figure 43 Information for “fake_widget”

The following buttons are at the bottom on the right side of the tree widget:
Open Opens the file-selection box to load tags from a file.

Save Saves changes in a file.

Save As... Opens the file-selection box to save the current tags tree in 
a custom file.

Close Closes the tags tree. If the tree was modified after it was 
saved, a warning message will appear. A user can choose 
to save changes, cancel changes, or cancel. See Figure 53 

Set test case 
Vrtag file...

Opens the file-selection box to set default tags file for a 
current test case. This button is sensitive only when any 
test case is selected in the tree on the left of Tags Editor 
window.
84 Replay Xcessory User’s Guide



THE NEW REPLAY XCESSORY TEST MANAGER
Tcl Files Tab 4
At the bottom of the tree widget there is a list called 'Merged tag files'. It shows 
the list of tag files to be merged for a selected test case. See ”Understanding 
the Replay Xcessory Property Files”.

You can see the “Tag Manager” sub-menu in the menu area:

Figure 44 Tag Manager Sub-Menu

Once the application has successfully run, the Tag Manager connects to the 
application and allow users to perform some actions (see description below).

Sometimes it is necessary to run another application that was stored in the tag 
file. (For example, a user might want to give another set of parameters to the 
application.) The “Start custom app” item of the “Tag Manager” sub-menu can 
be used for that purpose. That will bring up the following dialog:

Start 
original app

During vrTag file generation, Replay Xcessory saves the 
name of the current application with the tag file 
parameters. This file can be easily invoked from the Tag 
Manager by clicking “Start original app”. This allows 
users to see how the widget currently present on the 
application widget tree and the tree hierarchy built using 
the generated tag file in the tree widget match.
Replay Xcessory User’s Guide 85



THE NEW REPLAY XCESSORY TEST MANAGER
Replay Xcessory Tag Manager4
Figure 45 Start Custom App File Selection Box

This dialog box contains a text field filled in by default with the application 
name retrieved from the tag file. The toggle button allows the user to store the 
new application name (if provided) into the result tag file after the user makes 
changes and selects the “Save” or “Save as” button or any of the “File” 
sub-menu items.

After the application is started, the menu changes:

Figure 46 Tag Manager Sub-Menu After the Application Starts

Note that the “Start...” items appear to be disabled and will remain disabled 
until the application stops.
86 Replay Xcessory User’s Guide



THE NEW REPLAY XCESSORY TEST MANAGER
Tcl Files Tab 4
Figure 47 xmcalc Flash Widget

Flash 
widget

This item allows the user to employ a very helpful 
functionality that can be used to see the actual widget is 
for a particular widget in the tree. Selecting it will force 
the Tag Manager to search for the appropriate widget in 
the application widget tree and flash it three times. Each 
time a widget in the tree is selected, the Tag Manager will 
flash the widget if possible.
Replay Xcessory User’s Guide 87



THE NEW REPLAY XCESSORY TEST MANAGER
Replay Xcessory Tag Manager4
Figure 48 Failed Widget Search

Locate 
Widget in 
the Tree

This option is used when users know what widget they 
want to use, but they do not know it’s tag and full widget 
name.

After selecting this option, the status bar will show a 
message instructing the user what to do. The Tag Manager 
grabs the pointer and waits until the user clicks on some 
widget in the real application. If the application is 
accessible, it will attempt to locate this widget by full 
name in the widget tree currently built in the tree widget. 
If the searched item exists, it becomes the current item, 
and the correct information is filled into the fields and the 
scroll view is positioned to allow the user to see if the item 
was hidden (below or high on the tree). If the widget does 
not exist in the tree, the user will see that the widget can 
not be found. See Figure 48 .
88 Replay Xcessory User’s Guide



THE NEW REPLAY XCESSORY TEST MANAGER
Tcl Files Tab 4
Figure 49 Add Widget Dialog Box

Expand All Forces the tree to expand each item on the tree.

Collapse All Forces the tree to collapse each item on the tree

Expand 
Current

Expands the current item on the tree. This is only 
accessible if an item is selected.

Collapse 
Current

Collapses the current item on the tree. This is only 
accessible if an item is selected.

Search 
Widget

Searches for a widget using the widget’s short name.

Add Widget Allows the user to add a widget on a particular level of the 
widget hierarchy. To do this, the user has to select the 
widget that will be a parent for the newly created widget 
and select “Add Widget” from the “Tag Manager” 
sub-menu. The dialog shown in Figure 49 appears.

After the name fields will be filled and user click on “Ok” 
button Tag Manager will look for the existing children of 
the selected tree item and will try to check whether wanted 
item already exist - this should prevent users from creating 
duplicate items. If it is so the warning message will be 
shown to user with this information and propose to make 
the wanted item selected. Otherwise the new item will be 
added to the tree. Note that you can add item which has no 
appropriate real widget on the application side - this is not 
an error and could be done if such widget going to be 
added to the application later.
Replay Xcessory User’s Guide 89



THE NEW REPLAY XCESSORY TEST MANAGER
Replay Xcessory Tag Manager4
Figure 50 Widget Deletion Warning Box

Delete 
Widget

In some stages of application development, the widget 
hierarchy can be changed and some widgets can become 
obsolete. To clean the widget tree of such widgets, select 
the “Delete widget” menu item. After selecting this item, a 
confirmation widget will appear. See Figure 50 . The 
currently selected widget will be marked as deleted, as 
symbolized by its color changing to gray. See Figure 51 .

Note that deleted items are not really deleted from the tree 
and can easily be restored by editing the tag or author 
information, which automatically switches the item status 
to existing. When deleting the widget, remember that the 
resulting tag file after saving will not contain the string 
that represents the deleted widget. All of the deleted 
widget’s ancestors and descendants will exist and have 
records on the tag file. The same result can be achieved by 
cleaning out the tag field for a widget item.
90 Replay Xcessory User’s Guide



THE NEW REPLAY XCESSORY TEST MANAGER
Tcl Files Tab 4
Figure 51 Widget After Deletion

Rename 
Widget

In case a widget name was added incorrectly or something 
happens to the real widget name on the application side, 
the user can use the “Rename Widget” functionality. See 
Figure 52 .

This option changes the actual (short) name of the selected 
widget. Note that if the user changes a widget’s name, 
ALL of its descendants will also have their full widget 
names changed on the appropriate hierarchy level to 
contain the new parent name instead of the old name.
Replay Xcessory User’s Guide 91



THE NEW REPLAY XCESSORY TEST MANAGER
Replay Xcessory Tag Manager4
Figure 52 Rename Widget Dialog Box

Learn Tags This menu item is only active when a client is started from 
TM or any test case selected in the RTM test suite tree. In 
the first case, the Tag Manager learns the widget hierarchy 
of a client, generates default tags, and loads them. In the 
second case, the Tag Manager starts the application related 
to the selected test case first. 
92 Replay Xcessory User’s Guide



THE NEW REPLAY XCESSORY TEST MANAGER
Tcl Files Tab 4
Figure 53 Save Changes Warning Box

Before using the Tag Manager, please note that there are some peculiarities in 
using certain widget names that can influence proper handling by the Xt 
library:
• Widget names should not contain spaces or tabs at the beginning and/or 

end of the name.

• Widget name should not be empty or consist only of spaces.

• Widget names should not have semicolon “:” in it - this symbol is used by 
the Xt library to separate a widget property name from its value.

• Widget names should not contain dots - this symbol is used for separating 
different levels of the widget hierarchy.

Although in most cases the Tag Manager can properly handle incorrect names, 
it is strongly recommended that users name widgets in accordance with the 
rules described above.
Replay Xcessory User’s Guide 93



THE NEW REPLAY XCESSORY TEST MANAGER
Vrdump Editor Window4

If there is an incorrect widget property / value pair, the Tag Manager prints out 
a warning message, but still tries to use the incorrect property/value in the 
widget tree.

Vrdump Editor Window

Figure 54 Vrdump Editor Window

With the Vrdump editor,. the user can easily modify Vrdump files and control 
the granularity of snapshots (whether a specific resource should be dumped for 
each widget class or widget instance) in Replay Xcessory. Users can edit the 
ASCII control file Vrdump manually in the text editor.

By default, the Vrdump editor will loadVrdump from the 
$(REPLAYHOME)/lib/app-defaults file. Users will be able to edit this file or 
to select another Vrdump file from a different location. To select a new 
94 Replay Xcessory User’s Guide



THE NEW REPLAY XCESSORY TEST MANAGER
Tcl Files Tab 4
Vrdump file, press the “Open” button in the Vrdump editor and navigate to the 
desired file. The UI of the Vrdump editor in Replay Xcessory consists of three 
parts: widget list, resource list, and Vrdump file content.

The left list will show all available widgets for the current version of the Motif 
toolkit. The middle list of toggles will show all available resources for the 
selected widget in the widget list. Vrdump file content is displayed in the text 
field.

To update an open Vrdump file choose the widget in the widget list and look 
for the resource list in the middle. All resources allowed for dump will be 
marked (the toggle button will be in set state). Replay Xcessory automatically 
searches for resources in a Vrdump file and will set all needed toggle to True. 
To include more resources, users can press on the needed toggles. To delete 
resources, users must unselect the needed toggles. Users can operate with a 
group of resources, but only one widget can be selected and updated at a time. 
The “Update” button will write all changes to the last selected widget to a file. 
After applying changes, the content of the rdump control file will be refreshed 
in the right text field.

If there is a need to dump an exact widget, users can select the widget by name. 
Select the widget type in the widget list and modify the set of needed 
resources. Enable toggle “Assign by name” and fill in the widget name in the 
text field. Press “Update” to apply changes. While updating, the Vrdump file 
widget type will be substituted with the widget name. The content of the 
Vrdump file will be refreshed in the right text field.
Replay Xcessory User’s Guide 95



THE NEW REPLAY XCESSORY TEST MANAGER
Vrdump Editor Window4
96 Replay Xcessory User’s Guide



Record and Play 
Sessions 5

Overview
This chapter provides information for preparing a test application and 
conducting record and play sessions. Before starting a record or play session, 
refer to Chapter 3 for detailed information about the Replay Xcessory Test 
Manager.
Replay Xcessory User’s Guide 97



RECORD AND PLAY SESSIONS
Introduction5
Introduction
This chapter provides the detailed information needed to prepare a test 
application and conduct record and play sessions on the processes that make up 
the application. This information includes how to:

• prepare applications for Replay Xcessory

• control session properties

• control snapshot granularity

• establish tags for widget names

• conduct a record session

• conduct a play session

• use the command-line interface

Note: Before starting a record or play session, refer to Chapter 3 for 
information on the Replay Xcessory Test Manager, setting up the user 
environment, and creating and opening a test package.

Preparing Applications for Replay Xcessory
To prepare an application for Replay Xcessory, you should arrange for the 
application to use the instrumented Xt library, rather than the standard Xt 
library. To do so, either link the application with the Replay Xcessory Xt 
library statically, when the application is created, or link it dynamically, as part 
of the execution process, as explained in the following sections.

Linking Library Routines Dynamically
The most flexible approach to prepare applications is to link the Xt library 
dynamically. This lets you switch your application from running stand-alone to 
running with Replay Xcessory by changing your  environment variable as 
necessary.

However, setuid programs must be statically linked with the Replay Xcessory 
Xt library because these programs typically ignore the library path 
environment variable. 

Programs spawned by the setuid program must also be statically-linked with 
the Replay Xcessory Xt library as they do not inherit the library path 
98 Replay Xcessory User’s Guide



RECORD AND PLAY SESSIONS
Linking Library Routines Dynamically 5
The name of the library path environment variable varies depending on the 
platform that is being used. In the following examples, we assume that the 
application is built with X11R6. Note that you have to specify these variables 
only if the case that the application is run outside of Replay Xcessory, and that 
it uses the “connect” method to work with the application. 

• Solaris 7+ (SPARC):

LD_LIBRARY_PATH=$REPLAYHOME/

lib/Xt:$OPENWINHOME/Xt:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH

• HP-UX

SHLIB_PATH=$REPLAYHOME/lib/Xt:$SHLIB_PATH

export SHLIB_PATH

• Linux

LD_LIBRARY_PATH=$REPLAYHOME/lib/Xt:$LD_LIBRARY_PA
TH
export LD_LIBRARY_PATH

To ensure proper operation of Replay Xcessory, verify that:

• The X Toolkit, X library, and widget (such as Motif or Athena) libraries 
are all dynamically linked. Failure to do so can result in unresolved 
symbol references at run time.

• The library path environment variable will be used at run time. Linkers on 
some platforms have options that disable the use of the environment 
variable and force the use of the library that is specified at link time.
HP-UX users should use the -Wl,+s compiler option, or the chatr com-
mand to enable the ‘‘look-up’’ of the environment variable, which is dis-
abled by default.
SVR4 systems (for example, Unixware or Solaris) should make sure that 
the LD_RUN_PATH environment variable is not used.
Other linker options and environment variables may apply to other spe-
cific platforms.

Multiple Library 
Paths

Dynamically linked multiple application processes usually have the same 
library path requirements for Replay Xcessory. However, one application may 
be based on Motif and another based on non-Motif widgets. If this situation 
occurs, potential problems can be avoided by statically linking one application 
with the appropriate Replay Xcessory instrumented Xt library. 
Replay Xcessory User’s Guide 99



RECORD AND PLAY SESSIONS
Preparing Applications for Replay Xcessory5

Linking Library Routines Statically
If your application is statically linked with the Xt library, you need to relink 
with the Replay Xcessory Xt library. To do so, update your Makefile to find the 
Replay Xcessory static Xt library, for example, the $REPLAYHOME/lib/Xt 
directory.

Checking Dynamic Dependencies
Under certain platforms, commands are available to verify that an executable 
was dynamically linked with Xt. On Solaris, the ldd command shows which 
one will be dynamically linked with the Replay Xcessory Xt shared library. 
ldd lists dynamic dependencies, using the same algorithm as the dynamic 
linker to locate shared objects.

For example, the command to check library dependencies for the xmcalc 
program shows the following:

ldd ./xmcalc

libXmu.so.6 => /usr/X11R6/lib/libXmu.so.6 
(0x4008c000)

libXt.so.6 => /opt/Replay/lib/Xt/libXt.so.4 

(0x400a2000)

libXext.so.6 => /usr/X11R6/lib/libXext.so.6 
(0x40163000)

libX11.so.6 => /usr/X11R6/lib/libX11.so.6 
(0x40171000)

libXpm.so.4 => /usr/X11R6/lib/libXpm.so.4 
(0x403ca000)

libXm.so.3 => /usr/X11R6/lib/libXm.so.3 
(0x403d9000)

The third line indicates that this xmcalc uses the Replay Xcessory Xt library.

Note: If you are using HP-UX, use the chatr command. Contact HP for 
specific information regarding this command. Unlike ldd, chatr lists the 
dependent libraries specified at link time, not how they would be resolved 
given the current value of the library path environment variable.
100 Replay Xcessory User’s Guide



RECORD AND PLAY SESSIONS
Excluding Applications 5
Excluding Applications
There may be applications that should not be included for recording, even 
though the application is running with the Replay Xcessory Xt library. By 
adding an application’s name to the .Replay.excludeApps resource, any 
application with that name is excluded from the record session. For example:

Replay.excludeApps: mwm xclock replay replaytm

ignores actions on all instances of the mwm window and the xclock 
application, even if they are linked with the Replay Xcessory Xt library. The 
exclusion facility affects applications started by Replay Xcessory as well as 
applications which are connected to it after they have been started. Replay 
Xcessory must be in the list of excluded applications, or it might cause Replay 
Xcessory to hang up. 

Understanding the Replay Xcessory Property 
Files

Replay Xcessory properties can be customized to suit specific testing 
requirements and environment preferences. These properties are stored as 
ASCII files that can be modified using the Replay Xcessory graphical user 
interface (GUI) or standard text editors.

The Replay Xcessory properties include:

• session properties —.Replay

• snapshot properties —.Vrdump

• widget tag file —.Vrtag

Properties can be defined as:

• one generic set that is appropriate to any applications under test

• a second set that is application-specific
Replay Xcessory User’s Guide 101



RECORD AND PLAY SESSIONS
Understanding the Replay Xcessory Property Files5
The two sets have the same syntax and differ only in the file name; 
the application-specific set uses the application name as a prefix. For 
example:

These property files can be located in a number of directories. The effective set 
of properties is the merging of the effective application-specific file with the 
effective generic property file. The active file is the first property file found in 
the following search sequence:
1. -tcd level (if override is selected).
2. local directory—When using the Test Manager, the open test package is 

always considered the local directory.
3. directory pointed to by the $REPLAY_TESTSUITE_PROPS environment 

variable.
4. directory pointed to by the $REPLAY_PROPS_DIR environment vari-

able.
5. directory pointed to by the $HOME environment variable.
6. $REPLAYHOME/lib/app-defaults if the $REPLAYHOME environment 

variable is set.

$REPLAY_TESTSUITE_PROPS is an environment variable that should be 
set to the directory containing the test suite-wide property files; it should be 
made into a special test package in the test suite. It is also recommended that, 
whenever possible, set up procedures should specify all properties in the test 
suite-wide property files. Scripts that require special properties should be 
placed in the local test package or directory in order to override the test 
suite-wide property.

To search the sequence for specific Vrtag files:
1. $REPLAYHOME/lib/app-defaults/Vrtag.
2. appVrtagFile option in TCD-file.

Table 1: Property Filenames

Property Generic Application-specific

Session Property .Replay None

Snapshot Property .Vrdump appname.Vrdump

Tag File .Vrtag appname.Vrtag
102 Replay Xcessory User’s Guide



RECORD AND PLAY SESSIONS
Excluding Applications 5
3. Test Case dir/appname.Vrtag.
4. $REPLAY_TESTSUITE_PROPS/appname.Vrtag or 

$REPLAY_PROPS_DIR/appname.Vrtag. 
5. $HOME/appname.Vrtag.
6. $REPLAYHOME/lib/app-defaults/appname.Vrtag.

Controlling Session Properties
The properties window provides the controls to specify session properties that 
Replay Xcessory saves in a .Replay file for a test package, and in a 
.Replay_Appname file for a test case. This window can be accessed through 
the Test Manager by selecting Open Test Package under the Test Package 
menu, and then Test Package and Session Props from the Test Package 
window. 

This window can also be accessed during a record or playback session on stage 
just before recording and playback starts when the user switches on the toggle 
“Override package settings” dialog.

The property window consists of three pages:
Replay Xcessory User’s Guide 103



RECORD AND PLAY SESSIONS
Controlling Session Properties5

Here are three illustrations of the properties window:

Figure 55 Session Properties Window, General Tab
104 Replay Xcessory User’s Guide



RECORD AND PLAY SESSIONS
Excluding Applications 5
Figure 56 Session Properties Window, Record Tab
Replay Xcessory User’s Guide 105



RECORD AND PLAY SESSIONS
Controlling Session Properties5
Figure 57 Session Properties Window, Playback Tab
106 Replay Xcessory User’s Guide



RECORD AND PLAY SESSIONS
Excluding Applications 5
Figure 58 Session Properties Window, Recognition Tab
Replay Xcessory User’s Guide 107



RECORD AND PLAY SESSIONS
Controlling Session Properties5
Figure 59 Session Properties Window, Recognition Tab (additional fonts)

During a record or play session, default properties determine interface 
behavior; for example, a system-default property establishes Ctrl+i as the hot 
key for a snapshot request during a record session. In addition, default 
properties determine whether record or play checkbuttons are initially set on or 
off when the record or play control panel appears. For example, the Record 
Button Up Motion button typically comes up unchecked when a record 
session is started. 

Many of the properties specified here override system default properties, and 
in turn can be overridden by properties specified when a session is begun. 

Note: You have the ability to see what a particular property is. Simply mouse 
over any option and you will see popup information about what the option is 
intended for. 

Invoking the Session Properties Window
Detailed explanations of the default options and property controls are 
described in the following sections.
108 Replay Xcessory User’s Guide



RECORD AND PLAY SESSIONS
Properties Controls 5
Specifying Hot 
Keys

Hot keys are keyboard shortcuts that can be entered for some common actions, 
such as taking a snapshot, toggling the pause mode, etc. Hot keys are important 
because they allow key actions to be invoked without having to bring the 
Record or Play Control Panel to the front when it may be currently obscured by 
the process under test or even iconified in order to save on screen space.

Hot keys are specified in the form of a list of tokens separated by plus signs. 
Thus, Ctrl+i indicates that the hot key is composed of the Ctrl key and the 
letter i. Multiple modifiers, such as Shft+Ctrl+i are also allowed.

Hot keys are entered while the cursor is on the application under test. For this 
reason, make sure that a hot key sequence does not conflict with a sequence 
that the process uses.

Modifying 
Properties

The Test Manager creates a .Replay file that saves the properties from one 
session to the next. By clicking on Current Test Package or Current User 
you specify the directory where Replay Xcessory is to save the .Replay file. 
Choose Current Test Package if these options should apply to this test 
package only; choose Current User if the options should apply to all your 
Replay sessions. These toggles are only accessible if the property window is 
invoked from the package menu. If it is invoked from the test case definition 
dialog, the only available option is to store modified settings in the test case’s 
properties file. When you have finished making modifications, press the OK 
button. The Test Manager creates the .Replay file and saves it in the specified 
directory.

Properties Controls
The descriptions for the properties controls are contained in the following 
sections according to the following categories:

• general properties

• record session properties

• play session properties

• the scope of properties

• properties window buttons

Additional information about the arguments used to set these properties can be 
found in “Accessing Run Time Parameters” on page 219.
Replay Xcessory User’s Guide 109



RECORD AND PLAY SESSIONS
Controlling Session Properties5
General Properties The following entries apply to both record and play sessions:
Library Path This directory contains the Replay Xcessory 

(instrumented) Xt library. When looking for Xt library 
routines to load dynamically, the system begins its search 
at the directory you specify here. This entry takes 
precedence over the current setting of the library path 
environment variable. (Replay Xcessory resets the library 
path environment variable, or its equivalent, to start with 
this entry.)

Active Pause Allows processes under test to be operated during pause 
mode while recording a play session. Mouse and key 
interactions with the application under test will not be 
recorded.

Use this option carefully, as it is possible that the 
nonrecorded interactions may substantially change the 
application state and result in invalidating a play session; 
for example, popping down a dialog box while in Active 
Pause could be dangerous because the script is unaware 
that the pop down has occurred. The inconsistent state 
could result in a false snapshot comparison failure. If the 
application state is changed, the original state should be 
restored before continuing record or playback.

Use Tag 
Names

Requests that widgets be identified by their tags 
whenever possible. If a tag name cannot be found or 
would result in a duplication, the internal widget name is 
used. This option affects both the script and the logical 
snapshots.

Compress 
Image 
Snapshots

Requests that image snapshots be stored in a compressed 
format to save disk space.

Compress 
Image 
Command

This command compresses image snapshots (system 
default: compress -f).

Uncompress 
Image 
Command

This command uncompresses image snapshots (system 
default: uncompress).
110 Replay Xcessory User’s Guide



RECORD AND PLAY SESSIONS
Properties Controls 5
Application 
Display

The display on which the application is running.

Client 
Startup 
Timeout

Maximum application start up time, in milliseconds. If 
the application fails to start up within the specified time, 
the replay driver exits (system default: 100000 msecs).

Pause Hot 
Key

Key combination to be used to request a pause in a 
session (the default hot key is Ctrl+p).

Stop Session 
Hot Key

Key combination to be used to terminate a session (the 
default hot key is Ctrl+s).

Learn Tag 
Hot Key

Key combination to be used to start the Learn Tag mode.

Ungrab 
Pointer Hot 
Key

Key combinations used to ungrab the cursor if it is 
currently grabbed by Replay Xcessory or by the process 
under test.

DRIVER_DE
BUG_ON

 Switches on debugging of the Replay Xcessory driver. 
This variable forces Replay Xcessory to produce the log 
file for processing TCL commands on the Replay 
Xcessory side (parsing TCL script and going to execute 
commands).  The  log  file  that  will  be created will have 
name like driverlog.4122. where 4122 is the pid of the 
process. The log file is created in  /tmp directory. See also 
the ONEFILE variable description since it affects the log 
file name.

XTLIB_DEB
UG_ON

Switches on debugging of the customized Xt driver. This 
variable forces customized libXt to produce the log file 
for the actual processing of the test script commands on 
the client side. The log file that will be created will have 
name like xtliblog.4123 where 4123 is the pid of the 
process that has the current libXt instance in its memory 
map. The log file is created in /tmp directory. See also the 
ONEFILE variable description since it affects the log file 
name.
Replay Xcessory User’s Guide 111



RECORD AND PLAY SESSIONS
Controlling Session Properties5
ONEFILE  Switches the log reporting manner. It forces all logs to be 
dumped in one log file: /tmp/xtliblog for the customized 
libXt and /tmp/driverlog for the driver itself. When this 
variable is specified, Replay Xcessory will not create a 
log file for each session, each instance of Replay 
Xcessory, and each application under test. It rather will 
dump all  the  information  in one  file  for  libXt and one 
file for Replay Xcessory. Note that files generated before 
specifying this variable will still remain in the temp 
directory but will mostly be obsoleted. Also note that log 
files could be quite big, thus making it harder for the 
support team to perform the analysis when investigating a 
certain issue. Please remove old log files from the /tmp/ 
directory before you create new ones when reproducing 
an issue.

DUMP_TAG
_INFO

Helps to debug issues with tag handling. This variable 
forces  Replay Xcessory  to dump additional information 
about tag name generation and processing into the 
xtliblog file. It should be turned on in case Replay 
Xcessory can not find some widget in the application 
being tested but a user is sure that the TCL script file is 
correct and widget exists.

DUMP_WID
GET_NAME
S

Helps to debug issues with snapshots. This variable can 
be very useful when taking logical (resources) widget 
snapshots. Its main purpose is to dump the names of the 
widgets being processed to standard output. It can help in 
case some widget property contains a value for which 
there is custom type converter registered in Xt by the 
application being tested. So, if this application crashes 
while taking a widget snapshot (most likely because of 
the issue in type converter) a user could specify this 
variable and get the list of widgets while Replay 
Xcessory processes them. The last name in the list before 
the application crashed will most likely identify the 
problem widget.
112 Replay Xcessory User’s Guide



RECORD AND PLAY SESSIONS
Properties Controls 5
 
DEBUG_SL
OTS

Switches additional logging of the name generation 
process. If a user has problems with using tags in the 
applications under test, this variable can force Replay 
Xcessory to generate additional log statements into the 
xtliblog file, which is very useful when debugging tag 
issues. It should  be used in the case that either the 
assigned or the default tag suggested by Replay Xcessory 
has a [#] suffix at the end of the tag name, but the user 
thinks that it is incorrect or excessive.

Xnest/Xvfb 
depth

Specifies the size of the nested/virtual X server that will 
be used for the playback session if the appropriate option 
was selected by the user.

Xnest/Xvfb 
dimension

Specifies the color depth of the nested/virtual X server 
that will be used for the playback session if the 
appropriate option was selected by the user.

Xnest/Xvfb 
window 
manager

Specifies the window manager for the nested/virtual X 
server that will be used for the playback session if the 
appropriate option was selected by the user.
Replay Xcessory User’s Guide 113



RECORD AND PLAY SESSIONS
Controlling Session Properties5
Record Session 
Properties

The following controls apply only to record sessions.
Record 
Button Up 
Motion 

Records all button-up movements. For most processes, 
leave this property off; mouse movements when mouse 
buttons are up are typically meaningless. Applications 
with certain modal interfaces are exceptions. For 
example, turn this on for drawing tools that draw with 
mouse buttons up (system default: off).

Compress 
Motion 

When off, this option records all intermediate 
coordinates reported by the X server when tracking 
mouse movements. When on, it records only the ending 
coordinate, which shortens the script (system default: 
off).

Context 
Sensitive 
Lists

Specifies that the Motif list item being acted on be 
recorded using the string listed in the item itself. This 
allows the same item to be selected on playback even if 
the font or item position changes. Actions on 
OSF/Motif list widgets use the context sensitive 
recording by default.

Use Tag 
Names

Requests that widgets be identified by their tags 
whenever possible. If a tag name cannot be found or 
would result in a duplication, the internal widget name 
is used. This option affects both the script and the 
logical snapshots.

Minimize 
Names 

Requests minimized widget names in scripts and 
widget snapshots; otherwise, fully-qualified names are 
used. See Chapter 2 for further information on widget 
names (system default: on).

Use Virtual 
Key Names

Specifies that key symbol (X Keysyms) be recorded 
using the OSF/Motif key symbol names for maximum 
script portability across displays that use different key 
bindings (for example, backspacing makes use of the 
Backspace key on some displays, but uses the Delete 
key on others). Recording using the virtual key name 
(in this case, osfBackSpace) ensures that the script is 
portable to both display types. This option is valid only 
for Motif applications.This is turned on by default.
114 Replay Xcessory User’s Guide



RECORD AND PLAY SESSIONS
Properties Controls 5
Warp Cursor 
on Snapshot

Replay Xcessory normally moves the cursor out of the 
way before taking a snapshot. This precaution 
generally results in more reliable snapshot comparisons 
(fewer false negatives). Turn this option off only if the 
cursor warping generates an undesirable side effect.

Connect 
Application

Connect to all existing applications linked to the 
Replay Xcessory X Toolkit library.

Prompt For 
Subtest Name

If turned on, Replay Xcessory will prompt for the name 
of the subtest whenever the subtest button is pressed in 
the Record Control Panel. If turned off, Replay 
Xcessory numbers the subtests automatically, starting 
from 1 (system default: off).

Snapshot 
Scope

Specifies the scope of the snapshot to be taken 
whenever a snapshot is requested using the snapshot 
button or hot key. The possible values are Object, 
Window, Viewable, and Full. Refer to “Controlling 
Snapshot Scope and Granularity” on page 122 for 
additional information.

Click Offset 
Tolerance

Maximum number of pixels that the pointer can move 
between the press and release of a mouse button and 
still be considered a click or a multiclick.

Snapshot Hot 
Key

Key combination to be used to request snapshots; the 
default is Ctrl+i. When you press this key combination 
during a record session, the Test Manager takes a 
snapshot.

Default 
Application

Path to the application that Replay Xcessory will use as 
the default application under test when composing a 
new record session.
Replay Xcessory User’s Guide 115



RECORD AND PLAY SESSIONS
Controlling Session Properties5
Play Session 
Properties

The following controls apply only to play sessions.
Prompt on 
Error

If set to true, a prompt dialog will appear whenever an 
error occurs. The dialog provides two options: The errors 
can be ignored, or execution of the command can be 
suspended.

If set to false, the prompt dialog does not appear and 
execution of the command continues; the command being 
executed returns an error return code when appropriate.

Prompt on 
Snapshot 
Difference

Requests to be prompted whether to continue or to exit 
following a snapshot comparison mismatch (system 
default: on).

Update Baseline 
Transparently

In the case that the snapshot comparison fails, Replay 
Xcessory automatically updates the baseline file despite 
what the value of the "Prompt On Snapshot Difference"  
setting (system default: off).

Display Image 
Differences

Requests that image differences be displayed in an 
independent window (system default: on).

Allow Wrong 
Geometry

Causes Replay Xcessory to compare the results and the 
baseline by matching the largest possible geometry area 
of both snapshots and returns the appropriate result based 
on whether those areas match.

Exit On 
Snapshot 
Mismatch

Requests that a play session be stopped when a snapshot 
difference is encountered (system default: off).

Ignore Image 
Color 
Differences

Ignores color differences when comparing images 
(system default: off).

Freeze Pointer 
on Commands

Enabling this option causes the cursor to be returned to its 
starting position after Replay executes a command. 
Without this option Replay will move the cursor to the 
application under test to execute a command but not 
return the cursor to its original location.
116 Replay Xcessory User’s Guide



RECORD AND PLAY SESSIONS
Properties Controls 5
Echo Only Top 
Level 
Commands

If selected, it only allows notes about commands that are 
not contained inside nested TCL bodies (e.g. procedures, 
loops, and condition statements) to be echoed into Replay 
Xcessory’s history window.

Allow to Specify 
Point if OCR 
Failed

If selected and the “seektext” TCL command is unable to 
locate a needed string, this allows the user to choose a 
point on the application surface by clicking the left mouse 
button to be returned as the result coordinates of the 
seektext command. Replay will wait ten seconds for 
input. The status bar will blink once a second.

Generate 
HTML Report

If set to true, Replay Xcessory will generate an additional 
HTML report file in the test case directory. If set to false, 
no additional HTML report file will be generated. This 
option does not affect the generation of text report files.

Debugger Next 
Hot Key

Hot key for the “Next” command in the playback 
debugger. The hot key combination is Shift+n by default.

Debugger Step 
Hot Key

Hot key for the “Step” command in the playback 
debugger. The hot key combination is Shift+s by default.

Debugger 
Continue Hot 
Key

Hot key for the “Continue” command in the playback 
debugger. The hot key combination is Shift+c by default.

Note: You can use hotkey combinations now both on the 
driver side and on the application under test side.

Retry Timeout Maximum delay time, in milliseconds, to allow for 
widgets to map (system default: 20000 msecs). If the 
expected widget does not map within the timeout period, 
a prompt dialog will be displayed in interactive playback 
if Prompt On Error is set to true.

Default Delay 
Time

Time to be used when the delay time is not explicitly 
included in a script command (system default: 1 sec.).

Key Delay Time, in milliseconds, to simulate typical lapse between 
entries of characters (system default: 100 msecs).
Replay Xcessory User’s Guide 117



RECORD AND PLAY SESSIONS
Controlling Session Properties5
Properties 
Recognition

On this page, you can select any of the fonts currently installed in your system 
that are available for Motif applications. Each selected font will be added to 
the list of fonts that will be used in each “seektext” invocation for searching the 
text strings on the widget surface. 

The text field under the dropdown combo box shows symbols from the 
currently selected font. The string list below that shows the list of currently 
selected fonts. The user can apply each of these fonts to the upper text field by 
double clicking to see what the current font is. 

The current functionality provides tremendous flexibility in XLFD (X Logical 
Font Description) choices. Clicking the Options button displays an additional 
panel of controls. This allows access to non-XLFD fonts, control of the 
resolutions of the chosen fonts, choice of fixed or proportional fonts only, 
removal or use of font scaling, selection of different font encoding, and 
dynamic display of the XLFD name of the font which is constructing.

By choosing the “Other Fonts” toggle from the option panel, the Family and 
Size lists, as well as the Bold and Italic toggles, are replaced with a 
combination box containing all non-XLFD fonts available on your system. 
This feature allows users to select non-XLFD fonts. A string entered in the text 
field of the combination box is interpreted as a font name. You can also enter 
XLFD names manually. The combination of this feature and the other options 
allows you to display any font on the entire system.

As a default, the standard resolution that is closest to the current display is 
selected. Choose a font of a different resolution or display both resolutions to 
allow a wider range of choices.

Diff Command Command to compare the ASCII logical snapshot files 
(system default: diff).

Debugger Warp 
Back Hot Key

Hot key to return the pointer to the debugger control 
panel. The hot key combination to control warping is 
Ctrl+w.

External diff 
program

Diff-like application. Click the “Ext diff” button in the 
Snapshot Mismatch dialog to view the text differences in 
the external diff viewer.
118 Replay Xcessory User’s Guide



RECORD AND PLAY SESSIONS
Properties Controls 5
In most cases, the fact that a font is a fixed width or proportional is not 
important to the user. However, some applications require a fixed width font, 
such as terminal emulators, and many users prefer proportional fonts for 
appearance purposes. The font selector allows users to limit the font choices to 
fixed width or proportional or to allow both.

The font scaling technology uses bitmap scaling which, although useful in 
some cases, generally results in very ugly fonts. Users often want to know 
which fonts are scaled and which ones exist as hand crafted bitmaps. To 
remove the scaled fonts from the list of choices, toggle off the “Use Font 
Scaling” button.

Clicking the Show toggle displays the current font's XLFD name at the bottom 
of the font selector.

Statistic Options

Figure 60 Replay Properties Page

The Replay properties page represents the combined statistical information of 
all the Replay settings stored in the configuration files visible by the Replay 
Xcessory driver. Those settings could be stored either in “Replay” (for 
Replay Xcessory User’s Guide 119



RECORD AND PLAY SESSIONS
Controlling Session Properties5

app-defaults) or “.Replay” files for all other directories. This page can be 
useful to trace down exactly which setting works at the current moment for a 
particular package session or test case session.

The order of how settings apply is the following:
1. $REPLAYHOME/lib/app-defaults if the $REPLAYHOME environment 

variable is set (it is set automatically set by Replay, but Replay Xcessory 
do not override it if it already exists when the Replay Xcessory driver 
starts, so be sure that it is either not set or set to the proper location).

2. Directory pointed to by the $HOME environment variable. If this direc-
tory contains a .Replay file, it will be sourced and all the settings merged 
to an existing X resource database.

3. Directory pointed to by the $REPLAY_PROPS_DIR environment vari-
able. If this directory contains a .Replay file, it will be sourced and all the 
settings merged to an existing X resource database.

4. Directory pointed to by the $REPLAY_TESTSUITE_PROPS environ-
ment variable. If this directory contains a .Replay file, it will be sourced 
and all the settings merged to an existing X resource database.

5. Test package directory. Settings that can be customized using the Replay 
Xcessory Test Manager.

6. Tcd level. If the “Override Test Package Settings” button is selected on the 
Replay Xcessory driver dialog, the sixth setting is most weighty.

The left column of the statistic table holds a list of all the settings that exist and 
are understandable by Replay Xcessory that could act on the recording and 
playing back of saved test cases.

The titles of the following columns are short variants of the places where the 
appropriate settings were found. The bottom of the table contain matches for 
short and long variants.

       AppD  = $REPLAYHOME/lib/app-defaults/Replay

       Home  = $HOME/.Replay

       PROPS = $REPLAY_PROPS_DIR/.Replay

       TSTS  = $REPLAY_TESTSUITE_PROPS/.Replay

       TPD   = test_package_dir/.Replay

       TCD   = test_case_dir/.Replay_test_case_name

       TCD   = test_case_dir/.Replay_test_case_name
120 Replay Xcessory User’s Guide



RECORD AND PLAY SESSIONS
Properties Controls 5
If the appropriate setting is set in a particular file, then in the cell that 
corresponds to the property name row and column there will be a toggle button 
with the status of “set”. Otherwise, the status will be “unset”.

Properties Scope The following check buttons control the scope of properties:

Properties 
Window Buttons

The following push buttons affect the properties window only:

There are several additional resources that are not accessible through GUI but 
can be modified in [.]Replay file directly.

Current Test 
Packages

Stores the .Replay file containing these properties in 
the current directory, rather than the home directory 
(system default: on).

Current User Stores the .Replay file containing these properties in 
the home directory, rather than the current directory 
(system default: off).

Current Test 
Case

Stores the .Replay_appname file containing these 
properties in the test case directory (system default: on 
when invoked from test case dialog).

OK Terminates properties modification and saves these 
properties in the .Replay file.

Close Dismisses the properties window, discarding these changes.

Help Brings up an explanation of these options.

Replay.enforceNames If True, enforces the file naming conventions 
(system default:true).

Replay.omitDelay If True, omits delays between user actions on the 
record stage and on playback uses the default 
value of 1 sec. (system default:false).

Replay.useCurrentWindow If True, always saves the current window and 
checks if it is active before further commands 
(system default:True).

Replay.omitCoordinatesWi
dgetClasses (list of widget 
classes)

Omits the recording of window coordinates on 
actions on widgets of listed classes.

Replay.omitButtonUpMoti
onWidgetClasses (list of 
widget classes)

Forces Replay to not save the movement of the 
mouse pointer on the area of widgets of the listed 
widget classes. 
Replay Xcessory User’s Guide 121



RECORD AND PLAY SESSIONS
Controlling Snapshot Scope and Granularity5
Controlling Snapshot Scope and Granularity
Replay Xcessory provides maximum flexibility in the contents of each 
snapshot; two concepts are involved, snapshot scope and snapshot granularity.

Snapshot Scope
Snapshot scope refers to the portion of the application widgets that should be 
stored in the snapshot. The following snapshot scope levels are supported:

• A full snapshot includes all of the current widgets in the application. This 
type of snapshot can be large and may include widgets (such as unmapped 
widgets) which are not visible to the end user.

• A viewable snapshot is similar to a full snapshot except that only those 
widgets that are visible to the end user are saved.

• A window snapshot is similar to a viewable snapshot except that the 
widget tree starts from one specific window which must be identified at 
the time the snapshot is taken. Menus, if currently popped up, are included 
in the snapshot. (The term “window” here corresponds to a shell widget in 
the X Toolkit terminology, not a menu shell.)

• An object snapshot is similar to a viewable snapshot except that the 
widget tree starts from one specific widget which must be identified at the 
time the snapshot is taken. The widget tree is more often than not a single 
widget. Object snapshots are the most efficient because they only save the 
information about the widgets that are relevant to the test.

Snapshot Granularity
Snapshot granularity refers to the ability to control which widget resources to 
include and whether the snapshot will include image snapshots. Snapshot 
granularity is typically specified by widget class or resource class, for 
example, saving the label resource of all push button widgets or saving all 
resources of type string.

In some cases it may be necessary to override the class-based specification 
because specific widget instances have unique requirements, for example, the 
text in all labels is normally desired but one specific label widget that displays 
the current time might not be. The final contents of the snapshot specification 
depends on the intersection of the snapshot scope and the snapshot granularity.

Replay.maxDelay Value passed to the embedded Tcl interpreter, and 
represents the maximum delay for it.
122 Replay Xcessory User’s Guide



RECORD AND PLAY SESSIONS
Controlling Widget Resources 5
Controlling Widget Resources
An ASCII control file, .Vrdump, controls which widget resources to include 
in a snapshot. Replay Xcessory provides a default .Vrdump file. You can edit 
a copy of .Vrdump to customize which resources are included, as appropriate 
for your application. 

In most cases the system default Vrdump file (from app-defaults) can be used 
as is. This .Vrdump file dumps those resources that are most likely to change 
or represent a widget state and have significance from a verification point of 
view for most Motif widgets; these include most text strings.

If customized .Vrdump files are run for all tests, then this version should be 
kept in a location pointed to by the REPLAY_TESTSUITE_PROPS 
environment variable; otherwise, a dump specification that must be specific to 
a particular test script should be kept in the test package directory.

The .Vrdump file defines a snapshot granularity that is to be used generally 
throughout the record or play session. In some cases, you may find it useful to 
modify the snapshot granularity in the middle of the session. Modifying 
granularity can be accomplished using the Snapshot Spec button in the 
Record Control Panel.

Invoking the Snapshot Properties Editor
To change snapshot properties from the Test Manager, select Snapshot 
Props… from the Options menu in the test package window. A text editor 
containing the .Vrdump file for the current test package will be started. If 
there is no current .Vrdump file, one will be copied from one of the standard 
locations. 

A portion of the snapshot properties window is shown in the following 
illustration:
Replay Xcessory User’s Guide 123



RECORD AND PLAY SESSIONS
Controlling Snapshot Scope and Granularity5
Figure 61 Snapshot Properties Window for xmcalc1 Snapshot

Note: An error message displays if the Snapshot Props... menu is requested 
and no snapshot properties are found.

Dump 
Specification 
Format

The .Vrdump file has the same format and rules used for the X resource files 
(such as .Xdefaults). However, the .Vrdump file is not a resource file and so 
standard X resources should not be placed here.

• Each line is an attribute/value pair separated by a colon ( : ) and 
terminated by a new line.

• Comment entries should start with an exclamation mark ( ! ) and end with 
a new line. 

• A period ( . ) separates adjacent components.

• A question mark ( ? ) can be placed between two periods to represent a 
single component; this notation is not available for applications linked 
with X11R4 or earlier.

• The asterisk ( * ) represents zero or more components. Unlike the question 
mark, however, periods are not needed around the asterisk.
124 Replay Xcessory User’s Guide



RECORD AND PLAY SESSIONS
Snapshot Types 5
Snapshot Types
There are two types of snapshots:

• Widget snapshots are ASCII dumps of the widget tree of an application 
under test.

•  Image snapshots are window dumps of the specified widget window in 
the standard xwd format. 

Both widget and image snapshots can be specified by widget class or by 
widget instance. (See “Snapshots” on page 41.)

Controlling Widget Snapshots
Widgets can be controlled in several ways. The following sections explain 
widget control by:

• widget class-based specification

• widget instance-based specification

• resource type-based specification

The following topics are also discussed:

• Replay Xcessory pseudo resources

• snapshot file format

Widget 
Class-Based 
Specification

The .vrSave boolean resource controls which resource names will be dumped 
for each widget class or widget instance. A widget class specification takes the 
form

application_class.widget_class.resource_name

.vrSave: [True|False]

The following establishes which Motif push button resources to include in 
widget snapshots:

*XmPushButton.labelString.vrSave: True

*XmPushButton.armPixmap.vrSave: True

*XmPushButton.sensitive.vrSave: True

The application class is usually left out and replaced by the wild card asterisk. 
The widget class can be omitted if the given resource name should be dumped 
for all widget classes; for example:

*sensitive.vrSave: True
Replay Xcessory User’s Guide 125



RECORD AND PLAY SESSIONS
Controlling Snapshot Scope and Granularity5

To dump all resources for a Motif push button widget class, the following 
specification could be used:

*XmPushButton.?.vrSave: True

For an uncommon situation that requires saving all resources for all widgets, 
use:

*vrSave: True

Such a specification should be used sparingly since it will generate large 
snapshot files. They can be very useful, however, in debugging applications 
and as a way to quickly get information on the complete widget tree.

Widget 
Instance-Based 
Specification

A widget class-based specification is easiest to use because it allows one to 
quickly control the dump granularity for most widgets in the application. 
However, there might be cases where a particular widget instance needs to 
have a dump granularity that is different from the widget class; for example, if 
you want all text label contents dumped but not the contents of the label that 
contains the time field because it changes continuously and therefore cannot be 
used for verification purposes.

A widget instance specification takes the following form:

application_class.instance_name.resource_name.vrI
nstanceSave:[True|False]

Example:

*topshell.form.timeLabel.labelString.vrInstanceSa
ve: False

The instance name can be a widget name or a widget tag.

The asterisk and question mark wild card notations can be used to match more 
than one widget instance; for example:

appname*sensitive.vrInstanceSave: True

appname.topshell.?.sensitive.vrInstanceSave: True

The first entry dumps the sensitive resource for all descendants of appname 
while the second entry dumps the same resource for all children of topshell. 
The instance-based specification always takes precedence over the widget 
class specification.

Another advantage of the ? notation, is its usefulness for dumping all resources 
for a composite widget.
126 Replay Xcessory User’s Guide



RECORD AND PLAY SESSIONS
Controlling Widget Snapshots 5
Example:

*topshell.?.vrInstanceSave: True

Resource 
Type-Based 
Specification

The resource_name field in the widget class- and instance-based specification 
can also be replaced by a resource type. Such a specification is useful when all 
resources of certain types should or should not be dumped, regardless of the 
widget class or instance in which they occur. Resource type specifications have 
a lower precedence than specifications based on resource name.

Examples:

*XmString.vrSave: True

*XmText.Boolean.vrSave: True

*myTextEdit.Boolean.vrInstanceSave: True

The first entry dumps all resources of the type XmString; the second entry 
dumps all boolean resources (XtRBoolean) that occur in XmText widgets; the 
third entry dumps all boolean resources in widget instance myTextEdit.

Replay Xcessory 
Pseudo Resources

In addition to dumping the resources defined by the widget classes, Replay 
Xcessory also defines a number of additional pseudo resources that provide 
additional information about the widget. The dumping of these pseudo 
resources can be controlled in the same way as the regular widget resources by 
using the .vrSave or .vrInstanceSave specification.

The value of pseudo resources cannot be retrieved using the getvalue 
command; use the getclass, ismanaged, getchildren, and getpopups 
commands instead. The pseudo resources are:

wcClassName Identifies the widget class.

wcManaged Identifies whether or not the widget is managed.

wcChildren Identifies the names of the widget’s regular 
children.

wcPopups Identifies the names of the widget’s pop up 
children.

vrImageSaveFile Identifies the name of the image save file; this 
provides a way to correlate an image file in the 
snapshot directory with a particular widget 
instance.
Replay Xcessory User’s Guide 127



RECORD AND PLAY SESSIONS
Image Snapshots5

The pseudo resources with the Wc prefix have a resource type of 
WcResources, while vrImageSaveFile has a resource type of VrResources.

Widget Snapshot 
File Format

The widget snapshot is an ASCII file containing one entry for each widget 
resource dumped. All resources regardless of class are converted to an ASCII 
string. The conversion is performed via the X Toolkit resource type converters. 
For a resource to be correctly dumped, there must be a converter registered that 
converts the desired resource type to a string. 

Replay Xcessory provides resource converters for most Motif resource types. 
If a resource converter is needed but one does not exist, Replay Xcessory still 
generates an entry in the widget snapshot file as an entry comment (a line that 
starts with an exclamation mark). Instead of the resource value, the resource 
type name is printed in parentheses. (Refer to Chapter 9 for instructions on 
how to write and register additional converters.)

Please note that at the beginning of each new record/playback session, the 
appropriate baseline/result snapshots will be removed. 

Image Snapshots
Image snapshots in Replay Xcessory should generally be avoided if a logical 
snapshot can be taken. However, image snapshots are useful when you need to 
verify the visual representation of a portion of the application and there is no 
other convenient way to do it. This might be the case in some highly graphical 
applications consisting primarily of drawn areas and images.

Image Snapshot Scope
To obtain an image snapshot of any widget, including container widgets such 
as forms, do the following:
1. Set the snapshot scope to Image in the Snapshot Scope option menu and 

click on the w button of the Record Control Panel. The cursor changes to 
the shape of a camera.The Replay Xcessory main window will be iconi-
fied to free the visible desktop area and allow the user to select the appro-
priate widget.

2. Position the cursor so that the arrow points to the desired widget and click 
the left mouse button. To take an image snapshot of the complete window, 
press the Shift key while clicking on the desired window.

3. After clicking on the target widget, Replay Xcessory’s main window will 
be restored to its previous state.
128 Replay Xcessory User’s Guide



RECORD AND PLAY SESSIONS
Sub-Image Snapshot Scope 5
Replay Xcessory takes an image snapshot of the selected widget and widgets 
contained within it. 

Alternately, use the snapshot hot key combination.

Image snapshots created in this manner will not generate a logical snapshot. 
Therefore, if you want to create a corresponding logical snapshot, you should 
take an object snapshot of the same widget.

Note: It is still possible to create a logical snapshot that includes image 
snapshots via the .Vrdump or loadspec/mergespec dump specifications.

Sub-Image Snapshot Scope
Sub-image mode allows you to construct complex masks indicating areas to be 
compared with the original image and masked areas that are skipped. 

Here is the description of controls on the Snapshot control panel:
W Select object region as with the Image snapshot 

scope.

XY Select free rectangle region with arbitrary 
dimensions.

Add Set unmasked region type. The sub-image selected 
with the region of this type is compared with the 
original one.

Mask Set masked region type. The sub-image selected 
with the region of this type is not compared with 
the original one.

Scope Select the snapshot scope (object, window, 
viewable, full, image, sub-image). Refer 
to“Controlling Snapshot Scope and Granularity” 
on page 122for additional information.

Tolerance Option for xwdiff program that makes image 
comparison. See man 1 xwdiff.

N pixels Option for xwdiff program that makes image 
comparisons. See man 1 xwdiff.
Replay Xcessory User’s Guide 129



RECORD AND PLAY SESSIONS
Record Control Panel5
Note: Coordinates in sub-image mode are always recorded relative to the 
window (shell) in which they appear, even if they are wholly contained within 
a specific widget. Therefore, they are inherently less portable, i.e. more 
susceptible to changes in font and other resources, than all other forms of 
snapshots, including image snapshots.

For additional information about image snapshots, see “Controlling Snapshot 
Scope and Granularity” on page 122.

Record Control Panel
The Record Control Panel provides the controls to conduct record sessions 
started by the Test Manager or with the command-line interface. When using 
the Replay Xcessory Test Manager, you can select an icon that represents the 
script and baseline snapshot, or just the test case definition file, before 
selecting the Record option. The names of the icons selected appear in the 
Record Control Panel. If a script, baseline icon, or test case icon is not selected, 
the user will have to enter at least the test name. All other fields will 
automatically fill in with the test name and the necessary suffix.

Here is an illustration of the Record Control Panel:

Accept Create snapshot and save mask parameters in the 
snapshot properties file.

Deny Cancel the created mask.
130 Replay Xcessory User’s Guide



RECORD AND PLAY SESSIONS
Sub-Image Snapshot Scope 5
 

Figure 62 Record Control Panel, Description Tab
Replay Xcessory User’s Guide 131



RECORD AND PLAY SESSIONS
Record Control Panel5
Figure 63 Record Control Panel, Settings Tab
132 Replay Xcessory User’s Guide



RECORD AND PLAY SESSIONS
Sub-Image Snapshot Scope 5
Figure 64 Record Control Panel, Record Tab

Note: A relative path for a file name is relative to the path of the open test 
package.
Replay Xcessory User’s Guide 133



RECORD AND PLAY SESSIONS
Record Control Panel5

Record Controls
Here are detailed descriptions of the controls of the record control panel, 
divided up by the three tabs:

Description Page

Settings Page

Test name A short test name which identifies one test name from 
another.

Title The main idea about what the current test is for.

Description Any text which might describe the details of the test and its 
purpose.

Application 
Under Test

If the Start Application toggle button is selected, enter the 
command line for the application. If the application’s 
location file name is in your PATH environment variable, 
you can omit the full path specification here.

If the Connect to Running Applications toggle button is 
selected, Replay Xcessory connects to all existing 
applications that are linked with the Replay Xcessory X 
Toolkit library and uses the properly configured 
environment (for shared linked AUTs) on the current 
display, or on the application display if one is specified. 
This allows recording of applications without launching 
them from Replay Xcessory; on playback, the same 
applications must be present and in the same state as when 
recorded.

For an explanation of excluding applications from record, 
refer to “Excluding Applications” on page 101.

Apps args The user can supply any command line arguments, which 
will be transferred to the application under test on startup. 
Note that you can use environment variables here. Replay 
will substitute them with their actual values at the startup 
stage.
134 Replay Xcessory User’s Guide



RECORD AND PLAY SESSIONS
Record Controls 5
Display 
Options

Name of a display (for example nodename:0) in which to 
display the applications under test. The name of the last 
used display which was stored in the test case definition file 
is shown by default. All applications launched through 
Replay Xcessory will have their DISPLAY variable set to 
the application’s display.

This feature is useful when the applications under test 
occupy most or all of the available screen space, or to avoid 
side effects caused by interaction between Replay Xcessory 
and the applications under test. The remote display can also 
be a nested server (Xnest) in the same physical display.

Record Script File name with a .tcl extension for this session’s script file. 
Note that you can use environment variables to set this 
field.

Append If the specified file already exists, this option appends the 
script to it rather than over-writing it. To use this option, 
ensure that the application state at the end of the existing 
script is consistent with the state from which the new 
record session will start. Only in this case will a play 
session be able to play the merged script seamlessly.

Baseline 
Snapshot (Dir)

Directory name with a .bsl extension for the directory that 
will contain the snapshots for this session. In addition, 
certain control files in the test package (.Replay, .Vrdump, 
~/.Xdefaults) are copied into the baseline as a historical 
record. Note that you can use environment variables to set 
this field.

Results 
Snapshot (Dir)

Directory name with a .res extension for the directory that 
will contain the resulting snapshots which will generate on 
playback. Note that you can use environment variables to 
set this field.

Report File A file with an extension .rpt, which will hold the status of 
the playback sessions. Note that you can use environment 
variables to set this field.
Replay Xcessory User’s Guide 135



RECORD AND PLAY SESSIONS
Record Control Panel5
Record Page

Override Test 
Package 
Settings

When the user switches this toggle on and presses the 
“Configure” button, the session properties window appears 
and the user is able to set the desired options which will 
override the test package options and system-wide options, 
but only for the current test case. 

Record Button 
Up Motion

Requests the recording of mouse movements with mouse 
buttons up. Mouse movements when the mouse buttons are 
up are irrelevant for most processes. However, they are 
important with certain modal interfaces; for example, in 
testing drawing tools that draw with the mouse button in 
the up position (system default: off).

Compress 
Motion

Shortens the recorded script by recording the coordinates 
of the end point only. Use Compress Motion to make your 
script files smaller if the intermediate points are irrelevant 
(system default: off).

Context 
Sensitive Lists

Specifies that the Motif list item acted on be recorded using 
the string listed in the item itself. This allows the same item 
to be selected on playback even if the font or item position 
changes. This option should be turned off if the horizontal 
position in the selected item is important as is the case with 
many list items used in hypertext applications (system 
default: off).

Use Virtual 
Key Names

Specifies that key symbols (X Keysyms) be recorded using 
the OSF/Motif key symbol names for maximum script 
portability across displays that use different key bindings 
(for example, backspacing makes use of the Backspace 
key on some displays, but uses the Delete key on others).

Recording using the virtual key name (osfBackSpace) 
ensures that the script is portable to both display types. 
This option is valid only for Motif applications.

Minimize 
Names

Requests minimized widget names in scripts and widget 
snapshots; otherwise, fully-qualified names are used. See 
Chapter 2 for further information on widget names (system 
default: on).
136 Replay Xcessory User’s Guide



RECORD AND PLAY SESSIONS
Record Controls 5
Note: The hot keys mentioned in the following enable you to control the 
record session without having to keep the Record Control panel visible at all 
times. This is important when the application under test occupies most of the 
screen.

Before Record is pressed, these buttons are located along the lower edge of the 
panel:

After Record is pressed, the Record Control Panel switches to the third page 
and disables the first and second pages. New buttons along the lower border 
appear, as shown:

Use Tag Names Records the widget tag rather than the internal widget 
name. See Chapter 2 for further information on widget 
names (system default: on).

Active Pause This option allows a process to be acted on during pause 
mode. 

Note: Use this option with caution, as the nonrecorded 
interaction could invalidate a play action if the application 
state is modified during the pause.

Warp Cursor 
on Snapshot

Replay Xcessory normally moves the cursor out of the way 
before taking a snapshot. This precaution generally results 
in more reliable snapshot comparisons (fewer false 
negatives). Turn this option off only if the cursor warping 
generates an undesirable side effect.

Record Starts the actual recording process.

Close Dismisses the record control panel if the Record button 
has not yet been pressed.

Help Brings up an explanation of these record options.
Replay Xcessory User’s Guide 137



RECORD AND PLAY SESSIONS
Record Control Panel5
Figure 65 Record Control Panel While Recording

Here is a description of the view area:

After Record is pressed, these buttons appear along the lower edge of the 
panel:

Script View 
Area

Scrollable area in which Replay Xcessory commands 
display as the script is created; these commands are 
saved in the script file.

Subtest Indicates the start of a new subtest. By default, subtests 
are numbered sequentially, starting from 1. If the 
subtest autonumbering is turned off, you are prompted 
for the subtest name.
138 Replay Xcessory User’s Guide



RECORD AND PLAY SESSIONS
Record Controls 5
w Takes an object, window, viewable, or full snapshot, 
depending on the current state of the Snapshot Scope 
option menu. The default hot key for w is Ctrl+i.

A full snapshot potentially includes all widgets in the 
application depending on the current snapshot 
specification. If more than one process is being tested, 
the snapshot is only taken in the current application 
process. A bell sounds when the snapshot is complete.

A viewable snapshot is similar to a full snapshot, except 
that it only includes the currently visible widgets in the 
application.

When taking an object or window snapshot, the cursor 
changes to the shape of a camera. Position the cursor so 
the arrow points to the desired widget and click the left 
mouse button; the snapshot will contain the selected 
widget and the widgets contained within it, but does not 
include any pop up widgets or menus.

A window snapshot is similar to an object snapshot, 
except that the object is always an entire shell window.

To obtain a snapshot of a widget contained within a 
menu, leave the mouse in the popped-up state and press 
the snapshot hot key combination.

Source Brings up a dialog box that prompts you for the name of 
a Tcl script to be sourced in. If you enter the file name 
and press OK, the script will be played before further 
recording occurs. There are also options to press Cancel 
or Help.

The Source button can be pushed at any time during the 
record session. This causes the specified file to be 
played and a source command to be entered in the 
record script. Possible uses include bringing the 
application to the desired state and invoking common 
cleanup procedures.
Replay Xcessory User’s Guide 139



RECORD AND PLAY SESSIONS
Record Control Panel5
Changing Snapshot Granularity During Record
The granularity of a snapshot is controlled by the dump specification file 
.Vrdump. In cases where it is necessary to modify the granularity of the 
snapshots during the record session, you can do so by activating the Snapshot 
Spec button in the Record Control Panel. Activating the Snapshot Spec 
causes a Snapshot Specification Entry form to pop up, as shown:

Append Brings up a dialog box to insert a comment or command 
in the script. Control flow and other commands to be 
executed during playback may be inserted using this 
button, but they are not executed during the record 
session.

Snap Spec Brings up a dialog box for entering new snapshot dump 
specifications.

Start Up Brings up a dialog box that allows you to type in a new 
command line in order to begin a new application to 
test.

Learn Tag Brings up a dialog box for learning widget tag names. 
The default hot key combination for Learn Tag is 
Ctrl+t.

Pause Temporarily interrupts the record session; press 
Resume to continue with the session. Pause prevents 
unnecessarily long delays from being recorded when 
you must interrupt the record session to do something 
else. The default hot key combination Ctrl+p toggles 
Pause and Resume.

Resume Causes the record session to continue, after a temporary 
interruption initiated by Pause. The default hot key 
combination Ctrl+p toggles Pause and Resume.

Stop Record Ends the record session. The default hot key for Stop is 
Ctrl+s.

Help Brings up an explanation of these record options.
140 Replay Xcessory User’s Guide



RECORD AND PLAY SESSIONS
Changing Snapshot Granularity During Record 5
Figure 66 Snapshot Specification Entry

This dialog box loads or merges a new snapshot specification to change the 
snapshot granularity during the record session. Snapshot specifications may be 
merged or loaded (see the xrdb(1) reference manual page).

• loaded specifications replace previous specifications

• merged specifications indicate that the specification be merged with, 
instead of replacing, the current contents of the previous specification

An appropriate loadspec or mergespec command is added to the record script 
when OK is pressed. Snapshot specifications may be specified with a file or 
with a string.

The following table describes the buttons on the dialog box.
Load Specification Snapshot specifications will be loaded.

Merge Specification Snapshot specifications will be merged.

File Snapshot specification is in a file.
Replay Xcessory User’s Guide 141



RECORD AND PLAY SESSIONS
Recording Widget Tags5
Recording Widget Tags
Replay Xcessory records the names of the widgets using the widget names or 
tags (see “Widget Names and Tags” on page 36 for a description of the 
differences between widget names and tags). Because widget names are 
assigned by the developer of the application or, in some cases, by the GUI 
builders, the assigned widget names may not be particularly unique or 
meaningful. Widget tags are arbitrary strings associated with a widget and are 
typically identically assigned to visible strings that are associated with the 
widgets.

By default, widget tags are recorded if a name string is available. Replay 
Xcessory automatically generates a widget tag based on labels or titles 
associated with that particular widget; for example, push button labels or shell 
titles. Widget tags can be manually assigned to other widgets by using the 
Learn Tag feature which is available in record mode. The resulting tag 
associations are recorded in a tag file (.Vrtag), which can then be used during 
future record or play sessions.

Typically you should generate a complete tag file in a practice record session 
before proceeding with the actual record sessions. The script that is generated 
in the practice session can be discarded, and the tag file that has been generated 
can be copied to a central location, for example, the properties directory for the 
test suite.

String Snapshot specification is in a string. The string 
is entered in the Specification String text 
window.

Edit... Bring up an editor to edit a file snapshot 
specification. The Replay.editorCommand 
resource in the .Replay file can be used to 
modify the editor command.

Current Spec... Show the current snapshot specification.

Apply Load or merge a new snapshot specification; in 
addition, write out an appropriate loadspec or 
mergespec command to the record script.

Cancel Cancel the session and close the dialog box.
142 Replay Xcessory User’s Guide



RECORD AND PLAY SESSIONS
Conducting a Learn Tag Session 5
Conducting a Learn Tag Session
Use the following steps to conduct a Learn Tag session from the Test Manager:
1. Select Record... from the Record/Play menu in the Test Package window.
2. Place the cursor in the appropriate fields in the Test Package window and 

specify the application to be tested. For this example, type the name of the 
application as tester.

3. Press the Record button to begin the record process.
4. The control panel changes and the application under test appears. The but-

tons along the bottom of the control panel change; included in this group 
is the Learn Tag button.

5. Use the application the way you normally would. The script echoed in the 
script view area reflects the names (either widget names or tags) being 
recorded.

6. To switch to Learn Tag mode, press the Learn Tag button. 

Learning Tag 
Names

The Learn Tag button brings up the Learn Widget Tag Name window, which 
makes it possible to assign names to GUI objects or change default tags to 
unique reference names. Here is an illustration:

Figure 67 Learn Widget Tag Name

1. Click on the Identify button. The cursor changes to a question mark and 
you are requested to ‘‘Move pointer over widget of interest.’’ 
Replay Xcessory User’s Guide 143



RECORD AND PLAY SESSIONS
Recording Widget Tags5

2. As you move the cursor on the application process, widgets flash to let 

you know what is being selected. Notice that the fields in the Learn Wid-
get Tag Name window change as the cursor is moved; for this example, 
the Help button is retagged.

3. Click the left mouse button when the pointer is on the widget that will be 
assigned the tag. 

4. Click the right mouse button to exit from the Identify mode.
5. Give the widget its own unique tag by typing the new tag name in the 

Assigned Tag field and press the Apply button; for this example, we are 
renaming the Help button to “Main Help.’’

Figure 68 Displaying a Tagged Widget During a Record Session

Note: A quick way to assign tags when the desired tag is a visible label on a 
Motif 1.2 or later application is to drag the label into the Assigned Tag field. 
To use this feature, the Active Pause button should be selected in the Record 
Control panel before starting the Learn Tag session.
144 Replay Xcessory User’s Guide



RECORD AND PLAY SESSIONS
Conducting a Learn Tag Session 5
Deleting the Tag 
Name

To delete the new tag name:
1. Pop up the Learn Widget Tag Name window as previously described, 

select the widget, and place the cursor in the Assigned Tag field.
2. Erase the tag field, and click Apply to confirm the deletion. A dialog box 

pops up to ensure that this is the action you want to take:

Figure 69 Delete Tag Dialog Box

3. Click OK to remove the new tag name.

Tag File Generation
Tag files associate arbitrary widget tags with internal widget names. This level 
of indirection allows all widgets to be named by any arbitrary name rather than 
the internal widget names created by the developers. Generation of complete 
tag files for an application is especially useful for internationalized 
applications because the default widget tags, if used, would be different for 
each locale.

The Learn Widget Tag Name form now provides the option of creating tag 
entries for all widgets in a selected window, including popup children. Tag 
entries generated in this manner contain the default names, if possible. 
Otherwise the tags are the same as the internal name of the widget. 

If there are multiple occurrences of the same name, the widget tags have a 
“_ _#” suffix, where # is a number, appended to the tag name. 

You can typically use mass generation of tag entries to accelerate the creation 
of tag files corresponding to a complete application. You can then edit the 
generated file to assign more meaningful names than those which were 
automatically generated.

To generate tags for a window, do the following:
1. Select the Generate Tags for all Widgets in Selected Window toggle 

from the Learn Widget Tag Name form. 
Replay Xcessory User’s Guide 145



RECORD AND PLAY SESSIONS
Tag File Generation5

2. Click the Identify button, move the pointer over the desired window, and 

click the left mouse button.
3. Click the Apply button. The tag file is not actually written until the appli-

cation exits. The tag file is named appname.Vrtag.

To create a comprehensive tag file for the complete application, repeat these 
steps for each top level shell window in the application.

Note that after vrtag generation is complete, a new item appears in the test 
package window under the “Options” menu named “Edit vrtags”. It is in the 
corresponding pulldown menu list of all the vrtag files located in the current 
package. Each vrtag file generated in a particular test case will be copied to the 
test packed directory, which is usually parent to the test case, and will be used 
in all other test cases during the record or playback stages.
146 Replay Xcessory User’s Guide



RECORD AND PLAY SESSIONS
Conducting a Learn Tag Session 5
A partial sample generated tag file is shown below:

tester.rc.label2.vrTag: single line text_label

tester.rc.label1.vrTag: multi line text_label

tester.rc.menubar.button_0.vrTag: File

tester.rc.menubar.button_1.vrTag: Help

tester.rc.menubar.vrTag: menubar

tester.rc.label3.vrTag: scale_label

tester.rc.Gadget.vrTag: Gadget

tester.rc.scale.Title.vrTag: Title_label

tester.rc.scale.Scrollbar.vrTag: Scrollbar

tester.rc.scale.vrTag: scale

tester.rc.Widget.vrTag: Widget

tester.rc.Quit.vrTag:   Quit

tester.rc.text[2].vrTag: text__2

tester.rc.draw.vrTag: draw

tester.rc.ListSW.VertScrollBar.vrTag:

VertScrollBar

tester.rc.ListSW.List.vrTag: List

tester.rc.ListSW.vrTag: ListSW

tester.rc.FileSelection[2].vrTag: 
FileSelection__2

tester.rc.text.vrTag:   text

tester.rc.FileSelection.vrTag: FileSelection

tester.rc.vrTag: rc

tester.vrTag: tester

For additional information about widget tags, see “Recording Widget Tags” on
page 142.
Replay Xcessory User’s Guide 147



RECORD AND PLAY SESSIONS
Streamlined Recorded Scripts5

Please note that sometimes during application creation, programmers do not 
specify names or specify empty names for implicit widgets that are not shown 
by the user or that the programmer is not planning to use later. This has the 
potential to cause the Xt library, and hence Replay Xcessory, to misbehave 
while interpreting X resource files (Vrtag, Vrdump) files. Several possible 
solutions to this problem are listed below.

Empty or space-filled name:

level1.level2..widget1.vrTag : widget1

or

level1.level2.        .widget1.vrTag : widget1

These examples indicate that there is an additional widget between level2 and 
widget1, but that it will be invisible to the Xt library and Replay Xcessory.

A less obvious and harder to figure out situation is when the user manually 
edits the resource (tag) file and enters spaces at the beginning or end of a 
widget/tag name.

level1.level2.widget1 .vrTag : widget1 

It looks like widget1 has a space as part of its name and probably as part of the 
tag name, but in this case, this will not be seen by Xt. The proper solution is to 
enclose the spaces by back-slashes, such as:

level1.level2.widget1\ .vrTag : widget1\ 

However, it is strongly recommended that one does not use spaces at all.

Another example of an incorrect widget name is using a colon ":" inside of a 
widget name. In certain cases, this will prevent Replay from properly 
understanding the information contained in the X resource files (vrTag files for 
example) and should be avoided during programming.

Streamlined Recorded Scripts
The following resources are designed to help you generate simpler scripts with 
less superfluous information.
148 Replay Xcessory User’s Guide



RECORD AND PLAY SESSIONS
Omit Delay 5
Omit Delay
Explicit delays are never needed for proper playback of recorded scripts. 
Replay Xcessory does not record delays if the omitDelay resource is set to 
True in the .Replay file. During a play session, the default delay between 
script actions will be controlled by the defaultDelayTime resource (default is 
one second).

Omit Coordinates by Widget Class
Widget coordinates are superfluous for most commonly used widget classes 
because the effect of a button press or click is identical regardless of where the 
click took place. Replay Xcessory now allows you to specify the widget 
classes where it is safe to ignore the coordinates. The result is a simpler script. 
If a widget coordinate is omitted, the delay for that transaction will be omitted 
too.

The new default .Replay file omits recording of most Motif widgets where 
coordinates are immaterial, such as push buttons, toggle buttons, and labels. 
The complete list of widget classes can be found in the following directory:

$REPLAYHOME/lib/app-defaults/Replay

The name of the resource is omitCoordinatesWidgetClasses.

Note, however, that this variable could prevent some test cases from being 
recorded properly. On applications that use custom drawn widgets, this option 
should not include the name of the widget class that is used as a canvas for the 
widget or dynamically created widget as part of the custom widget. The default 
value is:

XmRowColumn \

XmPushButton XmPushButtonGadget \

XmToggleButton XmToggleButtonGadget \

XmCascadeButton XmCascadeButtonGadget \

XmSeparator XmSeparatorGadget \

XmLabel XmLabelGadget \

XmArrowButton XmArrowButtonGadget \

XmDrawnButton \

XmForm \

Toggle Command
Replay Xcessory User’s Guide 149



RECORD AND PLAY SESSIONS
Play Control Panel5

Omit Button Up Motion by Widget Class
Replay Xcessory has always provided the option of recording or ignoring 
pointer drags while all mouse buttons are in the up position via the 
includeButtonupMotion resource. 

A new resource, omitButtonUpMotionWidgetClasses, gives you greater 
control over the granularity by allowing you to specify the widget classes 
where it is safe to ignore pointer motion when all mouse buttons are up. This 
new option is in effect only if the includeButtonupMotion resource is set to 
True.

The new default .Replay file omits recording of button up motion for most 
Motif widgets where coordinates are immaterial, such as push buttons, list 
widget, and toggle buttons. The complete list of widget classes can be found in 
the following directory:

$REPLAYHOME/lib/app-defaults/Replay.

Play Control Panel
The Play Control Panel provides the controls to conduct play sessions which 
can be started either from the Test Manager or the command line.

When using the Replay Xcessory Test Manager, you can select the icons that 
represent the script and baseline, and the result snapshot and report files before 
selecting the Play option. The name of the selected icons appear in the Play 
Control Panel. If none of the icons are selected, the script, snapshot, and report 
fields are filled with the values of the last record or play session used in the 
current test package.

The Play Control Panel consists of two pages.
150 Replay Xcessory User’s Guide



RECORD AND PLAY SESSIONS
Omit Button Up Motion by Widget Class 5
Figure 70 Play Control Panel, Settings Tab

Note: If you enter a relative path for a file name, it is relative to the path of the 
open test package.
Replay Xcessory User’s Guide 151



RECORD AND PLAY SESSIONS
Play Control Panel5

Conducting a Play Session
Use the following steps to conduct a play session from the Test Manager:
1. Select Play… from the Record/Play menu in the test package window.

The Play Control Panel appears.
2. Edit the text fields to fit your situation and make sure the check buttons 

are set as you wish. (The play controls are described in detail following 
these steps.)

3. To make this session execute as quickly as possible, rather than at 
record-session speed, drag the Speed slider all the way to the right (1.0).

4. When ready, press the Play button to begin the actual play process. 
A window appears with the test application and the buttons along the 
lower border of the Play Control Panel change to include Pause, Resume, 
Cancel, and Help.
If both baseline and result snapshot directories are specified, Replay Xces-
sory will perform snapshot comparisons at the same points in the script 
where the baseline snapshots were initially taken. If there are differences, 
you’ll have the option to continue playing, accept the new results as the 
new baseline, or stop playing.

5. To stop the process temporarily, press Pause and then Resume to con-
tinue.

6. To terminate a session early, press Stop.

Once started, a play session proceeds automatically. It provides a subtest 
summary report if requested.

Play Controls
Here are detailed descriptions of the controls of the play control panel:

Settings Page
Play Test 
Case

The name of the current test case is displayed here. If you 
want to view a detailed description of the test case you 
can press the “Details” button.
152 Replay Xcessory User’s Guide



RECORD AND PLAY SESSIONS
Play Controls 5
Application 
Under Test

Command line of the application under test; it can be 
omitted if the recorded command line in the start up 
command is acceptable. If it is omitted, just leave the 
“Run Application specified in the test script” active, or 
you can select “Connect to running applications”, to 
connect to all applications running at this moment that are 
properly linked against Instrumented Xt library 
applications.
Replay Xcessory User’s Guide 153



RECORD AND PLAY SESSIONS
Play Control Panel5
Display 
Options

Name of a display (for example nodename:0) in which to 
display the applications under test. This feature is useful 
when the applications under test occupy most or all of the 
available screen space, or to avoid side effects caused by 
the interaction between Replay Xcessory and the 
applications under test. The remote display can also be a 
nested server in the same physical display.

Besides using the DISPLAY value and the current 
application display, the user can also specify the display 
options using Xnest (nested X server) and Xvfb (virtual X 
server).It is assumed that these tools are installed on the 
system in the executive path. Replay Xcessory will not 
perform a search for the needed tools. 

On selection, the nested X server will run as an additional 
local X server with display number “5” and the virtual X 
server will be run as display number “6”. 

In the case that the batch mode was specified as nested, 
the virtual X server will close automatically, regardless of 
the results of the test case playback. In the case that the 
batch mode was not specified, the virtual servers will be 
alive and the application tester can check the results of 
the playback.

If using Xvfb was selected then no output of the 
application under test will be shown at all! The 
application tester still has the ability to monitor the virtual 
display using the “Shot” button on the second page of the 
playback dialog. This button will be accessible only if the 
Xvfb option is selected.

Default options of virtual displays are:
Width x Height: 1024x768
Color Depth: 24
Window manager: mwm (should be installed on system).

These options can be configured on the “General” page of 
the session properties for test cases and test packages. 
Please note that the selected color depth should also be 
present in the X configuration file settings and available 
for active display.Otherwise, messages such as “Could 
not find available visual” will be generated by Replay.
154 Replay Xcessory User’s Guide



RECORD AND PLAY SESSIONS
Play Controls 5
Playback Page

Baseline 
Snapshot 
(Dir)

Name of the directory that contains baseline snapshots for 
this session. If a baseline snapshot directory is not 
provided, no baseline comparison will be performed. 

Results 
Snapshot 
(Dir)

Directory name with a .res extension for the directory to 
contain the snapshot results for this session. 

Report File File name with a .rpt extension for this session’s report 
file. This file summarizes the success or failure of 
snapshot comparisons, subtest by subtest. If a file name is 
omitted, the report is displayed to the standard output 
(stdout).

Play Script File name with a .tcl extension for this session’s script 
file. 

Tcl 
Arguments

Arguments to be passed to a Tcl script. The arguments 
can be restored within the script using the built-in 
variable argv (a Tcl list). The number of arguments can 
be retrieved using the argc variable.

Override Test 
Package 
Settings

When the user switches this toggle on and presses the 
“Configure” button, the session properties window 
appears and the user is able to set the desired playback 
options. This will override test package options 
system-wide, but only for the current test case.

Speed Specifies the play speed when the slider is dragged.The 
speed is represented by a floating point number between 
-1 and 1 where -1 is slowest, 1 is fastest, and 0 is the 
speed of the record session. The slowest speed that can be 
set is roughly half as fast as the recorded speed. The 
fastest setting is the fastest possible speed, limited only 
by the minimum delay needed to guarantee correct play 
behavior; for example, to prevent two consecutive single 
clicks from being interpreted as a double-click.

Prompt on 
Snapshot 
Difference

Specifies that you are to be prompted whether to exit or 
continue, when a snapshot file fails to match the 
corresponding baseline file.
Replay Xcessory User’s Guide 155



RECORD AND PLAY SESSIONS
Play Control Panel5

Before Play is pressed, these buttons are located along the lower border of the 
panel:

After Play is pressed, new buttons appear along the lower border of the panel, 
as shown:

Play Starts the actual play process.

Play 
Debug

Starts the debug playback session. You will be able to debug 
your tcl code, changing it at runtime.

Close Dismisses the play control panel before the session can 
begin.

Help Brings up an explanation of these play options.
156 Replay Xcessory User’s Guide



RECORD AND PLAY SESSIONS
Play Controls 5
Figure 71 Play Control Panel—While Playing

After Play is pressed, the following buttons appear along the lower border of 
the panel:

Pause Temporarily interrupts the play session; press Resume 
to continue with the session.

Resume Causes the play session to continue, after a temporary 
interruption initiated by Pause. 

Close Ends the play session.
Replay Xcessory User’s Guide 157



RECORD AND PLAY SESSIONS
Play Control Panel5
If you chose Play Debug, the tcl debugger will be opened. For more 
information, please see Chapter 8 Script Debugger.

Figure 72 Play Control Panel- Debug Tab

Help Brings up an explanation of these play options.
158 Replay Xcessory User’s Guide



RECORD AND PLAY SESSIONS
Verifying Results 5
Verifying Results
Results verification through snapshot comparison occurs automatically during 
playback when both the baseline and results snapshot directories have been 
specified. Comparisons are performed on the widget snapshots and image 
snapshots.

Whenever a difference is found, you can:

• ignore the difference and continue playing

• accept the new results as the new baseline

• stop playing

Verifying widget 
Snapshot 
Differences

The Snapshot Mismatch window, as shown in the following illustration, 
displays the command line used to compare the baseline and results widget 
snapshots, as well as the output of the comparison in a scrollable display area.

Figure 73 Snapshot Mismatch Window

The following buttons control widget snapshot differences:
Continue Ignore the widget snapshot differences and continue 

playing.

Cancel Stop the play session.
Replay Xcessory User’s Guide 159



RECORD AND PLAY SESSIONS
Play Control Panel5
Verifying Image 
Snapshot 
Differences

The Image Mismatch window, as shown in the following illustration, displays 
the command line used to compare the baseline and results widget snapshots.

Figure 74 Image Mismatch Window

The buttons in the top row allow you to view the baseline, result, and 
difference images; a viewed image can be dismissed by clicking on it.

The following buttons control image snapshot differences:

Update Update the baseline snapshot with the new results and 
continue the play session.

Help Brings up an explanation on these options.

Ext diff View snapshot differences in the external viewer.

View 
Baseline

Brings up image viewer on the baseline image.

View 
Result

Brings up image viewer on the result image.

View 
Difference

Brings up image viewer on an image where the pixels 
which differ are shown in black and those which are the 
same one shown in white.

Continue Ignores the widget snapshot differences and continues 
playing.

Cancel Stops the play session.

Update Updates the baseline snapshot with the new results and 
continues the play session.
160 Replay Xcessory User’s Guide



RECORD AND PLAY SESSIONS
Batch Mode 5
Replay Xcessory Driver — Command-Line 
Interface

The driver command-line interface can start both record and play sessions in 
batch mode or interactively. This command is not needed when operating 
under the Replay Xcessory Test Manager. It is described here for users who 
prefer to use a command-line interface or would like to set up scripts for batch 
runs.

Batch Mode
In batch mode (using the -b option), Replay Xcessory load and use the options 
saved in the tcd file, Replay configuration files, and the command line. 
Options specified in the command line have more weight and override option 
values specified in the configuration files. The test application processes run 
unattended, and the results are placed in the files as specified.

Batch Mode without GUI
This is the general batch mode, except that the -x option is specified instead of 
-b and all the GUI output of Replay's driver is forwarded to the virtual Xvnc 
server. Users must have Xvnc binary installed on their system. The virtual 
Xvnc server will be run as display #8, such as DISPLAY=127.0.0.1:8. Please 
note that all the report output will be dumped to the stdout also.

Interactive Mode
In interactive mode, enter options on the command line, as convenient. You 
can enter additional information in dialog boxes—the same ones provided by 
replaytm.

The following command:

replay

calls for a play session (the default). It brings up the Play Options dialog box.

With a -r option, the command

replay -r -tcd xmcalc

or

Help Brings up an explanation of these options.
Replay Xcessory User’s Guide 161



RECORD AND PLAY SESSIONS
Replay Xcessory Driver — Command-Line Interface5
replay -r

brings up the Record Options dialog box.

The following paragraphs describe the available options. For an on-line 
description, refer to the reference manual page replay(1). You can get an 
on-line summary by entering the following command:

replay -h
162 Replay Xcessory User’s Guide



RECORD AND PLAY SESSIONS
Replay Command Form 5
Replay Command Form
The general form of the replay command line is:

replay options -- application_name 
application_args

For example,

replay -r --xm calc

or

replay -r -tcd xmcalc -- xmcalc

Following the descriptions of the command-line options are examples of 
record and play sessions using the command-line interface.

Options
The following options are available on the command line:

-tpd path Path represents a path to a test package. Runs all 
test cases contained in the test package specified.

-tbf path Path represents a path to a test package batch file. 
Runs all test cases contained in the test batch file 
specified.

-ste path Path represents a path to a test suite. Runs all test 
cases contained in the test suite specified.

-tcd path Path represents a path to a test case. Runs the test 
case specified.

-h Provides an on-line list of replay options (instead 
of a record or play session.)

-r Selects a record session.

-p Selects a play session (default).

-b Selects a play session in batch mode.

-E Exit on a snapshot difference mismatch.

-f Name of the .Replay_testname file to be 
associated with a test. The .Replay file contains 
test override options.
Replay Xcessory User’s Guide 163



RECORD AND PLAY SESSIONS
Replay Xcessory Driver — Command-Line Interface5
-v Name of the .Vrdump file to be associated with a 
test. The .Vrdump file contains the snapshot 
specification used for snapshot granularity.

-l script_filename File name of the script file.

-R report_out_file File name of the file that reports the results of 
snapshot comparisons and subtest results.

-s snapshot_dir Name of the directory for snapshots to be taken in 
the current record or play session.

-B baseline_dir Name of the directory for baseline snapshots, 
against which current snapshots are compared.

-D diff_command The command to make comparisons between 
current and baseline snapshot files (default: diff).

-T play_speed A floating point number between -1 and 1 that 
sets the play speed: -1 is slowest, 1 is fastest, and 
0 is the speed of the record session.

-I Enables replay to pass the standard input to the 
application processes.

-L dynamic_
library_path

Specifies the search path replay uses to find the 
specific Xt library to load (default: null).

-tclargs args Specifies arguments to be passed to the Tcl script 
for a play session. Enclose the arguments in single 
quotes if more than one argument is being passed.

-xdebug Start up the interactive Tcl debugger.

-debug Start up the line Tcl debugger.

-connect Connect to existing applications.
164 Replay Xcessory User’s Guide



RECORD AND PLAY SESSIONS
Command Line Examples 5
If the –l, –s, –B, or –R options are not specified, the Record or Play Control 
Panel will have fields that correspond to those options filled with the values 
specified in the last record or play session used in the current directory.

Command Line Examples
Here are examples of record and play sessions with the xmcalc application 
using the command line interface.

Play Example The following steps take you through a play session with xmcalc:
1. Enter the following commands:

replay -tcd 

/work/replay/tape/xcessory/examples/testsuite/pac
k_xmcalc/xmcalc

You will see the Play Control Panel dialog and the xmcalc application.

Note: If you want to run the application unintended, use the “-b” option.

Note: The options in the previous play example are described in the list under 
‘‘Options.’’

2. Press Play to begin a play session.

-appdisplay Application display name.

Replay Xcessory also allows the use of virtual X 
servers as targets for this option. The value of the 
-appdisplay option can be Xvnc, Xvfb, or Xnest 
to have the application under test opened in the 
appropriate virtual display. Please note that 
setting this option overrides the option value set 
in the tcd file. For example, to run the batch 
playback session on the station without a 
graphical display, all of the following commands 
could be used:

replay -tcd xmcalc -x -appdisplay Xvnc

This command will run Replay Xcessory with 
two virtual displays: one for AUT and one for 
Replay Xcessory itself.
Replay Xcessory User’s Guide 165



RECORD AND PLAY SESSIONS
Replay Xcessory Driver — Command-Line Interface5

You will see the Replay Xcessory commands and diffs taken in the scrollable 
script view area as they are interpreted. You may wish to repeat this procedure, 
setting the Speed Scale to different speeds.

Note: Additional options: Users are also allowed to play scripts in batch mode 
without the use of tcds (test case definition files). A user might use this if they 
had test cases stored in a repository and were going to be running the tests 
from different locations. In this instance, it is advantageous to be as flexible as 
possible. The following is an example of a playback that does not use the tcd 
file, but instead specifies the needed files with arguments:
replay -p -l testdirectory/a.tcl -B 
testdirectory/a.bsl -s testdirectory/a.res -R 
../reportsdir/a.rpt/
166 Replay Xcessory User’s Guide



RECORD AND PLAY SESSIONS
Command Line Examples 5
Record Example The following steps take you through a record session with the xmcalc 
application:
1. Enter the following command:

replay -r -tcd 
/work/replay/tape/xcessory/examples/testsuite/pac
k_xmcalc/xmcalc1

First, you see the record control panel, then a window with the xmcalc 
application.

2. To actually start recording, press the Record button.
The record control panel appears in the lower right of your screen.

3. Use the calculator to solve an example problem—pressing any buttons in 
the xmcalc application that you wish. 
Notice that your actions are displayed in the script view area.

4. At any time when the pointer is in the xmcalc application, enter Ctrl+i. 
This produces a snapshot in the snapshot directory.

5. When you are ready to end the record session, press the Stop button.
6. To exit from the xmcalc application, press the AC button in xmcalc with 

the right-most mouse button.
7. To see the snapshot files that have been created, enter

ls a.bsl

which displays the snapshot directory included on the replay command. This 
listing might look similar to the following:

Obtaining a Test Suite Report
Each play session generates a subtest report that details the result of all the 
executed subtests. A report summarizing the results of all sessions in a test 
suite can be generated using the replayrep command, for example:

replayrep ~/testsuite

vr0001.01.
xwd

vr0002.snp vr0004.01.x
wd

vr0005.snp vrin-
it.01.xwd

vr0001.snp vr0003.01.x
wd

vr0004.snp vrfi-
nal.01.xwd

vrin-
it.snp

vr0002.01.
xwd

vr0003.snp vr0005.01.x
wd

vrfi-
nal.snp
Replay Xcessory User’s Guide 167



RECORD AND PLAY SESSIONS
Obtaining a Test Suite Report5

generates a test suite summary report on the test suite located in the
~/testsuite directory, as shown below. A -c option lists individual subtest 
results as well. A -g option generates an HTML report instead of a text report 
file. 

Replay Xcessory Test Suite Report
Generated on Tue Jan 18 15:18:57 2005

TEST SUITE: 
/p3/replay2+/target/examples/replay/testsuite

TEST PACKAGE: xmcalc1
record/playback demo using Athena widgets

Script:a.tcl Passed
Baseline:a.bsl
Result:a.res
Run Command:replay -display :0.0 -p

Run Date:Tue Jan 18 15:17:27 199
Elapsed Time:0:00:20.00
CPU Time:0:00:00.28
Pass Rate:100.0% (2/2)

TEST PACKAGE: xmcalc2
programmed script using an external input data file

Script:xmcalc.tcl FAILED
Baseline:
Result:
Run Command:replay -display :0.0 -p -l xmcalc.tcl

Run Date:Tue Jan 18 14:56:28 2005
Elapsed Time: 0:00:23.00
Pass Rate: 90.0% (9/10)

TEST SUITE SUMMARY
------------------
Percent of Test Scripts Passed:50.0% (1/2)
Total Elapsed Time:0:00:43.00
Total CPU Time:0:00:00.28
168 Replay Xcessory User’s Guide



Introduction to the 
Scripting Language 6

Overview
Since the Replay Xcessory scripting language is based on Tcl, some 
understanding of Tcl is required before reading the Replay Xcessory 
Command Language chapter (Chapter 6).We recommend that you read this 
chapter through the sections on quoting if you plan to go beyond the use of 
recorded scripts.
Replay Xcessory User’s Guide 169



INTRODUCTION TO THE SCRIPTING LANGUAGE
Introduction6
Introduction
Tcl stands for “tool command language” (pronounced “tickle”). It is a 
shell-like interpretive programming language that originated at the University 
of California at Berkeley. Although Tcl has a simple syntax, it provides 
full-fledged programming constructs. Furthermore, it is a nonproprietary 
language that has been accepted by many organizations in the technical 
community. 

Replay Xcessory uses Tcl as its scripting language. Each Replay Xcessory 
action is a Tcl verb.

The level of understanding that is required to write scripts varies with whether 
you plan to:

• use record session scripts as recorded

• modify and enhance scripts

• write scripts by hand

Note: To learn Tcl basics quickly, you may find it useful to enter simple scripts 
interactively and see the results immediately. An interpreter called tclsh is 
provided by Replay Xcessory as a learning tool.This interpreter translates each 
command as it is entered and echoes the command’s return value to the 
standard output. Set the TCL_LIBRARY environment variable to 
$REPLAYHOME/lib and invoke the interpreter by typing:
tclsh
It is important to remember that tclsh only accepts generic Tcl commands and 
not Replay Xcessory commands.

The classical reference book about the Tcl scripting language is ‘‘Tcl and the 
Tk Toolkit,’’ authored by John K. Ousterhout and published by 
Addison-Wesley (1994). For further information also see “Practical 
Programming in Tcl and Tk (4th Edition),” by Brent Welch, Ken Jones, and 
Jeffrey Hobbs, published by Prentice Hall PTR (2003), and “Tcl/Tk: A 
Developer’s Guide (2nd Edition),” by Clif Flynt, published by Morgan 
Kaufmann (2003). A useful website is http://www.tcl.tk.

Command and Script Basics
A script is a series of Tcl commands. It is important to note that a new line 
begins a new command; multiple commands can be placed on one line, but 
they must be separated by semicolons.
170 Replay Xcessory User’s Guide



INTRODUCTION TO THE SCRIPTING LANGUAGE
Command Structure 6
Note: In the commands shown, Tcl commands are shown in Courier 
(typewriter) bold font. Throughout this chapter, the command result is 
sometimes displayed on the line after the command in non-bold Courier. This 
display is used to aid understanding; when Replay Xcessory plays scripts, 
command results are displayed only when requested explicitly; for example, 
through an echo command.

Command Structure
Each Tcl command consists of one or more words—sequences of characters 
with no embedded white space. The first word of a command is the command 
name. Subsequent words, if any, are command arguments. Each command 
returns a result: a string of zero or more characters. 

Each command has its own syntax, dictated by the command name and the 
arguments that follow. For example, the following set commands have two 
arguments—the first argument is the variable to set; the second argument is an 
arbitrary string:

set x 1

set y “Any long string”

Note: Using Tcl commands:
The most important rule to remember is that each command is always logically 
on one line. Hence a line that must be split in two due to its length should be 
terminated by a backslash ( \ ). Commands inside curly braces ( {} ) are also 
treated as if they were in the same logical line. More information about 
backslashes and other special characters is provided in the “Controlling 
Character Interpretation”” section on page 173.
In addition, putting spaces in arguments without appropriate quoting is a 
common error of Tcl novices. Make sure that multiple arguments are properly 
surrounded with quotes.

Data 
Types—Strings

All command arguments and results are strings; a string is the only data type in 
Tcl. However, Tcl strings can represent integers, floating point numbers, lists, 
and other entities. A list is a string containing words separated by white space 
(see “List Commands” on page 187 for more information about lists).
Replay Xcessory User’s Guide 171



INTRODUCTION TO THE SCRIPTING LANGUAGE
Command and Script Basics6

Each Tcl command has its own requirements for the types of string arguments 
it accepts; for example:

• a set command accepts an arbitrary string

• an expr command requires that the string argument contains a series of 
operators and operands

Arrays In addition to simple variables, Tcl supports arrays. In Tcl, both array names 
and multidimensional elements can be arbitrary strings. Arrays are also similar 
to variables in that they do not have to be defined before use; for example:

set color(red) 50

set color(green) 20

set baseColor $color(red)

50

Tcl defines a built-in array called env where each element corresponds to a 
currently-defined environment variable; for example:

set ICS $env(REPLAYHOME)

sets the variable ICS to the current setting of the REPLAYHOME environment 
variable.

Expression 
Evaluation

Expression evaluation in Tcl is not automatic. When required, evaluation must 
be explicitly requested. For example, the command:

set x 1+2+3

1+2+3

performs no expression evaluation; the variable x is simply assigned the string 
1+2+3.

Use the expr command, as in

expr 1+2+3

6

to request the evaluation of an expression.

expr also supports a number of math operations and integer/floating point 
conversion routines.
172 Replay Xcessory User’s Guide



INTRODUCTION TO THE SCRIPTING LANGUAGE
Substitution 6
Comments To add comments to a script, use the pound sign ( # ) as the first nonblank 
character of the line. Everything from the pound sign to a new line is treated as 
a comment.

# This is a comment line

set class XmPushButtonGadget

Controlling Character Interpretation
Characters in command arguments are controlled and interpreted by using 
substitutions or quoting.

Substitution
Tcl supports three types of substitution:

• variable

• command

• backslash

Substitution occurs before commands are interpreted.

Variable 
Substitution

Variable substitution inserts the contents of a variable into a command 
argument. To request variable substitution, precede the variable name with a 
dollar sign ( $ ). In the example:

set x 5

expr $x+3

8

the contents of x (defined by set as the number 5 ) is substituted for $x.

Variable substitution can occur anywhere within a command argument, for 
example:

set x 5

expr $x+$x

10

causes two substitutions (in this case, 5 plus 5) within the same argument.
Replay Xcessory User’s Guide 173



INTRODUCTION TO THE SCRIPTING LANGUAGE
Controlling Character Interpretation6
Command 
Substitution

Command substitution inserts the result of a command (or other script excerpt) 
into a command argument. To request command substitution anywhere within 
a command argument, surround the command (or script excerpt) with square 
brackets ( [ ] ):

[ script ]

The script excerpt is evaluated and the result is substituted. In the example

set x 1

set y [expr $x+5]

6

6 (the result of expr $x+5 ) is substituted into the set command, setting y to 6.

Backslash 
Substitution

Backslash substitution uses a backslash character (\) to suppress the special Tcl 
interpretation of the character that follows it, such as a dollar sign ( $ ), space, 
or left bracket ( [ ), causing the special character to be interpreted literally 
instead of interpreting its Tcl-related characteristics. 

The following examples show how a backslash can suppress the special 
meaning of a space and dollar sign, respectively:

set s a\ multiword\ string

a multiword string

set x 5.95; set y \$$x

$5.95

Backslash is also used to represent normally invisible characters. For example, 
\t represents a tab; \n represents a new line character. The next section, 
‘‘Quoting,’’ contains an explanation of how the same multiword string can be 
expressed using double quotes instead of backslashes.

Quoting
Sometimes it may be necessary to suppress the special meaning of a dollar 
sign, space, or other character special to Tcl. For example, if an argument is to 
include embedded spaces, the special meaning of space (argument separation) 
must be suppressed for that argument. Quoting is a mechanism to suppress the 
effect of certain special characters.
174 Replay Xcessory User’s Guide



INTRODUCTION TO THE SCRIPTING LANGUAGE
Quoting 6
Tcl provides two forms of quoting—quoting with double quotes and with 
braces ( { } ). In both cases, the quote character must be the first character of a 
command argument. When an argument is passed to the command interpreter 
for translation, the quote characters themselves are stripped off.

Quoting with 
Double Quotes

Using double quotes forms one command argument that consists of all the 
characters that follow the first double quote up to the matching double quote. 
Within the argument, spaces, tabs, new lines and semicolons all lose their 
special interpretations; they are treated like ordinary characters. However, 
dollar signs and brackets retain their special functions.

Variable, command, and backslash substitutions are still performed within 
double quotes, as in these examples:

set s “a multiword string”

a multiword string

set s “The value of \$x is $x”

The value of $x is 3

set s “The value of \[ expr 3+5 \] is [ expr 3+5 
]”

The value of [ expr 3+5 ] is 8

Quoting with 
Braces

Quoting with braces—of the form {argument}—is similar to using double 
quotes, except almost all characters lose their special interpretation. Within a 
quote using braces, there is no variable substitution or command substitution.

Quoting with braces is commonly used to create lists. For example, the 
following set command 

set b {c {d e f} { } }

c {d e f} { }

constructs a list (b), with the following three elements:

• c

• a list with three elements—d, e, and f

• an empty list
Replay Xcessory User’s Guide 175



INTRODUCTION TO THE SCRIPTING LANGUAGE
Variable Manipulation Commands6
Note: A new line occurring inside curly braces does not logically split a line in 
two. This is very important to remember because it is a device that Tcl uses 
extensively when nesting commands within one another (for example, the 
block of Tcl commands executed inside a for loop is logically just one line).

Variable Manipulation Commands
The set, append, and incr commands are basic to variable manipulation.

set variable [value]

If value is specified, variable is set to value. The command 
returns the current value of variable as the result; for example,

set y 16

16

set x “Sums of squares”

Sums of squares

set y

16

append variable value1 [value2 ...]

Appends each parameter, in order, to variable_name. If 
variable_name is undefined, it is defined and set to null before 
the append operation. The command returns the new value of 
variable as the result; for example,

set x abcd

append x efg

abcdefg
176 Replay Xcessory User’s Guide



INTRODUCTION TO THE SCRIPTING LANGUAGE
Operands 6
Expressions
An expression is a combination of Tcl operands and operators. It is evaluated 
explicitly with the expr command, for example,

expr 5.0*($b+$c)

Operands
An operand can be a variable or a constant.

Variables A variable name consists of letters, digits, and underscores. Use the set 
command to assign a value to a variable.

Constants Although the only Tcl data type is a string, the strings can be in various forms, 
from arbitrary sequences of characters to integer or floating-point numbers. 

Integers are in decimal unless there is a specification to the contrary. Of the 
following integers:

35

035

0x35

35 is decimal; 035 is octal, because it begins with a 0; and 0x35 is 
hexadecimal, because it begins with the prefix 0x.

incr variable [value]

Increments variable by value, if value is present; otherwise, it 
increments variable by 1. variable and value must be integer 
strings. The command returns the new value of variable as the 
result:

set x 0

incr x

1

incr x 5

6

Replay Xcessory User’s Guide 177



INTRODUCTION TO THE SCRIPTING LANGUAGE
Expressions6

Tcl accepts any of the forms defined for the ANSI C standard except that the f, 
F, l (lowercase L), and L suffixes are not supported. All of the following are 
valid floating-point numbers:

2.1

5.34e+12

5E2

5.

Operators
Tcl supports arithmetic, relational, logical, bit-wise, and other operators. 
Operators in Tcl are similar to the operators in C expressions.

Arithmetic 
Operators

The arithmetic operators are defined for either int or float operands:

If one operand is floating point and the other is integer, the integer is converted 
to floating point and the result will be in floating point.

Relational 
Operators

The relational operators are defined for either int, float, or string operands:

For strings, these operators test lexicographical ordering.

-a takes the negative of a

a+b adds a and b

a-b subtracts b from a

a*b multiplies a and b

a/b divides a by b

a<b 1 if a is less than b; otherwise, 0

a<=b 1 if a is less than or equal to b; otherwise, 0

a==b 1 if a is equal to b; otherwise, 0

a>b 1 if a is greater than b; otherwise, 0

a>=b 1 if a is greater than or equal to b; otherwise, 0
178 Replay Xcessory User’s Guide



INTRODUCTION TO THE SCRIPTING LANGUAGE
Operators 6
Logical Operators The logical operators are defined for either int, float, or string operands:

These operators are typically used in conjunction with relational operators; for 
example,

set x 3

3

expr ($x>=1)&&($x<=10)

1

Bitwise Operators The Tcl bitwise operators manipulate bits of integers:

Ternary Operator The ternary operator functions as an if-then-else expression, as in the C 
language. For example, the expression:

expr { ($a < 5) ? 1 : 0 }

returns 1 if a is less than 5 and returns 0 otherwise.

Math Functions Tcl provides a number of built-in math functions that can be invoked using the 
expr command; for example:

expr { sin($x) + sqrt ($y) }

The list of built-in functions is provided in the expr(3) reference manual page.

! 1 if a is 0; 0 if a is 1 (logical not)

a&&b 1 if both a and b are non-zero; otherwise, 0 (logical and)

a||b 1 if either a or b is non-zero; otherwise, 0 (logical or)

& bitwise AND

| bitwise OR

^ exclusive OR

>> right shift of the number of bits indicated by the right operand

<< left shift of the number of bits indicated by the right operand

~ one’s complement
Replay Xcessory User’s Guide 179



INTRODUCTION TO THE SCRIPTING LANGUAGE
Control Flow Commands6
Control Flow Commands
The following commands are representative of the control structures in Tcl:
break Terminates the inner loop of a looping command, such as for, 

foreach, or while. In this example, break stops a search when the 
test item is found:

foreach word $keyList {
…

if test then {set found 1; break}

}

switch
switch

[options] string pattern body [ pattern body ... ]
[options] string { pattern body [ pattern body ...] }

Matches string against each pattern until a match is found. When 
the matching pattern is found, the corresponding body is 
executed. The result of the executed script or an empty string is 
returned if no pattern_list matches.

The second form of switch presents the same information but as a 
single argument. This form is useful when it is convenient to 
spread patterns and scripts across several lines; for example:

switch $file {

*.res {set type “These are results 
snapshots”}

*.bsl {set type “These are baseline 
snapshots”}

*.tcl {set type “This is a script file.”}

*.M {set type “This is a map file.”}

}

The options can be -exact, which specifies exact string matches, 
-regexp, and -glob which specify two different styles of pattern 
matching.
180 Replay Xcessory User’s Guide



INTRODUCTION TO THE SCRIPTING LANGUAGE
Operators 6
continue Terminates the current iteration inner loop of looping commands, 
such as for, foreach, or while. Unlike break, which stops a 
search when the item is found, execution continues with the next 
iteration of the loop. For example, in these commands:

while {$i>0} {

incr i -1

if expr[$divisor==0] then continue

…

}

continue causes the next iteration of the while loop to be 
executed.

eval arg [arg …]

Concatenates the arguments, using spaces as separators, then 
executes the result as a Tcl script and returns that result. The 
artificial script:

set cmd expr

set operation 4*4*4

eval $cmd $operation

64

shows the generation and execution of the command 
{expr 4*4*4}. The eval command makes it possible to execute 
generated commands and scripts.
Replay Xcessory User’s Guide 181



INTRODUCTION TO THE SCRIPTING LANGUAGE
Control Flow Commands6
for init test reinit for_body

Executes init as a script, then evaluates test as an expression. If 
test is non-zero, it executes for_body as a script. For each 
subsequent iteration (if any), it executes reinit and evaluates test. 
As soon as test is 0, for terminates. The for command returns an 
empty string as its result; for example:

for {set i 3} {$i>0} {incr i -1} {

append answer “time $i ”}

set answer

time 3 time 2 time 1 

foreach variable-name list body

For each element of list (a Tcl list), the foreach command:

sets variable-name to the current list element

executes body, a Tcl script

This example squares the values in a list:

set squares {}

set numList {3 7 9 11}

foreach num $numList {

append squares “ “ [expr $num*$num]}

set squares

9 49 81 121
182 Replay Xcessory User’s Guide



INTRODUCTION TO THE SCRIPTING LANGUAGE
Operators 6
if expr1 [then] body1 elseif expr2 [then] body2… [else] bodyN 

Evaluates expr, as an expression. The value of expr must be 
boolean (that is, numeric: nonzero or zero). If expr1 is nonzero, 
body1 is executed. Otherwise, the first elseif expression, if any, is 
evaluated. If it is nonzero, the corresponding body is executed; 
otherwise, the next elseif expression, if any, is evaluated, and so 
forth. If none of the preceding expressions is nonzero, the else 
body, if any, is executed.

set x $zz

5

if {$x==4} {

set res 1

} elseif {$x==6} {

 set res 2

} else {

 set res 3

}

3

source file_name

Reads the file file_name and executes its contents as a Tcl script. 
The source command returns the results of the script’s execution.
Replay Xcessory User’s Guide 183



INTRODUCTION TO THE SCRIPTING LANGUAGE
Procedures6
Note: Unmatched braces, parentheses, and other syntax errors can be found 
using the tclcheck utility. tclcheck accepts the name of the Tcl script as input.

Procedures
A Tcl procedure is a user-defined Tcl command. After definition, procedures 
are used the way built-in Tcl commands are used. That is, the procedure name 
becomes the name of a new Tcl command; procedure arguments become 
command arguments.

A procedure is defined through the proc command, which provides for 
specification of the procedure name, an argument list, and a procedure body. 
The procedure body is a Tcl script that is executed when the procedure is 
called.

For example, the following proc command defines a procedure that computes 
the average of two values:

proc getavg {x y} {

 expr ($x+$y)/2

}

After its definition, getavg can be used in the same way as a built-in Tcl 
command, as in this interactive example:

getavg 32.5 98.75

65.625

while test while_body

Evaluates test. If test is nonzero, it executes while_body as a 
script. The while command keeps executing until test is zero, as in 
the following example:

set answer {}

set i 3

while {$i>0} {incr i -1; append answer $i “ 
“}

set answer

2 1 0 
184 Replay Xcessory User’s Guide



INTRODUCTION TO THE SCRIPTING LANGUAGE
Return Value 6
Within a script, a procedure call can also use one or more variables, as in the 
following example which is defining the average of several numbers: 

set z [getavg $x $y]

Return Value
The return value of a procedure is the value of the last command executed 
within the procedure, often the last statement in the procedure. The return 
command enables an exit from anywhere in the procedure and the specification 
of a return value.

In some ways, a procedure call is similar to executing the script (procedure 
body) in-line. There are also some differences, for example:

• In a procedure, variable references refer to local variables—unless 
explicitly declared global through the global command.

• Procedure arguments are substituted in the script body, but cannot be set 
(the way they could be in line), because they are passed by value.

Global and Local Variables
By default, variables used within a procedure are local to that procedure. The 
global command changes the status of its variable_name arguments from local 
to global. 

Since global is a command, rather than a definition, the variables used in a 
procedure are local until the global command that includes them is 
executed.The following example shows the way Tcl local and global variables 
work:

proc gproc {} {

global y

set x “cat”

set y “dog”

}

set x 3

set y 5

gproc

echo $x
Replay Xcessory User’s Guide 185



INTRODUCTION TO THE SCRIPTING LANGUAGE
Procedures6
3

echo $y

dog

After the call to gproc, the value of x is unchanged, even though there is a set 
x command in gproc, because the x that gproc sets is local. The references to y 
inside and outside gproc, however, refer to the same variable, because of the 
global command. This is shown by the value of y, which is now dog.

Variable Number of Arguments
A particularly useful feature of Tcl procedures is the support of a variable 
number of arguments—provided through the args argument. If the final 
argument is named args, then args is a list that contains the rest of the 
arguments. Commands that work with lists, such as foreach, can process the 
variable arguments one by one.

Here is another version of the getavg example that computes the average of a 
variable number of values. In this case, args is the last (and only) argument.

proc getavg {args} {

 set sum 0

 set n 0

 foreach item $args {

 incr n

 set sum [expr $sum+$item]

 }

 set avg [expr ($sum/$n)]

 return $avg

}

Here is an example that shows this new version used interactively:

getavg 1.25 2.14 .56 2.0

1.4875
186 Replay Xcessory User’s Guide



INTRODUCTION TO THE SCRIPTING LANGUAGE
Procedure Commands 6
Procedure Commands
The following commands are associated with procedures:

List Commands
The list feature in Tcl provides a convenient means to handle a collection of 
entities, for example, file names, words, or integers. List elements, like 
command arguments, are separated by white space. So, the command

set animal “cat dog canary hamster”

creates a simple list with four elements

cat dog canary hamster

Quoting with braces is commonly used to create lists. For example, the 
following set command 

set zlist {s {t u v} { } }

s {t u v} { }

global name1 [name2 …]

Binds the names listed to global variables. The global 
command is used in procedure definitions because variables 
within a procedure are, by default, local to that procedure. 
Since global is a command, rather than a definition, any 
variables used within a procedure are local until global is 
executed; global returns an empty string.

proc name arg_list body

Defines a procedure named name. Each element of the list 
arg_list is a procedure argument, and body contains a 
script—the procedure body; proc returns the value of the last 
command executed in the procedure.

return [value]

Causes an immediate return from the procedure. If value is 
present, the procedure returns the specified value. 
Replay Xcessory User’s Guide 187



INTRODUCTION TO THE SCRIPTING LANGUAGE
List Commands6

constructs a list, specified as zlist, with the following three elements:

• s

• a list with three elements—t, u, and v

• an empty list

Here are some of the common list commands:
concat list_1 list_2 [list3…]

Concatenates the lists in order to form a single list; for 
example: 

set animal “cat dog canary hamster”

concat $animal {warthog tiger}

cat dog canary hamster warthog tiger

join list separator

Concatenates the lists’ elements together with separator and 
returns the result; for example:

set animal “cat dog canary hamster”

join $animal “ -- “

cat -- dog -- canary -- hamster

join converts a list to a string; split 
performs the opposite operation.

lappend variable_name value [value …]

Appends each value to the variable as a list element, and 
returns the new value of the variable; for example, the 
previous list animal could have been created without quotes 
as follows:

set animal cat

lappend animal dog canary hamster

cat dog canary hamster
188 Replay Xcessory User’s Guide



INTRODUCTION TO THE SCRIPTING LANGUAGE
Procedure Commands 6
lindex list index

Returns the element specified by index; for example:

set animal “cat dog canary hamster”

lindex $animal 0

cat

lindex $animal 3

hamster

Tcl uses zero indexing, so the first element is always element 
0.

linsert list index value value …

Inserts each value, as a list element, before the element 
specified by index. Here is an example that inserts “aardvark” 
and “anteater” at the beginning of a list:

set animal “cat dog canary hamster”

linsert $animal 0 aardvark anteater

aardvark anteater cat dog canary hamster

list value value …

Creates and returns a new list in which each value is an 
element; for example:

set animals [list avocet egret stilt] 

avocet egret stilt

llength list

Returns the number of elements in list; for example:

set animal “cat dog canary hamster”

llength $animal

4

Replay Xcessory User’s Guide 189



INTRODUCTION TO THE SCRIPTING LANGUAGE
List Commands6
lrange list index1 index2

Returns a list consisting of element index1 through index2 of 
list; for example:

set animal “cat dog canary hamster”

lrange $animal 1 2

dog canary

lreplace list index1 index2 value value …

Returns a new list formed by replacing elements index1 
through index2 with zero or more new elements, each formed 
from one value argument; for example:

set animal “cat dog canary hamster”

lreplace $animal 1 2 wolf hawk

cat wolf hawk hamster

lsort list

Returns a new list made by sorting the elements of list in 
alphabetical order; for example:

set animal “cat dog canary hamster”

lsort $animal

canary cat dog hamster

split string [split_chars]

Returns a list formed by splitting the string at split_chars; for 
example:

split 9/14/93 /

9 14 93

This command converts a string to a list; join performs the 
opposite operation.
190 Replay Xcessory User’s Guide



INTRODUCTION TO THE SCRIPTING LANGUAGE
Procedure Commands 6
String Manipulation Commands
The string facilities of Tcl are similar to those provided by the C library, with a 
few additions. These are the string manipulation commands in Tcl:

format format_string [value] [value…]

Returns the characters of format_string with converted 
value arguments replacing % sequences. The format 
command is the output analog of the scan command. It 
supports the same formatting facilities as the ANSI C library 
function sprintf.

regexp Determines whether a regular expression matches part or all 
of a string. The syntax of the regular expression is similar to 
that of the grep command. See the regexp(3) reference 
manual page for a full description.

regsub Determines whether there is a regular-expression match, as 
with regexp, and substitutes a string for the matching 
portions.

scan string format [var_name] [var_name…]

Reads characters from string, interprets them according to 
the % specification of format, and places the converted 
values into the var_name variables. The scan command is 
the input analog of the format command. It supports the 
same formatting facilities as the ANSI C library function 
sscanf.

string 
compare

string1 string2

Returns -1, 0, or 1 if string1 is lexicographically less than, 
equal to, or greater than string2.

string 
first

string1 string2

Returns the index in string2 of the left-most substring that 
matches the characters in string1, or -1 if there is no match 
(see also string last).
Replay Xcessory User’s Guide 191



INTRODUCTION TO THE SCRIPTING LANGUAGE
String Manipulation Commands6
string 
index

string1 char_index

Returns the character of string that has index char_index if 
that character exists or an empty string if there is no such 
character. The first character in a string has index 0.

string last string1 string2

Returns the index in string2 of the right-most substring that 
matches string1, or -1 if there is no match.

string 
length

string

Returns the number of characters in string.

string 
match

pattern string

Returns 1 if pattern matches string using Tcl 
pattern-matching rules (using *, ?, [], and \) and 0 if it 
doesn’t.

string 
range

string first last

Returns the substring of string between the indexes first and 
last. 

string 
tolower

string

Returns the characters of string with any uppercase 
characters converted to lowercase.

string 
toupper

string

Returns the characters of string with any lowercase 
characters converted to uppercase.

string 
trim

string [chars]

Returns the characters of string, but stripping off certain 
leading and trailing characters. The chars argument 
specifies the characters to strip; chars defaults to white 
space characters (space, tab, new line, and carriage return).

string 
trimleft

string [chars]

Similar to string trim, except that only leading characters 
are stripped off. 
192 Replay Xcessory User’s Guide



INTRODUCTION TO THE SCRIPTING LANGUAGE
Procedure Commands 6
File Access Commands
The file access facilities of Tcl are similar to those provided by the C standard 
library, with a few additions. These are the file access commands in Tcl:

string 
trimright

string [chars]

Similar to string trim, except that only trailing characters 
are stripped off.

cd [dir_name]

Changes the working directory to dir_name if present. If 
omitted, dir_name defaults to the home directory, as given 
by the HOME environment variable.

close fileId

Closes the file specified by fileId; returns an empty string.

eof fileId

Returns 1 if an end-of-file condition has occurred on fileId; 
otherwise, returns 0.

file option file_name [arg] [arg…]

Performs one of several supported operations on the file 
name or on the corresponding file.

flush fileId

Writes out any buffered output that has accumulated for the 
specified file.

gets fileId [var_name]

Reads the next line from fileId, discarding its terminating 
new line character. If var_name is present, gets places the 
line in the variable and returns a character count as the 
command result (or an empty string for end of file). If 
var_name is omitted, the line is returned as the result (or an 
empty string is returned for end of file).
Replay Xcessory User’s Guide 193



INTRODUCTION TO THE SCRIPTING LANGUAGE
File Access Commands6
glob [-nocomplain] [pattern]  [pattern…]

Returns a list of all file names that match any pattern 
argument. This is the file name expansion shell that 
languages do automatically; Tcl performs this expansion 
only when requested explicitly—through glob. The glob 
command uses csh rules for pattern matching (with special 
characters ?, *, [], {}, and \). When -nocomplain is 
specified, an error message is returned if no file names 
match the pattern.

open file_name [access]

Opens the file file_name in the mode given by access; 
returns a file identifier for use in commands such as gets and 
close. These are the values for access:

r Opens for reading only; the file must 
already exist. This is the default access 
mode, if access is omitted.

r+ Opens for reading and writing; the file must 
already exist.

w Opens for writing only. If the file already 
exists, discards previous contents; 
otherwise, creates a new file.

w+ Opens for reading and writing. If the file 
already exists, discards previous contents; 
otherwise, creates a new file.

a Opens for writing only and sets the initial 
access position to the end of the file (that is, 
opens for an append). If the file does not 
exist, a new file is created.

a+ Opens for reading and writing and sets the 
initial access position to the end of the file 
(that is, opens for an append). If the file 
doesn’t exist, a new file is created.
194 Replay Xcessory User’s Guide



INTRODUCTION TO THE SCRIPTING LANGUAGE
Procedure Commands 6
puts [no_new_line] fileId string

Writes the string and a terminating new_line character to the 
file specified by fileId. If no_new_line is present, the 
terminating new line is not written.

pwd Returns the full path name of the current working directory.

read fileId string [no_new_line]

Reads and returns all the bytes remaining in file fileId. If 
no_new_line is specified, then the final new line character, if 
any, is dropped.

read fileId num_bytes

Reads and returns the next num_bytes bytes from fileId, or 
up to the end of the file, if fewer than num_bytes bytes are 
left.

seek fileId offset [origin]

Positions the file fileId so that the next access starts at offset 
bytes from origin. Origin can be start, current or end, with 
start as the default. Returns an empty string.

tell fileId 

Returns the current access position for fileId; that is, the byte 
offset from the file origin.
Replay Xcessory User’s Guide 195



INTRODUCTION TO THE SCRIPTING LANGUAGE
Extended Tcl Commands6
Extended Tcl Commands
Replay Xcessory also accepts most commands from an extended Tcl command 
set, referred to as ‘‘TclX.’’ Extended Tcl commands that may be useful in 
developing Replay Xcessory scripts include:

• additional specialized control flow commands (for_array_keys, 
for_recursive_glob, loop, and so on)

• Tcl debugging and development commands (cmdtrace, profile, and so 
on)

• UNIX/Linux system commands for signal or process handling, file and 
user attributes modification, and date and time conversion

• file scanning commands that allow the type of processing usually 
performed with awk

• additional interfaces to the math commands, including a random number 
generator

• additional list processing and string manipulation commands, including a 
special type of list—called a keyed list—that can be used when a C-type 
data structure is required

The extended Tcl commands are described in detail in the TclX(3) manpage, 
which you can access by typing:

$ man tclx
196 Replay Xcessory User’s Guide



Replay Xcessory 
Command Language 7

Overview
This chapter describes the commands used by the Replay Xcessory command 
language—the language used to create Replay Xcessory scripts. Since Replay 
Xcessory commands are based on Tcl, you should read about Tcl in Chapter 6 
before beginning this Chapter.
Replay Xcessory User’s Guide 197



REPLAY XCESSORY COMMAND LANGUAGE
Introduction7
Introduction
Replay Xcessory commands are extensions to the Tcl language and therefore 
follow Tcl conventions for argument separation, command and variable 
substitution, and quoting. Replay Xcessory commands fall into these 
categories:

• user interaction commands

• test management commands

• widget information commands

• session management commands

Information about initialization scripts, accessing command-line arguments, 
and run time parameters is provided at the end of this chapter. Replay Xcessory 
also provides a set of extended commands for use with OSF/Motif widgets. 
The extended commands are described in Chapter 8.

User Interaction Commands
These commands represent user interactions through mouse, keyboard, and 
window menus.

Mouse Commands
The click, dblclick, and multiclick mouse actions perform a single, double, or 
multiple clicks on a widget. The nclick parameter indicates the number of 
consecutive clicks in a multiclick action. The press and release are used when 
the mouse button is held down for longer than a click. The drag tracks some or 
all mouse movements, depending on the setting of the Button-Up-Motion 
record option. Note that a separate delay is associated with each coordinate in a 
drag verb. The mousemove command moves the mouse pointer to a widget 
and/or location.

click widget state [ location [delay] ]

dblclick widget state [ location [delay] ]

drag widget state [ location [delay] ][ location [delay] … ]

multiclick widget state nclicks [ location [delay] ]

press widget state [ location [delay] ]
198 Replay Xcessory User’s Guide



REPLAY XCESSORY COMMAND LANGUAGE
Mouse Commands 7
Note: The various types of click commands are generally not equivalent 
because Replay Xcessory ensures that machine or network load has no effect 
on the interpretation of mouse events; two consecutive click actions are not 
treated as a double click, and vice versa.

Specifying the 
Target Widget

The widget is identified by its name, which can be fully-qualified or 
minimized. If the widget ID is known, that can also be used. However, since 
the widget IDs change with each session, they should only be used if the 
widget ID was obtained in the same session. The widget ID is returned by 
some commands (see “Widget Information Commands” on page 206).

Some applications also use a subwindow in addition to a target window; in 
such cases, Replay Xcessory records a subwindow designation. This 
designation can be in one of the following forms:

• widget+DC—The widget has Motif DragContext, but no widget could be 
found lower than the subwindow. 

press {my_button+DC}  Button1

• widget+DC:subwindow_widget_name—The widget has Motif 
DragContext. The subwindow_widget_name is the lowest child window 
that is a widget. 

press {my_button+DC:.my_app/topLevelShell}  
Button1

• widget+S:subwindow_widget_name—The event subwindow is a widget 
with subwindow_widget_name as its identifier.

• widget+WM:subwindow_widget_name—The event subwindow is not a 
widget, but a lower child subwindow window was found that is a widget. 

release widget state [ location [delay ]]

mousemove widget [location [delay]]

Moves the mouse pointer to the specified widget. In the 
case that the location parameter is absent, the pointer will 
be centered on the specified widget. Otherwise, it will be 
shifted from the upper left corner of the widget to the 
coordinates entered by the user.
Replay Xcessory User’s Guide 199



REPLAY XCESSORY COMMAND LANGUAGE
User Interaction Commands7
press {my_button+WM:.my_app/topLevelShell}  
Button1

• widget+FW:subwindow_widget_name—The event subwindow is a 
window in another application. 

press {my_button+FW:.my_app/topLevelShell}  
Button1

• widget+FWD:subwindow_widget_name—The event subwindow is a 
window in another application with Motif DragContext. 

press {my_button+FWD:.my_app/topLevelShell}  
Button1

In cases where the widget name is <root> and there is a corresponding 
subwindow, the recorded coordinates of the transaction will be relative to the 
subwindow; in this case, <root> is a special widget_name that represents the 
RootWindow. 

press {<root>+DC:.my_app/topLevelShell}  Button1

Specifying Button 
State

Mouse buttons, keys, or combinations, are represented by one or more of the 
following key words: 

Btn1Down Btn2Down Btn3Down Ctrl Shift A
lt Mod1...Mod5

Two or more keywords are separated by a plus sign ( + ). The combination of 
all keywords, except the last one, represent the state of the keyboard and 
mouse at the same time the button action (press or release) was activated. The 
button activated is indicated by the last keyword, which must be one of 
Button1 through Button5, for example:

release {*Gadget} Shft+Btn1Down+Button1 @44,12 27

The presence of Shft+Btn1Down shows that the Shift key and mouse button 1 
was down during the release command; the presence of Button1 shows that 
mouse button 1 was released.
200 Replay Xcessory User’s Guide



REPLAY XCESSORY COMMAND LANGUAGE
Keyboard Commands 7
Specifying Cursor 
Location

Location can be specified in three ways:

• @x,y[d] specifies the x and y coordinates in pixels:

• for window commands, coordinates are relative to the root 
window

• for all other commands, coordinates are relative to the upper left 
corner of the widget

• the optional qualifier, d, indicates which edge of the widget the 
pointer was crossing; this notation is used by Replay Xcessory 
when recording window crossing events. The position value of 
the qualifiers is T (Top), B (Bottom), L (Left), R (Right).

• /string is a string that matches an item to be selected; for example, a file 
name in a list of files. This specification style is used for Motif list 
widgets; C shell wild card notations (*, ?, []) are accepted.

• :position specifies a relative position in Motif text widgets.

When an optional location is omitted, Replay Xcessory determines the cursor 
position, typically placing it at the center of the given widget.

Keyboard Commands
The following commands represent the input of text from the keyboard:

text widget “text_string” [ delay ]

Sends a series of key-press events to the specified widget, as if 
a user were typing the characters; for example:

text *text_box_2 “A long text string”

key widget key_name [delay]

Sends a key-press event to the specified widget; for example:

key *text_box BackSpace

causes a key-press event to be sent to the *text_box widget, as 
if a user typed a backspace in the *text_box widget. Use key 
to send unprintable characters.

The easiest way to determine the proper key name is to hit the 
desired key or key combination while in a record session. The 
names are usually listed under /usr/include/X11/keysym.h or 
files included by it.
Replay Xcessory User’s Guide 201



REPLAY XCESSORY COMMAND LANGUAGE
User Interaction Commands7

Window Management Commands
These commands represent the selection of menu commands from the window 
menu and, in some cases, actions on the window frame.

move widget location [delay]

Specifies the movement of a shell window by the window 
manager. The location is specified as @x,y coordinates (the 
@ symbol meaning located ‘‘at’’ x and y ) relative to the root 
window.

resize widget widthXheight [ location [delay] ]

Specifies the interactive resizing of a shell window by the 
window manager. The optional @x,y location can be used if 
resizing also causes the top left corner of the window to 
change; that is, if the window was resized through the 
resizing handles of the left corner of the window. Resizing 
can move a window; widthXheight specifies the position of 
the window after resizing. The delay argument can be 
present only if location is also present.

iconify widget [delay]

Specifies that a shell window has been iconified.

deiconify widget [delay]

Specifies that a shell window has been deiconified.

raise widget [delay]

Specifies that a shell window has been raised to the top of 
the window stack.

lower widget [delay]

Specifies that a shell window has been lowered to the 
bottom of the window stack (not recorded).

closewin widget [delay]

Specifies that a shell window has been closed from the 
window manager menu.
202 Replay Xcessory User’s Guide



REPLAY XCESSORY COMMAND LANGUAGE
Miscellaneous User Interaction Commands 7
Miscellaneous User Interaction Commands
These commands represent miscellaneous user interaction commands that do 
not fit in any of the previously described categories.
popdown widget

Records that a pop up widget, such as a dialog box, 
disappeared. On playback, popdown causes an automatic 
synchronization with the widget popping down before 
continuing with the next script action.

popup widget

Records that a pop up widget, such as a dialog box, appeared. 
On playback, popup causes an automatic synchronization 
with the widget popping up before continuing with the next 
script action.

getconnected
apps

Returns a list of applications currently connected to Replay 
Xcessory. If no applications are connected, _NULL_ is 
returned.

message widget msg_type_ID msg_data msg_fmt [delay]

widget specifies the widget that received this ClientMessage 
event.

msg_type_ID is the name of a property; for example: 
_MOTIF_WM_OFFSET.

msg_data is the message data, itself.

msg_fmt is 32, 16, or 8. These alternatives specify the way 
the ClientMessage is formatted: as 32-, 16-, or 8-bit entities, 
respectively. 

The message command transcribes a ClientMessage event as 
sent to the process under test. ClientMessage events are 
received when sent to the test process by another application 
process or by itself. Some window manager actions also 
generate client messages (not recorded).

isconnecteda
pp

Returns TRUE if the specified application is currently 
connected to Replay Xcessory. FALSE is returned otherwise.
Replay Xcessory User’s Guide 203



REPLAY XCESSORY COMMAND LANGUAGE
Test Management Commands7
Test Management Commands
The subtest management commands provide for the splitting of a single test 
script into a number of subtests. The success or failure can be determined 
explicitly by pass/fail commands or implicitly by snapshots. 

• Explicit pass/fail commands must be used in conjunction with some 
programmatic mechanism for determining that the process under test 
behaved as expected. This mechanism could be by querying the widget 
state via the getvalue command (see “Getting and Setting Widget State” 
on page 210 for information about getvalue) and comparing against an 
expected value. It could also be by executing some external command via 
the system or exec call.

• Implicit pass/fail occurs when a snapshot command is used. If the 
comparison finds a mismatch, an implicit failure occurs.

To prevent inconsistencies resulting from multiple snapshots or pass/fail 
commands being associated within a subtest block, a match is considered to 
have failed whenever any fail command is encountered or any snapshot failure 
occurs. Run time failures, such as the inability to find a widget, also result in 
subtest failure.

prompt Provides a way to create a simple prompt containing the 
prompt text and an input text field. This might be useful 
where the test script needs parameters that must be entered 
interactively.

version Returns the Replay Xcessory version number as a string, as in 
“3.0”.

Subtest subtest_name

subtest_name is an arbitrary string that identifies a specific 
subtest. In some situations, a serial number is preferable; at 
other times, a word or quoted string.

subtest marks the beginning of a subtest within the script. 
The end of the subtest is marked by the subtest case verb or 
by the end of the script. The part of the script that appears 
prior to the first explicitly identified subtest is implicitly 
associated with a subtest called ‘‘Unnamed.’’
204 Replay Xcessory User’s Guide



REPLAY XCESSORY COMMAND LANGUAGE
Miscellaneous User Interaction Commands 7
pass pass_annotation

pass_annotation is an optional string to be printed in the 
subtest report.

pass registers the success of a subtest or part of a subtest.

fail fail_annotation

fail_annotation is an optional string to be printed in the 
subtest report.

fail registers the failure of a subtest or part of a subtest.

snapshot [ -object | -window | -viewable | -full ] [ widget ]

Indicates that a snapshot was taken during the record 
session—an image or widget snapshot or both, depending 
on the .Vrdump file. During play, a comparison is made 
between the baseline and the result snapshots

If -object or -window is specified, the snapshot only 
includes the widget subtree anchored at the specified 
widget; popup branches are not included in the snapshot.

If -full is specified, a full snapshot is taken which includes 
the complete widget tree of all application shells of the 
application, including popup branches.

A -viewable entry is similar to -full except that only the 
visible portion of the widget tree is included.

Please note that if the AUT is being run in an Xnest server 
and the Xnest main window is partly moved off the screen 
border, the resulting snapshot will be appended as blank 
areas, since Xnest is not able to get the image of invisible 
areas.
Replay Xcessory User’s Guide 205



REPLAY XCESSORY COMMAND LANGUAGE
Widget Information Commands7
Widget Information Commands
The following commands provide a mechanism for gathering information 
about widget information, including identification of a specific widget as well 
as its location.

takesnap snapname -image | -subimage widget [geom 
WIDTHxHEIGHT+X+Y]

Takes an image widget snapshot without making an attempt 
to compare it with the baseline. snapname is the file name 
where the results should be stored.

In the case that -image is specified, the only remaining 
needed parameter is “widget”.

In the case that -subimage is specified, the user should 
specify the widget and -geom option with properly formed 
coordinates of the needed area.

mergespec [ -file | -string ] dump_spec

 Used to change snapshot granularity during a record or play 
session. It merges dump specification resources for the 
process under test. A first argument of -file merges the 
second argument as a file name; a first argument of -string 
merges the second argument as a string.

loadspec [ -file | -string ] dump_spec

Used to change snapshot granularity during a record or play 
session. It loads or replaces dump specification resources 
for the application under test. A first argument of -file loads 
the second argument as a file name; a first argument of 
-string loads the second argument as a string.

Note: Both mergespec and loadspec are automatically 
generated by the Replay Xcessory Snapshot Specification 
Entry form.
206 Replay Xcessory User’s Guide



REPLAY XCESSORY COMMAND LANGUAGE
Widget Identification 7
Widget Identification
The following commands are used for widget identification.

currentwin widget

Sets widget to be the current window (a shell widget). 
All subsequent user interactions are named relative to 
the current window; however, a user interaction 
command can be named using an absolute path by 
prefixing a dot to the name of the command.

getcurrentwin Returns the current window as an absolute name.

widgetid widget

Converts a widget name to its widget ID for use later in 
the same session.

windowid widget

Returns the window ID of the specified widget for use 
later in the same session. The window ID can be used 
with a number of X Window utilities (such as xwd).

alias alias_name widget_name

Assigns another name to a widget. The alias_name can 
be any Tcl variable name.

widgetname widget

Returns the fully-qualified name of a specified widget, 
which could be identified by its widget tag or ID.

widgettag widget

Returns the fully-qualified tag to the specified widget, 
which could be identified by its widget name or ID.

iswidget Can be used to determine whether a widget exists. This 
might be useful for tests where it is important to 
determine whether a widget has already been created or 
destroyed. Returns TRUE or FALSE.
Replay Xcessory User’s Guide 207



REPLAY XCESSORY COMMAND LANGUAGE
Widget Information Commands7
Walking the Widget Tree
The following commands provide a mechanism for walking the widget 
hierarchy. 

They provide flexibility for programmatic script generation. For example, they 
can be used to ensure that all widgets are exercised in some manner.

getfocuswidget Returns the widget that has the current input focus, 
given a shell widget. This function is limited to 
OSF/Motif widgets.

isconnectedapp app

Returns TRUE if the specified application is connected, 
and FALSE otherwise.

getclass widget

Returns the widget class name of widget.

Example:

echo “Classname of {*button40} is 
[getclass *button40]”

Classname of {*button40} is Command

(See “Miscellaneous User Interaction Commands” on 
page 203 for more information about the echo command)

getparent widget

Returns the fully-qualified name of the parent of widget.

Example:

echo “getparent of { *button40} is 
[getparent\ *button40]”

getparent of { *button40} is ti
208 Replay Xcessory User’s Guide



REPLAY XCESSORY COMMAND LANGUAGE
Walking the Widget Tree 7
getchildren widget

Returns a space-separated list of the widget names of all 
regular children of widget.

Example:

echo “getchildren of {*ti} is 
[getchildren *ti]”
getchildren of { *ti} is bevel 
button1 button2 button3 … button40

getpopups widget

Returns a space-separated list of the widget names of all 
pop up children of widget.

getdescwidget widget x y

Returns a top widget that is located in the rectangle the 
given coordinates belong to and is a successor from the 
given widget. This command skips all unmapped widgets 
during processing and returns only the mapped found 
result.

Example:

set widget [getdescwidget{.} 10 10]

Assign widget to the top level widget which is on the 
current shell {.} and shifted 10 points to the right and 
down from the upper left corner. 

This command can be useful in conjunction with the 
seektext command that returns coordinates of some text on 
the widget surface. For example, if the user is looking for 
the “tan” string in the xmcalc window that represents the 
tangent button, they will not be able to click on that button, 
even if they have the proper coordinates. To do this, the 
user should traverse the widget tree from the known widget 
to get the widgets which have the known coordinates as a 
point in the window rectangle.
Replay Xcessory User’s Guide 209



REPLAY XCESSORY COMMAND LANGUAGE
Widget Information Commands7

Getting and Setting Widget State
The getvalue command is the primary way for obtaining a widget’s state when 
comparing such states is the desired approach for result verification. The 
ismanaged and ismapped commands are useful when it is necessary to find 
out whether a widget is currently managed or mapped (in the X Toolkit/X 
library sense of the word). The setvalue command can be used to alter widget 
state and force some path to be taken.

The result is always a character string. The conversion from the internal 
resource format (which may be an arbitrary data structure or pointer) to a 
character string is done via resource converters which have been registered by 
Replay Xcessory or by the application itself. The result type field provides a 
level of control over the format of the result string.

The result type field can usually be omitted, which means that a converter to 
type “VrString” is used. If such a converter is not present, a converter to type 
“String” (same as XtRString) is used. If neither exists, the internal data 
structure is simply returned as a decimal number.

The default converter for resources of type XtRWidget to VrString converts 
the widget ID to the fully-qualified widget name. To obtain the widget ID 
directly, use Wid as the result type. Information about registering custom 
converters can be found in “Writing custom type converters” on page 210.

getvalue widget resource_name [result_type]

Returns the resource value of the widget. Resource names 
can be obtained from the widget documentation, which 
typically lists them with XmN or XtN prefixes. Drop the 
prefix when using these names in getvalue or setvalue 
commands. Null values are returned as the string _NULL_. 
See also setvalue.

Example:

getvalue {*scale_scrollbar} 
troughColor
210 Replay Xcessory User’s Guide



REPLAY XCESSORY COMMAND LANGUAGE
Getting and Setting Widget State 7
getvalue client_data

The getvalue command now accepts an optional client data 
argument. This allows you to pass arbitrary data to the 
getvalue command. The data can then be interpreted by 
custom resource converters registered via 
VrSetTypeConverter. This argument provides greater 
flexibility to custom resource converters.

See the UNIX/Linux reference pages available with the 
man command for more information about these 
commands.

setvalue widget widget_resource_name widget_resource_value

Sets the specified widget resource of widget to the specified 
value. See also getvalue.

Example:

setvalue {*scale_scrollbar} 
troughColor blue
Replay Xcessory User’s Guide 211



REPLAY XCESSORY COMMAND LANGUAGE
Widget Information Commands7
seektext widget text [x1[y1[x2[y2]]]]

Based on the font list composed on the “Recognition” page 
of the Session properties dialog. It generates a string image 
and looks for that image on the “widget” surface. “widget” 
is the name of the topLevelShell where the user wants to 
take a snapshot.

In case the “widget” is absent, the searching is performed 
using the current shell. 

In case the string that is being search for is not found, the 
result value is “-1x-1x-1x-1”.

If the string is properly found, the resulting value is in the 
form “X1xY1xX2xY2”, where X1 and Y1 are the 
coordinates of the upper left point of the rectangle where the 
string is down and X2,Y2 are the coordinates of the right 
bottom part of that rectangle.

This command can optionally get several parameters that 
represent the limitation rectangle where searching should be 
processed. In the case where x1 or x2 are not specified or 
specified incorrectly, Replay Xcessory will use zero as their 
values. In the case where x2 or y2 are not specified, Replay 
will use the widget width and height respectively.

It is possible to change the behavior of this command for 
non-batch sessions. The user has the ability to manually 
check a point on the screen to properly continue playback. 
Please refer to Appendix —Controlling Session Properties 
in the  Builder Xcessory 4.0 User’s Guide for more 
information.

Please note that in the case that Replay Xcessory is unable 
to seek the needed string and return -1x-1x-1x-1 as the 
result in debug mode, Replay will automatically turn on the 
playback pause button. Action buttons will be disabled until 
the user presses the “Continue” button.
212 Replay Xcessory User’s Guide



REPLAY XCESSORY COMMAND LANGUAGE
Getting and Setting Widget State 7
Session Management Commands
This section describes the commands and their arguments used for session 
management. This means that you can customize the way a session runs by 
setting certain arguments and variables depending on your own personal 
preferences of how a session runs.

seektext

(cont.)

The user will see short flash while Replay generates the 
string image to be looked at later. To speed up the search, 
Replay Xcessory uses two-pass processing. On the first 
turn, Replay Xcessory generates an image of the first letter 
of the needed string and looks for all matches on that 
specified image. (The user can see the generated image of 
the letter for a small period of time on the playback history 
or debug history window depending on which mode is 
active).On the second iteration, Replay generates a full 
string image and tries to match the full image starting from 
the earlier found coordinates. At the moment when there is a 
full successful match, Replay finishes searching and returns 
the coordinates of the upper left corner of the matched 
string.

ismanaged widget

Returns TRUE if the geometry of widget is currently 
managed by its parent. This command corresponds to the X 
Toolkit function XtIsManaged.

ismapped widget

Returns TRUE if the widget is mapped or can be viewed.

If the name of the widget is invalid, _INVALID_WIDGET_ 
will be the return value.

getproperty widget property_name

Returns the value of X Window System string properties 
associated with the specified widget window. Properties 
associated with the root window can be obtained by passing 
<root> as the widget name.
Replay Xcessory User’s Guide 213



REPLAY XCESSORY COMMAND LANGUAGE
Session Management Commands7

Play Synchronization
The following commands are used to define play synchronization.

activate client-tag

The activate Tcl command identifies the target process for the 
actions that follow. The activate argument (client_Tag) 
represents the application name; this argument is usually the 
second argument to XtAppInitialize. If there is more than one 
instance of the same application, the duplicate instances are 
indexed by the instance number; for example, the second 
instance of xmcalc would be xmcalc[2]. Instance numbers 
conform to a fixed indexing scheme so they always maintain 
the same index number even if applications with a lower index 
number have exited.

The $replay_args (clientTag) array field is used to inquire the 
current client tag.

delay number_of_milliseconds

Causes a short delay (specified in milliseconds) before the next 
script command is interpreted.

pause The pause command can be added to a Tcl script. When the 
command is executed, the replay driver enters pause mode 
similar to being turned on by using the Pause button on the 
Play Control Panel. To resume, click Resume on the Control 
Panel or use the Pause hot key (Ctrl-p).

termsync sync

The sync string can be separated with colons to indicate 
multiple prompts. The sync string can be initialized by setting 
the REPLAY_TERM_SYNCS environment variable. Use 
termsync whenever the sync string needs to change. (Refer to 
“Using terminal emulators” on page 201 for additional 
information.)
214 Replay Xcessory User’s Guide



REPLAY XCESSORY COMMAND LANGUAGE
Session Communication 7
Session Communication
The echo and echoreport commands provide a way to display informative 
messages and are also useful in debugging. The narrative command provides 
a way to use Replay Xcessory to drive self -running demonstration sessions 
with narratives.

The following commands are used for session communication.
echo text

Writes an arbitrary string of text to stdout. 

echoreport text

Writes an arbitrary quoted string of text to the Test Report 
file.

narrative text [location [delay] ]

Displays the specified text in a dialog box, positioned at 
the specified coordinates. If no coordinates are given, the 
window manager determines the location. If delay is 
present, the text is displayed for delay seconds. If delay is 
omitted, an OK button appears and the text is displayed 
until the user presses the OK button.

choose [TextString [ Name1 [ Name2 [ Name3 ] ] ] ][location]

This function creates a window that is used to request user 
feedback. It provides the user information about what 
button was selected, and then waits for feedback. 
TextString is the Test to be displayed in the window that 
specifies the type of information or feedback requested. 
Name1 is the text on the first button. It is “OK” by default. 
Name2 is the text on the second button. It is disabled by 
default. Name3 is the text on the third button. It is 
disabled by default.

This function returns 3 values: 0, 1, or 2 if the first, 
second, third buttons, respectively, is selected.

The location is specified as @x,y coordinates (the @ 
symbol meaning located ‘‘at’’ x and y ) relative to the root 
window.
Replay Xcessory User’s Guide 215



REPLAY XCESSORY COMMAND LANGUAGE
Session Management Commands7
Note: The delay specified in the explicit delay command and the narrative 
command is independent of playback speed

Application Management
The following commands are used for application management.

startup application args

Automatically records the application under test and its 
parameters at the beginning of the record script. If multiple 
application processes are started, those names and 
arguments are recorded within the script.
216 Replay Xcessory User’s Guide



REPLAY XCESSORY COMMAND LANGUAGE
Application Management 7
connect [ client-tag ... ]

Connect to existing applications that are linked with the 
Replay Xcessory X Toolkit library.

It returns 0 if at least one of the specified applications is 
connected and 1 if it failed to connect to any of the specified 
applications.

The return value can be used for setting an application delay 
time limit:

set w 10

set ok 0

for {set i 0} {$i<$w} {incr i 1 } {

  set ret [ connect xmcalc ]

    if { ${ret} == 0 } {

      break

    }

  delay 1000

}

if { ${ret} == 1 }  {

  puts "Could not connect during 10 
seconds!!!"

}

system shell-script-string [continue]

Executes the shell script in the command argument. You can 
execute a multi-lined script by quoting it with curly braces ( 
{ } ). If the continue option is present, execution continues 
without waiting for completion of the shell command; 
otherwise execution waits for command completion. The 
return value is the return value of the command executed.
Replay Xcessory User’s Guide 217



REPLAY XCESSORY COMMAND LANGUAGE
Session Management Commands7
exec [switches] arg [arg…]

Treats its arguments as the specification of one or more 
subprocesses to execute. The arguments take the form of a 
standard shell pipeline where each arg becomes one word of 
a command, and each distinct command becomes a process. 
exec is a standard Tcl command and not a Replay Xcessory 
extension. exec is useful for setting Tcl variables to stdout 
of a UNIX/Linux system command. See the exec reference 
manual page for further information.

Return value:
Please note that exec command is asynchronous and its 
return value does not represent the exit status of the child 
process. To get the return value of the child, you should use 
the “system” command or just use the next kind of 
approach:
exec ./test.sh
while { $replay_args(execReturnValue) < 0 } {
       puts "Script still running..."
}
puts $replay_args(execReturnValue)

The special internal variable $replay_args(execReturnValue) 
is set to the return value of the child process when it 
terminates.

The exec command can also be used to get output of the 
command being executed. For example:

set start_time [exec date]

puts $start_time

will print the current date.

rxexit This command closes the Replay Xcessory driver in the 
same manner as if the script ended during the batch mode 
session.
218 Replay Xcessory User’s Guide



REPLAY XCESSORY COMMAND LANGUAGE
Application Management 7
Initialization Scripts
Replay Xcessory automatically executes a script called .Vrtclrc (created in 
your home directory) before the play script is started. If the .Vrtclrc script is 
not located in the home directory, the script located in the directory pointed to 
by REPLAY_TESTSUITE_PROPS is used.

Accessing Command-Line Arguments
Replay Xcessory and tclsh provide the following built-in variables for 
accessing command-line arguments. These arguments must have been passed 
using the -tclargs options to the replay command, or via the Tcl Arguments 
field on the Play Control Panel.

Accessing Run Time Parameters
Several Replay Xcessory arguments are available in play mode using a built-in 
array called replay_args. Individual elements are available as array elements 
where the element name is the same as the X resource name for the 
corresponding argument. For example, the playback speed can be accessed as

$replay_args(playbackSpeed)

and it can be modified within a script using the set command

set replay_args(playbackSpeed) .80

The name of the argument is the same as the corresponding resource name in 
the session property file (.Replay). The following arguments can be accessed, 
but not modified, with $replay_args:

argc the number of arguments

argv the list of arguments

argv0 the name of the Tcl script

scriptFile the name of the Tcl script

appDisplay the application display

useVirtualKeyNames record key symbols using Motif key symbol 
names
Replay Xcessory User’s Guide 219



REPLAY XCESSORY COMMAND LANGUAGE
Accessing Run Time Parameters7
The following arguments can be accessed and modified with $replay_args. 
They are divided into three property argument categories:

• general

• play

• record

Refer to “Controlling Session Properties” on page 103 or the appropriate 
reference manual page for additional information about each of these options.

General Property Arguments
Here is a list of the general property arguments:

baselineDir the baseline snapshot directory (_NULL_, if 
not specified)

resultsDir the results snapshot directory (_NULL_, if 
not specified)

reportFile the report file (_NULL_ if not specified)

clientPid the process ID of the current application 
under test (not available as a resource)

replayPid the process ID of replay

clientTimeout maximum application start up time 
(in milliseconds)

activePause allows processes under test to be 
operated during pause mode while 
recording a play session

compressImageSnapshots request image snapshots to be 
stored in a compressed format to 
save disk space

useTagNames request for widgets identification 
by their tags whenever possible

pauseKey key combination used to request a 
pause in a session (default pause 
hot key: Ctrl+p)
220 Replay Xcessory User’s Guide



REPLAY XCESSORY COMMAND LANGUAGE
Play Property Arguments 7
Play Property Arguments
Here is a list of the play property arguments:

stopKey key combination used to terminate 
a session (default hot key is: 
Ctrl+s)

learnTagKey hot key used to activate a dialog 
box to learn widget tag names

ungrabPointerKey key combinations used to ungrab 
the cursor if it is currently grabbed 
by Replay Xcessory or by the 
process under test

compressImageCommand use to compress image snapshots

uncompressImageCommand uncompress image snapshots

promptOnError If set to true, a prompt dialog appears 
whenever an error occurs; this dialog 
provides two options: the errors can be 
ignored, or execution of the command can 
be suspended.

If set to false, the prompt dialog does not 
appear and execution of the command 
continues; the command being executed 
returns an error return code when 
appropriate

promptOnSnapshotDiff request for a prompt to continue or exit 
following a snapshot comparison mismatch

displayImageDiff request for image differences to display in 
an independent window

exitOnDiffMismatch request to stop a play session when a 
snapshot difference is encountered

retryTimeout maximum delay time, in milliseconds, to 
allow for widgets to map
Replay Xcessory User’s Guide 221



REPLAY XCESSORY COMMAND LANGUAGE
Accessing Run Time Parameters7
defaultDelayTime time used when the delay time is not 
explicitly included in a script command

keyDelay time, in milliseconds, to simulate typical 
lapse between entries of characters

debuggerWarpBackKey hot key used to return the pointer to the 
debugger control panel

playbackSpeed specify the play speed

ignoreImageColor
Differences

request to ignore differences in image colors

generateHtmlReport request to generate an additional HTML 
report. This option does not affect the 
generation of text reports.
222 Replay Xcessory User’s Guide



Replay Xcessory 
Extended Commands 8

Overview
This chapter describes extended commands of the 
Replay Xcessory command language. Since the material in this chapter builds 
on the material in Chapters 6 and 7, we recommend these chapters be read 
prior to reading this chapter.
Replay Xcessory User’s Guide 223



REPLAY XCESSORY EXTENDED COMMANDS
Introduction8
Introduction
Replay Xcessory extended commands provide a compact way to specify 
interactions with certain common OSF/Motif widgets. The commands, which 
simplify writing scripts by hand, support the following Motif widgets:

• menu items

• scroll bars

• scales

• lists

• text and text fields

Menu Selection Commands
These commands simplify menu selection, which normally involves multiple 
click commands or press, drag, and release commands. Selection of multiple 
menu items occurs in connection with cascading menus—that is, nested 
submenus.

There are two sets of menu selection commands:

• a standard set, that uses menu labels to make menu choices

• an alternate set, that uses widget names

Standard Menu Selection Commands
These menu commands can be used when menu labels are known and stable:

menubar_pick widget menu_labels

Selects one or more menu items from a menu bar. 
The widget parameter identifies the menu bar 
widget (which is actually the XmRowColumn 
widget that contains the menu panes).

option_pick widget menu_labels

Selects a menu item from an option menu. The 
widget parameter identifies the option button.
224 Replay Xcessory User’s Guide



REPLAY XCESSORY EXTENDED COMMANDS
Standard Menu Selection Commands 8
This argument specifies the menu choice in the preceding menu-selection 
commands.

Examples:

menubar_pick {*menubar} {File;New}

menubar_pick {*menubar} {File;Open*}

option_pick {*option} {*red*}

popup_menu_pick {*drawing} {*popupMenu} 
{View;Zoom;Larger}

All the commands from this section return:
0 = success with active menu item

1 = success with inactive menu item

2 = failure

popup_menu_pick base_widget widget menu_labels button location

Selects a menu item from a pop up menu. The 
base_widget identifies the widget in which the 
user presses the mouse button to display the 
menu. The widget identifies the pop up menu. 
This button identifies which button should 
actually make the actions. The default value is 
Button3. The location is specified as @x,y 
coordinates (the @ symbol meaning located ‘‘at’’ 
x and y ) relative to the root window.

menu_labels A string with one or more labels. Multiple labels 
are concatenated and separated by semicolons. 
White space in the menu label is included in the 
string. Wild cards that are recognized are similar 
to those used by the C shell: an asterisk ( * ) 
matches zero or more characters; a question mark 
( ? ) matches any single character; square 
brackets ( [] ) enclose sets of characters for 
single-character matches.
Replay Xcessory User’s Guide 225



REPLAY XCESSORY EXTENDED COMMANDS
Menu Selection Commands8

Alternate Menu Selection Commands
These commands can be used when it is more practical to use the names of 
menu buttons rather than menu labels, to make menu choices; for example, 
when the labels are unknown or change frequently.

This argument specifies the menu choice in the preceding menu-selection 
commands:

Examples:

menubar_select {*menubar} {*fileButton} 
{*newButton}

option_select {*option} {*redButton}

popup_menu_select {*drawing} {*viewButton} 

menubar_select widget menu_button [menu_button ...]

Selects one or more menu items from a menu bar. 
The widget parameter identifies the menu bar 
widget.

option_select widget menu_button [menu_button ...]

Selects a menu item from an option menu. The 
widget parameter identifies the option button.

popup_menu_select base_widget menu_button [menu_button ...]
[mouse_button][location]

Selects a menu item from a pop-up menu. The 
base_widget identifies the widget in which the 
user presses the mouse button to display the 
menu. Mouse_button is the mouse button 
identifier (Button1, Buttton2, Button3) that can 
be used to click on the target menu item. The 
location is specified as @x,y coordinates (the @ 
symbol meaning located ‘‘at’’ x and y ) relative to 
the root window.

menu_button As a series of menu button names, this argument 
can be used when the menu labels are not known; 
for example, when menu labels change 
frequently.
226 Replay Xcessory User’s Guide



REPLAY XCESSORY EXTENDED COMMANDS
Alternate Menu Selection Commands 8
{*zoomButton}\ {*largerButton}

All the commands from this section return:
0 = success with active menu item

1 = success with inactive menu item

2 = failure

Scroll Bar Commands
These commands support operations on horizontal or vertical scroll bars.

scroll_set widget pixel_position

Moves the scroll bar slider to the specified 
number of pixels from the origin. For a vertical 
scroll bar, the origin, 0, is at the top; for a 
horizontal scroll bar, the origin is at the left. If 
there is an error, it returns 1. 

scroll_get widget

Assuming that XmScrollBar is the child widget 
of the XmScale widget, returns value of the 
parent XmScale as proper widget value. If there 
is an error, it returns 1, otherwise it returns the 
value of the scroll position.

scroll_min widget

Moves the scroll bar slider to the origin. For a 
vertical scroll bar, the origin is at the top; for a 
horizontal scroll bar, the origin is at the left.

scroll_max widget

Moves the scroll bar slider to its maximum 
distance from the origin. For a vertical scroll bar, 
this moves the slider to the bottom; for a 
horizontal scroll bar, to the far right.
Replay Xcessory User’s Guide 227



REPLAY XCESSORY EXTENDED COMMANDS
Scroll Bar Commands8
Examples:

scroll_set {*scrollbar} 120

scroll_min {*scrollbar} 

scroll_max {*scrollbar}

scroll_line {*scrollbar} 2

scroll_page {*scrollbar} -3

scroll_line widget numlines

Moves the scroll bar slider by the specified 
number of lines. A line is defined to be the 
distance moved by the slider when the arrow 
heads on the ends of the scroll bar are clicked on. 
When numlines is positive the movement is to the 
right (horizontal) or down (vertical). When 
numlines is negative, movement is in the 
opposite direction.

scroll_page widget numpages

Moves the scroll bar slider by the specified 
number of pages. A page is arbitrarily defined to 
be the distance moved by the slider when the 
scroll region (the area between the two arrows) is 
clicked on. When numpages is positive, the 
movement is to the right (horizontal) or down 
(vertical); when numpages is negative, 
movement is in the opposite direction.

proc ensure_visible parent w_name

Scrolls both the vertical and the horizontal scroll 
bars (if any) to make the widget's w_name visible 
on the left top side of the screen. parent - is the 
name of the XmScrolledWindow widget that 
holds the w_name widget in ClipWindow.
228 Replay Xcessory User’s Guide



REPLAY XCESSORY EXTENDED COMMANDS
Alternate Menu Selection Commands 8
Scale Commands

Note: The XmScale widget contains two subwidgets: XmLabelGadget (Title) 
and XmScrollbar (Scrollbar). Replay allows the user to set a value to the 
XmScale using either the XmScale widget directly or a subitem widget 
(XmScrollbar). Users who wish to get the value of Scrollbar should use the 
XmScale widget (base widget) and get the value resource from it. Otherwise, 
the value will be unpredictable. The Scrollbar subwidget has its own resource 
“value” that unfortunately does not represent the actual value of the Scrollbar 
position in the needed widget.

The following commands support the setting of a scale widget.

Examples:

scale_set {*scale} 41

scale_min {*scale} 

scale_max {*scale}

scale_set widget value

Sets the scale to the specified value. Returns 1 on 
error and 0 on success.

scale_get widget

If the “widget” parameter is the XmScale widget 
then it returns its “value” resource. In case it is 
the XmScrollBar widget, then it returns the 
“value” resource of the parent widget as 
scroll_get does. Returns 1 on error and the value 
of the scale on success.

scale_min widget 

Sets the scale to its minimum value. Returns 1 on 
error and 0 on success.

scale_max widget 

Sets the scale to its maximum value. Returns 1 on 
error and 0 on success.
Replay Xcessory User’s Guide 229



REPLAY XCESSORY EXTENDED COMMANDS
List Commands8
List Commands
List commands support the selection of items (or ranges of items) of a list 
component. List items or ranges can be identified by specifying the item’s text 
(that is, by pattern matching: /string) or its coordinate (@x,y). The 
pattern-matching string accepts C shell wild cards: an asterisk ( * ) matches 
zero or more characters; a question mark ( ? ) matches any single character; 
square brackets ( [] ) enclose sets of characters for single-character matches. If 
an item name contains a space ( ), add a leading backslash (\ ). For example, 
for the item “Monday Day”, the correct command is “/Monday\ Day”.

Coordinates can be unreliable in situations where the list might change size; 
for example, if the font of the list’s text changes.

Examples:

list_select {*list} @10,50

list_select {*list} /Monday

list_select widget from_item [to_item]

Selects all items in the specified range. to_item 
can be omitted if only one item is to be selected. 
Returns 1 on error and 0 on success.

list_extend widget from_item [to_item]

Adds all items in the specified range to the 
currently selected set of items. to_item can be 
omitted if there is only one item in the range. 
Returns 1 on error and 0 on success.

list_find_string widget str 

Selects a listbox entry based on a substring of the 
text. It returns the result of the underlying click 
command on success, and 1 in the case that the 
item does not exist.

list_find_regexp widget regexp_str 

Selects a listbox entry based on a regular 
expression of a text. It returns the result of the 
underlying click command on success, and 1 in 
the case that the item does not exist.
230 Replay Xcessory User’s Guide



REPLAY XCESSORY EXTENDED COMMANDS
Alternate Menu Selection Commands 8
list_extend {*list} /Wednesday

list_select {*list} /Monday /Wednesday

list_extend {*list} /Thursday /Friday

list_select {*list} /\[Mm\]o?day

list_extend {*list} /Wednesd*

Note that if a list widget contains items that consist of several words, it is 
necessary to split the items with a new-line character. For example:

set items [ getvalue $widget items]

set ilist [ split $items “\n” ]

return [ lindex $ilist $number_of_item ]

The bold string in the example above is very important. If it is not included, 
part of the random list item will be returned as the result. 
Replay Xcessory User’s Guide 231



REPLAY XCESSORY EXTENDED COMMANDS
Text Manipulation Commands8

Below is an example of a procedure that returns the correct last item of a list:

proc getLastItem { widget } {

    set items [ getvalue $widget items ]

    set ilist [ split $items "\n" ]

    set count [ getvalue $widget itemCount ]

    return [ lindex $ilist [ incr count -1 ] ]

}

startup tester

activate   {tester}

currentwin {/tester}

puts [ getLastItem {List} ]

Text Manipulation Commands
These commands support various operations with text in a text area. The text 
area is regarded as a continuous string, even if it appears in multiple rows. 
Location within the text area is given by character position (: pos), as shown 
in Figure 75 .

Figure 75 Text Area

For example, from_pos to_pos for the entire string ABCD is :1 :4 and, for B, is 
:2 :2.

These are the text commands:

A B C D

1 2 3 4

text_set widget string

Sets the text area to the specified string. You 
can use multi-line strings as well as single-line 
strings. Returns 0 on success and 1 on error.
232 Replay Xcessory User’s Guide



REPLAY XCESSORY EXTENDED COMMANDS
Alternate Menu Selection Commands 8
text_select widget from_pos to_pos

Selects the text from from_pos to to_pos, 
inclusively. Returns 0 on success and 1 on error.

text_select_string widget string

Selects the first occurrence of string. Returns 0 
on success and 1 on error.

text_find_pos widget pos

Moves the insertion caret to the specified 
position. Returns the result of the underlying 
click command on the needed position.

text_find_string widget string

Moves the insertion caret just before the first 
occurrence of string. Returns 0 on success and 1 
on error.

text_insert widget pos string

Inserts the specified string at the specified 
position; to insert before the first character, use 
:0. Returns 0 on success and 1 on error.

text_delete widget from_pos to_pos

Deletes the text from from_pos to to_pos, 
inclusively. Returns 0 on success and 1 on error.

text_clear widget

Deletes all the text from the given widget. 
Returns 0 on success and 1 on error.

text_delete_string widget string

Deletes the first occurrence of string. Returns 0 
on success and 1 on error.
Replay Xcessory User’s Guide 233



REPLAY XCESSORY EXTENDED COMMANDS
Tabs Control Commands8
Examples:

text_set {*text} {quick brown fox}
text_select {*text} :1 :3
text_find_pos {*text} :3

text_replace {*text} :6 :13 {yellowish}

text_find_string {*text} {brown}

text_select_string {*text} {brown}

text_replace_string {*text} {brown} {red}

text_delete_string {*text} {quick}

Note: The colon (:) operators are optional.

Tabs Control Commands
To control Tabs, use the following commands: 

text_replace widget from_pos to_pos string

Replaces the text in the specified range by 
string. Returns 0 on success and 1 on error.

text_replace_string widget from_string to_string

Replaces the first occurrence of from_string to 
to_string. Returns 0 on success and 1 on error.

search_tab widget name

Returns > 0 if Tab name is available. If not 
found, 0 is returned.

select_tab  widget name

Opens Tab with the appropriate name. Returns 
> 0 on success.
234 Replay Xcessory User’s Guide



REPLAY XCESSORY EXTENDED COMMANDS
Alternate Menu Selection Commands 8
XmTree Control Commands
The following are the commands to control XmTree.

XmContainer Control Commands
The following are the commands to control XmContainer.

search_tree_child widget 

Returns the widget id if widget is a child of the 
XmTree widget. If the widget is not found or 
the parent is not the XmTree widget, returns 0.

collapse_node  widget node

Collapses a node that is a child of the XmTree 
widget. Returns > 0 on success.

expand_node widget node

Expands a node that is a child of the XmTree 
widget. Returns > 0 on success.

get_container_item widget item

Returns the value of an item that is a child of the 
XmContainer widget. Returns > 0 on success.

set_container_item widget item value

Sets the value for an item that is a child of the 
XmContainer widget. Return > 0 on success.
Replay Xcessory User’s Guide 235



REPLAY XCESSORY EXTENDED COMMANDS
XmContainer Control Commands8
236 Replay Xcessory User’s Guide



Script Debugger 9
Overview

This chapter describes the Graphical User Interface (GUI) debugger that can 
be used to view and debug Tcl scripts (described in Chapters 6 through 8).
Replay Xcessory User’s Guide 237



SCRIPT DEBUGGER
Introduction9
Introduction
Using the Replay Xcessory script debugger enables you to:

• determine where a program crashed

• view the values of variables and expressions within the script

• run and trace a program

• set breakpoints within the code

• facilitate the setting and clearing of breakpoints

The following sections describe the various menus and windows associated 
with the Replay Xcessory script debugger. Although emphasis is placed on the 
GUI interface, included in this chapter are cross-references to command-line 
usage, as well as a short description of the command-line interface.

Debugger Interfaces
This section describes the Replay Xcessory Tcl debugger. The command-line 
options used for debugging are also available; however, as a timesaving and 
easy-to-use debugging tool, it is recommended that you use the graphical user 
interface. A brief section at the end of this chapter describes the command-line 
interface.

The Replay Xcessory debugger is used in play mode and can be executed using 
the command-line or by accessing the Debugger Control Panel through the 
Replay Xcessory Test Manager. The following sections describe how to use 
the main play panel, as well as initializing the play session automatically with 
a command-line option.

Using the Replay Xcessory Script Debugger
The script debugger can be initialized using the Replay Xcessory Test Manager 
graphical user interface (GUI), or by invoking the Replay Xcessory driver via 
the command-line.

Starting the Script 
Debugger Using 
the Test Manager

The script debugger can be initialized from the Replay Xcessory Test Manager 
window. The following steps contain a short tutorial of how to start the 
debugger:
1. Select the directory that contains the script that will be tested.
238 Replay Xcessory User’s Guide



SCRIPT DEBUGGER
Using the Replay Xcessory Script Debugger 9
Note: The following tutorial assumes that the proper environment has been set 
up as specified in “Setting up the environment” on page 47.

Figure 76 The Test Manager Main Window

The Test Package window appears with icons displayed within the window:

Figure 77 The Test Package Window

2. Click on the icon that will be used for the debugging session (in this case, 
a.tcl) and select Play from the Record/Play menu.
The main Debug Play Control Panel appears:
Replay Xcessory User’s Guide 239



SCRIPT DEBUGGER
Debugger Interfaces9
Figure 78 The Main Debug Play Control Panel

The following table lists the fields and buttons on this panel and describes their 
purposes.
240 Replay Xcessory User’s Guide



SCRIPT DEBUGGER
Using the Replay Xcessory Script Debugger 9
.

Table 2: Debug Play Control Panel Entities 

Application Under 
Test:

The name of application being tested.

Application Display The display where the application is being tested.

Play Script The name of the script being tested (in this case it 
is called a.tcl).

Script Arguments Arguments to the script.

Baseline Snapshot 
(Dir):

This is the directory where the baseline snapshot 
resides.

Results Snapshot
(Dir)

This is the directory where the results snapshot 
resides.

Report File This is the name of the report file that is 
generated.

Slider (Speed) This slider can be set to run the debugger at a rate 
determined by the user

Prompt on Snapshot
Difference

During playback snapshot comparison (which is 
essentially a diff of two files), a dialog box pops 
up and asks if you want to continue; if you do not 
want this dialog box to appear during debugging, 
set the button to off (default: on).

Ignore Image Color
Differences

Disregard color any color differences that may be 
encountered.
Replay Xcessory User’s Guide 241



SCRIPT DEBUGGER
Debugger Interfaces9
In the Application Under Test: field, type:

xmcalc

3. In the Play Script: field, the name of the script already appears. Fill in the 
remaining fields with the appropriate names.

4. Click on the Play button to begin the debug session.
The Replay Xcessory Debugger window appears:

Note: When the debugger is initialized, the calculator appears with the 
debugger window.

Active Pause Allows processes under test to be operated during 
pause mode while recording a play session. 
Mouse and key interactions with the application 
under test will not be recorded.

Use this option carefully, as it is possible that the 
nonrecorded interactions may substantially 
change the application state and result in 
invalidating a play session; for example, popping 
down a dialog box while in Active Pause could 
be dangerous because the script is unaware that 
the pop down has occurred. The inconsistent state 
could result in a false snapshot comparison 
failure. If the application state is changed, the 
original state should be restored before 
continuing record or playback.

Play Button Begin a play session.

Cancel Button End testing.

Help Access the on-line help information.

Table 2: Debug Play Control Panel Entities  (Continued)
242 Replay Xcessory User’s Guide



SCRIPT DEBUGGER
Using the Replay Xcessory Script Debugger 9
Figure 79 The Replay Xcessory Debugger Window

The top portion of the panel is the text window where actions within the script 
are displayed. You can view your script in a continuous stream, or line by line 
by using the buttons at the bottom of the window.

The Command: text field is used to enter command-line instructions. In 
addition to command options, breakpoints are set and manipulated by typing 
commands within this area. (See “Setting Breakpoints with the b Command” 
on page 249 for a discussion of breakpoints.) Any valid Tcl command can be 
entered in the Command: field.
Replay Xcessory User’s Guide 243



SCRIPT DEBUGGER
Debugger Interfaces9

When the Record button is sensitive, the user can press it to temporally switch 
the current session to record mode.

The Debugger page will change to the next view:

Figure 80 The Replay Xcessory Debugger Window Record View
244 Replay Xcessory User’s Guide



SCRIPT DEBUGGER
Using the Replay Xcessory Script Debugger 9
All action on the application under test after that will be recorded to a 
temporary file. After the user presses this button again, a dialog will appear: 

Figure 81 Ask Dialog

To save the updated code, the user selects “Yes”. The additional commands 
will be merged into the current tcl script and the current instruction pointer will 
be adjusted appropriately.

If “No” is selected, Replay’s window will change back to the usual window 
and the debug session will continue.

The “Cancel” button closes the dialog and allows the user to continue adding 
additional actions to be recorded on the application under test.

Note that the user cannot use this functionality when inside nested code bodies 
(i.e. inside procedures, “for”, and “while” loops).

The buttons at the bottom of the window control how the next debugger action 
or command is executed; these buttons are described in the following table.

Table 3: The Replay Xcessory Debugger Window Buttons

Echo Print the value of a variable that was 
selected in the debugger window prior to 
pressing this button.

Continue Continue to the next breakpoint or to the end 
of the script if no breakpoints are found. 
(The command-line equivalent
is c.)

Next Continue to the next statement. (The 
command-line equivalent is N.)
Replay Xcessory User’s Guide 245



SCRIPT DEBUGGER
Debugger Interfaces9
These buttons correspond to command-line options that are described later 
in this chapter.

5. Select Where, Next, and Step in various combinations to familiarize 
yourself with the workings of these buttons.

6. Press Continue to run the rest of the script to completion.

Note: The cursor travels back and forth between the calculator and the text 
window as it plays back and displays the xmcalc application. You may pause 
the script, or view it line by line by using the buttons at the bottom of the 
window. The cursor can be quickly returned (or warped) to the debugger 
window by typing the cursor warp key, which defaults to ctrl-w.
The user can also set the “Freeze pointer on commands” option on the 
Playback page of the settings dialog. In this case, Replay's driver will execute 
commands as usual but will return the mouse pointer to the position where it 
was before the command execution. Note that in test cases where the mouse 
pointer position is important for the test context, this can affect to the result of 
the playback session.

The user can also use hotkeys for accessing the button callbacks in the 
debugger dialog.

To execute the “Next” command, the user can press the “Shift+n” key 
combination. It is no matter what application is the currently active Replay 
Xcessory driver or application under test.

To execute the “Step” command, “Shift+s” combination should be used.

Finally, to execute the “Continue” command, “Shift+c” will be used.

Step Execute the pending command and display 
the next command. (The command-line 
equivalent is s.)

Where Display the execution stack. (The 
command-line equivalent is w.)

Help Access the on-line help information.

Table 3: The Replay Xcessory Debugger Window Buttons
246 Replay Xcessory User’s Guide



SCRIPT DEBUGGER
Controlling Executions 9
Note: You can change default hotkeys combinations on the playback page of 
the settings dialog which can be accessed through the Replay Xcessory Test 
Manager menu for test packages and using the “Override Test Package 
settings” button on the playback dialog for test cases.

The replay command cannot be run in the background if the command-line 
debugger is used.

Note: The Xnest pseudo server can be used to prevent the pointer from being 
grabbed on the display. The application under test will run on the Xnest display 
(as a window on the actual display); for example:

Xnest :1 &
replay -tcd xmcalc -appdisplay mach:1  

See Chapter 9 for additional information.

Debugger Commands
The buttons on the Debugger Control Window can be used to easily and 
quickly perform debugging activities. The commands on the window 
correspond to command-line commands; the command-line usage allows for 
additional commands not available on the Debugger Control window.

Controlling Executions
This section describes the command-line equivalents to GUI options and 
button selections.

-s 
[num_of_cmds]

The s (step) command executes a pending command (the 
one just displayed by the debugger) and then displays the 
next command to be executed. If the command to be 
executed is a procedure call, the debugger executes the 
first command within the procedure. This command 
takes an optional argument to denote how many 
commands are to be executed.
Replay Xcessory User’s Guide 247



SCRIPT DEBUGGER
Debugger Commands9
Note: When using the GUI for debugging, Replay Xcessory prevents the 
debugger from stopping when the pointer is grabbed by a process. This 
prevents the pointer from becoming frozen; pointer grabs occur most often 
during menu selections.

Showing the Execution Stack with the w Command
The w (where) command displays the execution stack. The stack is displayed 
in several lines, each of which show the ending scope, for example:

0: application

1: the top-level scope of the application

the last line repeats the evaluation and the command that will be executed

-n 
[num_of_cmds]

A lowercase n (next) command is similar to the s 
command. Procedure calls, however, are treated 
differently. Procedures are executed as a unit, rather than 
executing just the first command within the procedure. 
Use this option to step into source commands.

-N 
[num_of_comds
]

An uppercase N is similar to the lowercase n command 
except that commands in files that are being sourced are 
treated as a unit.

-r The r (return) command executes the rest of the 
commands in the current procedure as a unit and 
suspends execution. The debugger displays the command 
after the procedure call as the command to be executed 
next.

-c The c (continue) command causes normal execution of 
the script to resume. Use c, for example, to resume 
execution after stopping at a breakpoint. Execution 
proceeds normally until it reaches a breakpoint or the end 
of the script (see “Setting Breakpoints with the b 
Command” on page 249).
248 Replay Xcessory User’s Guide



SCRIPT DEBUGGER
Controlling Scope with the u and d Commands 9
Note: When w prints commands, those commands are displayed using the 
literal values of each parameter; when the debugger prints the next command 
to be printed, the command prints as it was originally entered in the script.

Controlling Scope with the u and d Commands
Use the u (up) and d (down) commands to move between scopes. u moves up; 
d moves down.

Both u and d accept arguments that represent the number of levels by which to 
move. For example, u 3 moves up three levels in the script; d 5 moves down 5 
levels in the script.

Absolute scope can be specified by preceding the scope level with a pound 
sign, for example, u #2.

Controlling Output with the -width Option
The syntax for the -width option is as follows:

w -width [ width ]

where width indicates how many characters to print when outputting each 
logical line. This affects the length of the pending command as well as the 
result from the w (show stack) command.

If width is omitted, the current width is returned.

Setting Breakpoints with the b Command
A breakpoint provides a way to conditionally stop the execution of a 
command. These conditions include:

• expression testing

• matching command and argument name

• clearing a breakpoint

• listing a breakpoint

Breakpoints establish locations in the script or conditions that cause a halt to 
execution. A breakpoint can also specify a procedure to be executed when the 
breakpoint is triggered. The general form of the breakpoint command is:

 b [ location ] [ condition ] [ action ] 
Replay Xcessory User’s Guide 249



SCRIPT DEBUGGER
Debugger Commands9

The location specifier identifies the command at which execution should stop. 
The condition is an arbitrary Tcl expression that also causes execution to stop 
when the expression is true; location and condition can be used independently 
or together. The action is either a block or arbitrary Tcl statements that are 
executed when the breakpoint is triggered.

Specifying a Script 
Location

The location specifier identifies the breakpoints by specifying pattern matches 
on the statements themselves.The patterns can be specified using regular 
expressions similar to those used in the UNIX/Linux system C shell string 
matching, as described in the following.

The regular expression must be prefixed by -glob or -g, as in the following 
examples:

• To break on all source statements:

b -g “source *”

• To break at the definition for procedure myproc:

b -g “proc myproc *”

• To break whenever myproc is called:

b -g “*myproc *”

• To break whenever variable mycount is referenced:

b -g “mycount*”

An alternative syntax for specifying regular expressions similar to the 
UNIX/Linux system grep command is available. To use this alternate syntax, 
specify -regexp instead of -glob or -g. Descriptions for the matching values 
for the -regexp syntax can be found on the regexp Tcl reference manual page.

* Matches zero or more characters.

? Matches any single character.

\ Removes any special significance of following character.

[ ] Matches any single character listed in the enclosed 
sequence. A “-” between two characters indicates a range; 
for example: [abc0-9] matches the characters a, b, c, and 
any digit between 0 and 9, inclusive.
250 Replay Xcessory User’s Guide



SCRIPT DEBUGGER
Setting Breakpoints with the b Command 9
Using the Noop 
Command

Replay Xcessory provides a NULL command called noop, which takes a 
single argument. The noop command itself does not perform any function, but 
by inserting the noop command in strategic locations in the script using 
uniquely-named arguments, the arguments can be used as convenient labels for 
breakpoints; for example:

click {Apply}

noop before_cancel

click {Cancel}

b -g “before_cancel”

In this way, complex matches can be eliminated.

Specifying a 
Conditional 
Expression

Conditional expressions are specified using regular Tcl if statements, as in the 
following examples.

• To break anytime the expression is true anywhere in the script:

b if {$mycount > 0 && $increment > 1}

• To break whenever myproc is called if mycount is greater than 0:

b -g “mycount *” if {$mycount > 0}

Specifying a 
Breakpoint Action

An action is a block of Tcl statements which get executed when the breakpoint 
is triggered. Example:

• To print the value of mycount at a break for a call to myproc:

b -g “myproc *” then { echo “mycount = $mycount” }

• To print the value of mycount at a break for a condition:

b if {$mycount > 0} then { echo “mycount = 
$mycount”}

• To print the value of mycount at a break specified by location and 
condition:

b -g “myproc *” if {$mycount > 0} 
then { echo “mycount = $mycount” }

Listing a 
Breakpoint

If no arguments are supplied to the b command, all breakpoints are listed. Each 
breakpoint is identified with a number. When multiple breakpoints occur on 
the same line, the actions are executed in the order that they are listed. To list a 
breakpoint, type:

b number
Replay Xcessory User’s Guide 251



SCRIPT DEBUGGER
Enhanced Tcl Debugger9
Examining 
Variables

Printing variable values is done by entering echo, followed by the variable, 
into the Command: field. Arrays can be printed using parray; widget 
resources can be examined using getvalue.

Clearing a 
Breakpoint

A breakpoint can be deleted by specifying the number of the breakpoint that 
you want to remove. All breakpoints can be removed by omitting a specific 
breakpoint number. To remove a specific breakpoint, type:

b -number

To remove all breakpoints, type:

b -

Other Commands
The following Tcl commands are useful in debugging:

Enhanced Tcl Debugger
The Replay Xcessory Tcl debugger has been enhanced to facilitate the setting 
and clearing of breakpoints. The debugger window now includes a script area 
in addition to the debugger output area, the command input area, and the 
debugger action buttons. The script area displays the current script together 
with line numbers.

Here is an illustration:

info Provides information about variables and procedures in the 
current script.

trace Allows a procedure to be executed whenever a variable is 
accessed, modified, or reset.
252 Replay Xcessory User’s Guide



SCRIPT DEBUGGER
Other Commands 9
Figure 82 Replay Xcessory Tcl Debugger Showing Line Numbers

The arrow in the first column highlights the next line to be executed. Current 
breakpoints are indicated by the word Break, or B---> if the next line to be 
executed happens to be a breakpoint. 

The easiest way to set or clear a breakpoint is to move the mouse pointer over 
the line where you want to set the breakpoint. Then use the right mouse button 
to select Set Break or Clear Break from the popup menu.
Replay Xcessory User’s Guide 253



SCRIPT DEBUGGER
Enhanced Tcl Debugger9

You can also set breakpoints by line numbers by entering a command of the 
form 

b line_number 

in the command area (example: b 42).

To view or to set or clear breakpoints outside of the current file, use the list 
command: 

l file_name

Replay Xcessory displays file_name in the script area. You can then set or clear 
the breakpoint as described previously. 

Alternately, use a command of the form:

b file_name:line_number 

to specify a breakpoint in a different file without changing the current file in 
the script display area.

For additional information about the Tcl debugger, see “Script Debugger” on 
page 237.

Note: The debug and xdebug commands are no longer supported. All other 
debugger commands operate in the same way as before.
254 Replay Xcessory User’s Guide



SCRIPT DEBUGGER
The Popup Menu 9
The Popup Menu
You have several additional action options on the main script area of the Tcl 
debugger. These actions are available though the popup menu. Right click and 
bring up the menu as shown: 

Figure 83 The Debugger Popup Menu

You can move the current instruction pointer when clicking on the first item of 
the popup menu (Set instruction pointer). Please note that there is one 
limitation of this functionality: you can change the current instruction only in 
the current scope, e.g. you cannot click on the lines that are not in the current 
procedure (or main tcl body) if you entered it during execution. To imagine 
Replay Xcessory User’s Guide 255



SCRIPT DEBUGGER
Enhanced Tcl Debugger9

this situation in the figure above, you can change the current instruction only to 
line 16 (definition of procedure enter_operator) or further similar instructions. 
In other words, you cannot force the Tcl interpreter to change the current stack. 

Also, you can change the Tcl code without exiting from the Tcl debugger. To 
do this, you should select the region of the code that you wish to edit. The 
region can be selected by clicking on the left mouse button while pressing the 
Ctrl key. The first click will highlight one line and show, on the status bar 
message, what line was selected.

Figure 84 Changing one line of Tcl Code
256 Replay Xcessory User’s Guide



SCRIPT DEBUGGER
The Popup Menu 9
After a second mouse click, a multiline area will be highlighted: 

Figure 85 Changing Multiple Lines of Tcl Code

After a region is selected, right click on it and select “Edit Code” from the 
popup menu. 

Figure 86 Popup Menu
Replay Xcessory User’s Guide 257



SCRIPT DEBUGGER
Enhanced Tcl Debugger9

This will bring up Tcl editor: 

Figure 87 The Tcl Editor

Using the Tcl editor, the user will be able to make some changes in the code.

Note that new tcl code will be saved as actual script for the current test case 
and previous version will be named as old_testcase_name_backup.tcl. 

If you change code that is higher than the current instruction pointer it will be 
executed only during the next session. If you changed the body of some 
procedure, you may move the current instruction pointer to the definition of 
this procedure and re-execute it again to make sure that the tcl interpreter will 
use the new code that you provided.

Save After pressing this button all your changes will be 
saved in the current scriptor. Be careful with tcl 
syntax; the editor has the responsibility for check-
ing the code.

Revert Undo all current changes and shows the code that 
existed at the beginning of the edit operation. 

Help The Help dialog.

Cancel Closes the dialog without saving any changes. 
258 Replay Xcessory User’s Guide



SCRIPT DEBUGGER
Command-Line Options 9
There are currently several limitations for using the editing functionality. You 
cannot edit the code of the instruction that will be executed next (usually this is 
a line where the current instruction pointer is set), and you should not edit the 
body of the nested pieces of code when you are. Nested code is the procedure 
body and body of the “while” and “for” commands.

Debugging Using the Command-Line
In some cases, debugging an X application from the same display in which the 
application is running is inadvisable because the cursor must be moved 
between the debugger window and the process window. When you are 
proceeding in this manner, the pointer can get “grabbed” which prevents the 
user from entering debugging commands. To ensure that the cursor is no 
longer moving between the debugger and the process, execute the replay 
debugger from another terminal, X display, or use Xnest (see the note in “The 
replay command cannot be run in the background if the command-line 
debugger is used.” on page 247 for additional information).

Commands can be issued using the command-line, or by using the GUI 
provided with the Replay Xcessory software. The following command and 
options are used to debug scripts from the command-line:

replay -debug [ -l script ] 
[ -s snapshot_directory ]
[ -R report_file ] 
[ -B baseline_dir ] 
[ app_name app_args ]

[ -tcd tcdname ]

Command-Line Options
The options for the replay command are as follows: 

-l script Name of the play or record script file.

-s snapshot_directory Name of the directory that will be used to 
collect current snapshots during a record or 
play session.

-R diff_cmd_file The name of the file to which all differences 
and test stats will be dumped.
Replay Xcessory User’s Guide 259



SCRIPT DEBUGGER
Debugging Using the Command-Line9
For additional information about command-line instructions and options, refer 
to Chapter 4 and to the replay(1) and replaytm(1) reference manual pages.

-B baseline_dir The name of the baseline directory to which 
all widget tree and screen dumps will be 
placed.
260 Replay Xcessory User’s Guide



Advanced Topics 10
Overview

This chapter covers miscellaneous topics that are generally not needed for 
everyday usage of Replay Xcessory.
Replay Xcessory User’s Guide 261



ADVANCED TOPICS
Using Terminal Emulators10
Using Terminal Emulators
Replay Xcessory provides a specially-instrumented version of xterm for 
record and playback sessions. This functionality makes it possible to 
synchronize text input and output, as well as extract the visible area of 
displayed text. Synchronization usually occurs automatically, depending on the 
state of the widget that is to receive input. This approach is insufficient for 
xterm synchronization because the widget always appears ready for input, 
even if the invoked application process is not.

To bypass this inadequate synchronization, Replay Xcessory provides the 
termsync Tcl command. termsync accepts an argument that specifies one or 
more strings that Replay Xcessory recognizes as an indication that input can be 
accepted. This string recognition is usually in the form of a prompt, for 
example:

termsync {host1>:host2$:%}

The sync string can be separated with colons to indicate multiple prompts. The 
sync string can be initialized by setting the REPLAY_TERM_SYNCS 
environment variable. Use termsync whenever the sync string needs to 
change.

Note: If the process that is running in the xterm window does not have a 
reliable prompt string with which to synchronize, do not exceed normal speed 
when you play back the session.

Ensure that the Replay Xcessory version of xterm is invoked by placing 
$REPLAYHOME/bin in your path after the /path_to/replay/bin and before 
the directory that contains the standard xterm executable. Use the 
UNIX/Linux system shell which command to confirm that the correct version 
of xterm is being executed.

The visibleText resource is used to obtain the strings located in the visible 
portion of the xterm window. Strings are directly obtained using the getvalue 
command, or by using logical snapshots. Use of the visibleText resource 
provides an efficient way to verify correctness, as opposed to comparing 
xterm image differences. The name of widget containing the string is vt100. 

Example using logical snapshots:

currentwin /xterm

set value [ getvalue {vt100} {visibleText} ]

if { $value == “abc” } {
262 Replay Xcessory User’s Guide



ADVANCED TOPICS
VNC 10
pass

} else {

fail

}

Example using getvalue:

*visibleText.vrSave: True

Using VNC, Nested and Virtual X Servers
Additional information on Xnest can be found in the man pages at:
http://www.xfree86.org/4.2.0/Xnest.1.html

Currently, Replay Xcessory supports the fully automatic use of Xnest Xvfb 
and Xvnc virtual X servers. Users can make the appropriate selection on the 
first page of the playback dialog. This option is saved to the tcd file and saved 
across sessions. 

Three new servers are included in Replay Xcessory:

• VNC server

• Nested X server

• Virtual X server

These servers provide additional flexibility when testing applications.

VNC
VNC (Virtual Network Computing) is a platform-independent system for 
remote desktop control. VNC gives an opportunity to connect to a remote 
machine desktop and work with it as if it is the desktop of a local machine. A 
VNC system consists of a client, a server, and a communication protocol.

• The VNC server is the program on the machine that shares its screen.

• The VNC client (or viewer) is the program that watches and interacts with 
the server.

• The VNC protocol (RFB)

Note that on some machines, the server does not necessarily have to have a 
physical display. XVNC is the Unix VNC server, which is based on a standard 
X server. Xvnc can be considered to be two servers in one; to applications it is 
an X server, which is based on a standard X server. Xvnc can be considered to 
Replay Xcessory User’s Guide 263



ADVANCED TOPICS
Using VNC, Nested and Virtual X Servers10

be two servers in one; to applications it is an X server, and to remote VNC 
users it is a VNC server. Applications can display themselves on Xvnc as if it 
were a normal X display, but they will appear on any connected VNC viewers 
rather than on a physical screen. 

In addition, the display that is served by VNC is not necessarily the same 
display seen by a user on the server. On Unix/Linux computers that support 
multiple simultaneous X11 sessions, VNC may be set to serve a particular 
existing X11 session, or to start one of its own. It is also possible to run 
multiple VNC sessions from the same computer.

The benefits of VNC are the following:

• Tests can be run on a local or remote machine without grabbing the local 
display.

• Multiple tests can run in parallel on different VNC displays.

• Tests can be managed and viewed from any remote or local machine. 
Since VNC clients (and servers) are available for almost all operating 
systems, tests can be managed from Windows or MacOS hosts and run on 
a machine having no physical display.

• On a Unix machine, a VNC server doesn’t need a real X server to run. 

• It’s easy to share VNC, so more than one screen can view the same 
workspace at a time.

• Tests can be run on a pseudo screen which may be larger or smaller than 
the actual screen. 

VNC benefits make it the best solution for using with Replay, even on a local 
machine.

Here are the steps for starting a VNC server:

1. Edit ~/.vnc/xstartup file. It’s a shell script started by Xvnc. It should include 
command for starting the desirable window manager. Example:

#!/bin/sh 

#file ~/.vnc/xstartup

xrdb $HOME/.Xresources

xterm &
264 Replay Xcessory User’s Guide



ADVANCED TOPICS
Nested X Server 10
#start MWM window manager

mwm &

2. Set VNC server password:

vncpasswd
It will ask to set new VNC password. Password will be prompted when 
establishing connection via VNC client to this server,

3. Start VNC server:

vncserver :1 -alwaysshared &
The :1 indicates display number to be used by clients to connect to server.
-alwaysshared option indicates that server allows simultaneous connec-
tions of many VNC clients.

To connect to the VNC server, do the following:

vncviewer host:1 &
Parameter ‘host’ indicates the machine where the server is being run. For 
local machine use ‘localhost’ as host parameter.
:1 indicates the display which is used by the VNC server to connect to.

Password will be asked. If valid password is given, the window showing the 
remote desktop will be opened.

Replay Xcessory can now be started inside virtual server and used in the same 
way as it would on real X display. For running multiple test sessions in 
parallel, each session should be run in separate VNC server.

See Xvnc(1), vncserver(1) and vncviewer(1) for complete information on 
using these tools.

Nested X Server
Xnest is a pseudo server located between the application under test and the 
actual server. The contents of the pseudo display are depicted as a window in 
the real display. The nested server provides several benefits:

• Tests can be run without monopolizing the display; the keyboard and 
mouse can still be used to interact with other processes.

• Multiple tests can be executed in parallel using a single display.

• Tests can be run on a pseudo screen which may be larger or smaller than 
the actual screen.
Replay Xcessory User’s Guide 265



ADVANCED TOPICS
Using VNC, Nested and Virtual X Servers10

Keyboard and pointer control parameters modified by Xnest are not reset after 
Xnest terminates. These parameters can be reset using the xset command; for 
example:

xset -r

restores the auto repeat feature normally disabled by Xnest.

Starting a Nested 
Server

Here are the steps for starting a nested server:
1. Start the nested server by typing:

Xnest :1 &

The :1 indicates that the nested server is to be addressed as :1 by appli-
cations which want to connect to it. Color flashing may occur as the 
pointer is moved in and out of the nested server. This flashing is unavoid-
able as the nested server has its own color map.

2. Start an xterm window and a window manager to run inside the nested 
server:

xterm -display :1 &

3. From within the newly-created xterm, type:

mwm -display :1 &

Replay Xcessory tests can now be started inside the nested server. If you are 
running multiple test sessions in parallel, each test session should be run in its 
own nested server. Each nested server can be resized or iconified. Virtual 
desktop environments, such as KDE or GNOME, are also useful for 
managing the screen surface area on the real display, placing each nested 
server in a different area or ‘‘room.’’ Refer to the Xnest(1) reference manual 
page for complete information about using this command.

Virtual X Server
Additional information on Xnest can be found in the man pages at:
http://www.xfree86.org/4.2.0/Xnest.1.html
266 Replay Xcessory User’s Guide



ADVANCED TOPICS
Virtual X Server 10
Xvfb (virtual frame buffer) is a virtual server. This virtual server appears to be 
a real server to the application, but does not interactively display any results. 
Thus it is only useful for background tests running. Interaction with 
application running on Xvfb server is impossible. The virtual X server 
provides the same functions as the nested server, and includes the following:

• Unlike Xnest, an actual server does not have to be running.

• Processes can be tested against different screen dimensions and depths, 
without the need for investing in additional hardware.

Starting a Virtual 
Server

Here are the steps for starting a virtual server:
1. Start the virtual server by typing:

Xvfb :1 &

The :1 indicates that the virtual server is to be addressed as :1 by appli-
cations which want to connect to it. 
Other useful parameters are:
-screen screennum WxHxD
This option creates screen screenum and sets its width, height, and depth 
to W, H, and D respectively.
-pixdepths list-of-depths
This option specifies a list of pixmap depths that the server should support 
in addition to the depths implied by the supported screens. list-of-depths is 
a space-separated list of integers that can have values from 1 to 32.

2. Start a window manager and execute Replay Xcessory tests in batch 
mode. If multiple sessions are to be run in parallel, each test session 
should be run in its own virtual server.
To view the static image of a virtual display, use the -fbdir 
directory_name option to capture the contents of the virtual display and 
then use xwud to view.

Note: Xnest is easier to use than Xvfb; in a situation where either server can 
be used, it is recommended that you use Xnest.

Note: The Xvfb default keyboard map may not match the keyboard map of the 
real server on which the application is intended to run. Since missing keys can 
cause scripts to fail, we recommend that you ensure all necessary keys are 
defined before you start a play session.
You can display the current keyboard map using the following command:
xmodmap -pk -display display
Replay Xcessory User’s Guide 267



ADVANCED TOPICS
Monitoring Background Tests10

You can add additional key definitions to a file; be sure to use unused keycode 
numbers for the definitions you add. Here are some examples:
keycode 91 = BackSpace
keycode 92 = Home
keycode 93 = End
To load a key definition file, use the following command:
xmodmap -display display key_definition_file

Refer to the Xvfb(1) reference manual page for complete information about 
using this command.

Monitoring Background Tests
The servwatch utility allows you to monitor any server to which you have 
permission to connect, including virtual servers. The virtual server is a useful 
tool for running Replay Xcessory scripts without monopolizing a real server, 
or for running tests with different characteristics from the available hardware. 
The server being monitored is displayed as a window on your display. The 
refresh interval can be adjusted from its default of one second.

Note: Server monitoring is a fairly CPU and network intensive operation. 
Hence, we recommend that you limit server monitoring to short time periods, 
or keep the refresh interval to a high number, such as every ten seconds instead 
of every second.

Using Replay Xcessory with Source Debuggers
Replay Xcessory can be used with source debuggers. To use debugging, place 
the debugger command line where the application command line would 
normally be; for example, to use the debugger with a play session, enter:

replay -tcd xmcalc -- gdb 
/opt/replay/examples/bin/xmcalc

To use the debugger with a record session, enter:

replay -r -tcd xmcalc -- gdb 
/opt/replay/examples/bin/xmcalc

Source debuggers can also be used in conjunction with the Replay Xcessory 
Tcl debugger during play sessions. The concurrent use of both debuggers 
provides parallel views of the application state and the Tcl script.
268 Replay Xcessory User’s Guide



ADVANCED TOPICS
X Toolkit type Converters 10
Using Custom Widgets
Replay Xcessory supports recording and playing back applications which use 
custom widgets without additional preparation needed. This support is possible 
because the Replay Xcessory instrumentation is limited to the X Toolkit and 
does not rely on widget-specific information. If the custom widget also 
includes custom resource types that need to be dumped to the widget snapshots 
or returned in getvalue commands, custom type converters need to be written. 
The following sections describe type customization.

Using Type Converters
Replay Xcessory converts widget resources from the internal format to ASCII 
strings in two cases:

• when creating a widget snapshot

• in response to getvalue commands

The resource type conversion is performed by employing the standard 
mechanism used by the X Toolkit.

X Toolkit type Converters
Each widget resource belongs to a specified type that identifies how that 
resource is internally represented. For example, XtRInt indicates a resource 
type that is an integer, while XtRString indicates a character pointer. Types 
can be arbitrarily complex, as in the case of XtRFontStruct which is a pointer 
to a complex structure of type XFontStruct.

Type converters make it possible to register functions that convert from one 
resource type to another. Most existing converters take an input of type 
XtRString (character strings) and convert this type to the one of an internal 
type. This conversion takes place because the most common usage of 
converters is in taking specification in .Xdefaults or another resource file.

The X Toolkit provides converters that convert strings to XtRShort, XtRInt, 
XtRCardinal, XtRBoolean, XtRDimension, and other types defined in the X 
Toolkit base classes. Widget sets, such as Motif, register their own converters 
from XtRString to resource types defined by the widget set.
Replay Xcessory User’s Guide 269



ADVANCED TOPICS
Using Type Converters10

Replay Xcessory Type Converters
Replay Xcessory conversion, however, goes in the opposite direction: from 
internal types to character strings. Replay Xcessory also defines the resource 
type VrRString (“VrString”). Replay Xcessory always attempts to convert to 
type VrRString before converting to XtRString, making it possible to write a 
converter to string which may need to be different from the regular XtRString 
type.

Replay Xcessory provides default resource converters for most resource types 
defined by Motif and the X Toolkit base widgets. If no converter to VrRString 
or XtRString is found, the behavior depends on whether that converter was 
needed to generate a widget snapshot or to respond to a getvalue query. If 
needed for a snapshot, the snapshot entry is output as a comment— prefixed by 
an exclamation point—and the resource type will be listed in parentheses 
rather than the resource value; for example:

!*mylabel.lfont: (XtRFontStruct)

Alternatively, if an appropriate converter to string is not found for a getvalue 
command, the resource value is converted as if it was a number.

Note: This default may be inappropriate for resources that are of pointer types.

Alternate String Formats
In addition to string formats defined by “VrString” and “String,” any number 
of string formats can be defined for each resource type. Conversion to the 
alternate formats can be obtained using the getvalue command. The name of 
the alternate type must be specified as the last argument. Replay Xcessory 
provides a default converter that changes a widget ID to its qualified name. 
Replay Xcessory also provides an alternate converter from XtRWidget to 
“Wid” which returns the widget ID as a hexadecimal string.

Extracting Application Data
Custom converters can be used to extract application data. For example, a 
converter can be used to extract application data structures or internal widget 
data. Data is extracted by registering a converter with any generic from_type. 
This corresponding from_type is then used with the Tcl getvalue command. 
The following example illustrates how the address of a widget core field can be 
retrieved.
270 Replay Xcessory User’s Guide



ADVANCED TOPICS
Extracting Application Data 10
#include <X11/Intrinsic.h
#include <X11/IntrinisicP.h

static void _FreeInf(char* str)
{

XtFree(str);
}
static String ExtractWidgetInfo(Widget w)
{

String str = XtMalloc(100);
sprintf(str,”The widget core address 

is %x”, w->core);
return str;

}
static String _WidgetInfoToString (Widget w, String \

resource_name)
{

String ToVal;
ToVal = ExtractWidgetInfo(w);
return ToVal;

}
VrRegisterTypeConverters()
{

VrSetTypeConverter(“widgetInfoText”, 
“String”,

_WidgetInfoToString, 
_FreeInfo);
}

The following getvalue command accesses the _WidgetInfoToString type 
converter:

echo [ getvalue {*text} {widgetInfoText} ]

The tcl.h file must be included and is distributed in the Replay Xcessory 
/lib/replay.src directory. The Tcl library must be included when relinking 
replay, and is also distributed in the Replay Xcessory /lib/replay.src directory. 
An extended Tcl library may be used in its place.
Replay Xcessory User’s Guide 271



ADVANCED TOPICS
Using Type Converters10

Tcl commands are created by calling Tcl_CreateCommand(). The following 
example shows how a new Tcl function named ‘‘mytime’’ is added to the 
Replay Xcessory Tcl command set. This example may be found in 
$REPLAYHOME/lib/replay.src/cuscmds.c.

/*********************************/
/* file name: cuscmds.c */
#include <time.h>
#include <stdio.h>
#include <tcl.h>

static int my_time(int clientData, Tcl_Interp* interp, 
int \ argc, char** argv)
{
long tloc;
static char string[50];

time(&tloc);
sprintf(string,”This time is: %s”, 

ctime(&tloc));

Tcl_SetResult(interp,string,TCL_STATIC);
return (TCL_OK);

}

/****************************************************
* Register your Tcl commands here.*
****************************************************/

void VrRegisterCusCommands(Tcl_Interp *interp)
{

Tcl_CreateCommand(interp, “mytime”
(Tcl_CmdProc*)my_time, (ClientData)0, 

NULL);
/*********************************/

After registering the commands, the replay binary must be relinked. You can 
find the Makefile.replay for linking in the $REPLAYHOME/lib/replay.src/

The X Toolkit library, libXt.a, must be statically linked to ensure that it links 
with the Replay Xcessory X Toolkit library.

To build a new replay binary:
1. Compile cuscmd.c with the new custom Tcl command added.
2. Change to the $REPLAYHOME/lib/replay.src to directory.

make -f makefile.replay 
272 Replay Xcessory User’s Guide



ADVANCED TOPICS
Environment Variables That Can Be Used with Replay Xcessory 10
Environment Variables That Can Be Used with Replay 
Xcessory
PATH Will look at the AUT at the path at the start of the session 

if the full path is not specified.
TCL_LIBRARY Will use the specified tcl library for the embedded Tcl 

interpreter.
REPLAYHOME Evaluates automatically if not specified - points to the 

Replay Xcessory install dir.
LD_LIBRARY_ 
PATH

Needed for binaries linked against shared libraries. Have 
to contain the path to the customized lib Xt 
(REPLAYHOME/lib/Xt) for the binaries which the user 
intends to use with Replay using "connect" command.

SHLIB_PATH For HP, see LD_LIBRARY_PATH above
LIBPATH For IBM, see LD_LIBRARY_PATH above
DISPLAY The desired display name.
RX_NATIVE_ XT Disables extra event processing in the customized Xt 

library (for programs which are sensitive to the speed of 
Xt).

REPLAY_DEBUG_
LEVEL

Manages how much information must be dumped into 
the log.

DRIVER_DEBUG_
ON

Switches debugging of the Replay Xcessory driver.

XTLIB_DEBUG_O
N

Switches debugging of the customized Xt library.

REPLAY_DDEBUG
_ON

Switches detailed debugging on.

ONEFILE Forces all logs to be dumped in one log file - 
/tmp/xtliblog for the customized libXt and 
/temp/driverlog for the driver itself.

DUMP_WIDGET_
NAMES

If set, this dumps all the widget names to the standard 
output (stdout) during the widget processing on the 
logical (widget)snapshots. It can help in case of a custom 
type converting procedure of a particular resource type 
that seems to be working incorrectly.

REPLAY_PROPS_
DIR

Properties for the session ().

REPLAY_ 
TESTSUITE_ 
PROPS

Properties for the current testsuite (for the applicable 
order of properties see in chapter 4).
Replay Xcessory User’s Guide 273



ADVANCED TOPICS
Using Type Converters10
Using Additional Libraries with Tcl: Itcl
The user can use any additional shared libraries which provide extended Tcl 
commands. Itcl is a well known tcl extension which provides availability to 
use objects in Tcl.

To use Itcl, it must be properly installed on your system. There has to be a 
specified env variable ITCL_LIBRARY on the shell before invoking Replay, 
and lines for loading the tcl package or shared library must be the first lines of 
tcl.

You can find an example of itcl script in 
REPLAYHOME/lib/tcl/custom/itcl_ex.tcl. All other scripts can be used as 
with general tcl script.

Automating Application with Data from RDBMS
This section describes how text widgets in an application can be automatically 
filled with data from a database. The Sybase database is taken as an example 
database system.

First of all, we need several packages installed on a system to have access to 
our DB from TCL. These are UnixODBC, FreeTDS (for Sybase), tclodbc.

1) Unix ODBC installs an ODBC driver on a system.
http://www.unixodbc.org/
Download it, compile and install. If you do not have the Qt library on 
your system, use option --desable-gui for the configure script. With 
this option, you will not have ODBCConfig and DataManager 
graphical utils. First, it is a handy util for configuring ODBC, but you 
will be able to configure ODBC from the console. 
Install and do not configure it. First install the next package.

2) Install Free TDS. It is a TDS (Sybase RDBM protocol) driver.

RX_EXCLUDE_SH
ELL_CLASS

 Indicates an application shell class that must be 
explicitly ignored by Replay Xcessory when it scans 
client shells and stores them in the internal list for future 
reference. This can be applied when the application has 
two toplevel shells and only one of them is the correct 
ancestor of the widget tree. If Replay selects the one that 
is wrong, we can resolve this by setting the variable with 
the name of the wrong shell class.
274 Replay Xcessory User’s Guide



ADVANCED TOPICS
Automating Application with Data from RDBMS 10
http://www.freetds.org/
use “configure-with-tdsver=5.0

Note: Sybase is used here only as an example database system. 

3) Next, set up your ODBC. Use the ‘odbcinst’ console util for this. 
Create a new DSN and select FreeTDS driver. Read the manual on 
unixodbc site.

4) Check ODBC. Use the isql console util shipped with unixODBC to 
test the connection to your database server.
#man isql

5) Install TclODBC
http://sourceforge.net/projects/tclodbc/
It is installed simply.
It will install libtclodbc2.x.so and several tcl scripts somewhere in 
your path. You must know its path. Normally it is installed in 
/usr/lib/tclodbc2.x or /usr/local/lib/tclodbc2.x

After setting up unixODBC you should know your DCN - Database Source 
Name. Set up dbsubs.tcl script to fit your environment. It is located in 
$REPLAYHOME/lib/db. Open it in your text editor. In the header of the script, 
edit the following variables:

TCL_ODC_PATH - Path to tcl odbc files
DSN - Your DSN
USER - Sybase user name
PASSWORD - Sybase user password

For example:

set TCL_ODBC_PATH “/usr/lib/tclodbc2.5”

set DSN “My_DSN”

set USER “Nick”

set PASSWORD “MyPassword”

Test your connection with testsql script. For example:
Replay Xcessory User’s Guide 275



ADVANCED TOPICS
Using Type Converters10
$ testsql”select name from sysobjects where 
type=’U’”

Its first parameter must be a SQL string. This TCL script connects to your 
database, sends this SQL string to it and prints reply from DB. In the above 
example, it would print all tables in your database.

If it prints valid data, then the connection works well.

If it prints an error message, then tclODBC has the wrong setup or you have a 
wrong path to tcl odbc. Check unixODBC with ‘isql’ util. TclODBC can be 
checked with this script.

Now you can play with dbsubs.tcl script.

Start a new record. Make corresponding steps in your application to open a 
form that should be automatically filled with data from the database. 

When you see the widgets that must be filled automatically, do the following:
• Click the ‘Learn Tag’ button. A new dialog window will appear. In this 

window, you will assign tags to widgets that must be filled.

• Click on the ‘Identify’ button. The mouse pointer will change. 

• Click on your widget. In this dialog you will see a minimized name of the 
widget and a full internal name. These are internal Replay names of AUT 
widgets. They are generated automatically by Replay.

• In the field ‘Assigned Tag,’ name your widget as you prefer. This name 
can be used in RX as {\name}.

For example, click {\my_button} Button 1 :0 100
• Click the ‘Apply’ button. This applies the tag to the widget.

Assign tags to all your widgets as you prefer and save these names somewhere 
temporarily. When all necessary widgets are named with tags, click the 
‘Cancel’ button.

Click the ‘Append’ button. The ‘Comment Entry’ dialog will appear. 

Activate the ‘Command Mode’ toggle button.

Type the following script:

#- DB AUTOFILL Script Start---------

#PATH TO dbsubs.tcl. Usually $REPLAY 
HOME/lib/dbsubs.tcl
276 Replay Xcessory User’s Guide



ADVANCED TOPICS
Automating Application with Data from RDBMS 10
set DBSUBS_FILE “/path/to/dbsubs.tcl”

#TABLE OF WIDGET NAMES (/TAGS)

#tags (and only tags) must begin with ‘/’!!!

set TBABLE {

{/last_name/first_name/phone}

{/last_name2/first_name2/phone2}

{/last_name3/first_name3/phone3}

}

#SQL STRING

set SQL “select au_lname, au_fname, phone from 
authors where state=’CA’”

source $DBSUBS_FILE

fill_table $TABLE $SQL

#-SCRIPT END-----------

This template is shipped in the file $REPLAYHOME/lib/db/template.tcl.

It contains three variables that must be modified:
DBSUBS_FILE - Path to dbsubs.tcl file
TABLE - Two-dimensional list of widget tags (or names) that you 
assigned in the previous step
SQL - sql string

Click the ‘OK’ button.

Continue record.

You should know that you can use just widget names instead of tags. But tags 
are more flexible. Additionally, you can automatically generate tags for all 
your widgets. 

It is recommended to use the Tag Manager component from replaytm or rtm. It 
is an instrument for working with widgets.
Replay Xcessory User’s Guide 277



ADVANCED TOPICS
Using Type Converters10
It is recommended to test your SQL string with the testsql program before 
inserting it in the script.
278 Replay Xcessory User’s Guide



Index
Index
Symbols
# 173
$ 27, 174
$REPLAY_PROPS_DIR 102
@x,y coordinates 230

A
activate 214
Active Pause 110, 220
adding comments to a script 173
additional reading

tcl 170
adjusting play speed 17

slider 17
alias command 207
Allow Wrong Geometry 116
alternate menu selection commands 226
alternate string formats 270
app-defaults 123
appDisplay 219
append command 176
application

display 111
life cycle 3
retesting 42
verification points 4

application management commands
activate 214

application shells
multiple 39

array 172
built-in 172

ASCII
comparisons 42
editor 41
files 63
resources 42
strings 269
values 42

asterisk 225
atomic transaction 40
automated tests

developing 2, 269
automatic widget synchronization 44

B
b command 254
backslash

substitution 173, 174, 175
baseline file 61
baseline review area 61
baseline snapshot 5, 42

directory 54
view pane 62

baselineDir 220
bash_profile 6
batch creation 60
batch mode 6, 32, 161
bitmaps 3
bitwise operators 179
boolean resource 125
braces 175
breakpoint 243, 249, 253

action 251
clearing 252
deletion 252
listing 251
removing 252
setting 243, 249
specifying actions 251

.bsl extension
See also baseline snapshot directory 54

built-in array 172
button

Cancel 12, 14
Comment 12
Dump Hits 12
Help 12
Launch 32
Learn Tag

See also learnTagKey 140
Replay Xcessory User’s Guide 279



Index

Library Path 110
Record 11, 12
Snapshot 5, 12, 13
Source 12
Stop 14
Test Case 12, 13

button state 200
Button-Up-Motion 198

C
calculator program 7
calculator test driver 22
calculator test driver script 23
changing the test suite directory 51
children list 39
click 4
click commands

See also mouse commands 198
Click Offset Tolerance 115
Client Startup Timeout 111
clientPid 220
clients

multiple, dynamically-linked 99
clientTimeout

See also Client Startup Timeout 220
closewin command 202
color flashing 266
command

actions and objects 35
activate 214
append 176
click 44
close 63
compress 110
debugger 247
delay 35, 39
diff(1) 43
echo 215
echoreport 215
exec 44, 218
expr 172
extended 198

extended Tcl 196
file access 193
getproperty 213
getvalue 43, 44, 270
glob 194
global 185
incr 176
keyboard 201
ldd 100
list 187, 230
main menu 58
menu selection 224
message 203
mouse 198
narrative 215
objects 36

See also widget names 35
pass/fail 204
press 44
proc 184
procedure 187
Record/Play 61
release 44
replay 32
resize 40
return 185
scale 229
script actions 35
scripts 35
scroll bar 227
set 171, 172, 176
setvalue 43
string manipulation 191
substitution 173
system 44
termsync 262
test case management 204
test management 198
testcase 33
text 40
text field 243
uncompress 110
280 Replay Xcessory User’s Guide



Index

user interaction 198
whatlib 49
widget information 198
widgetname 207
widgettag 207
window management 202
Xnest 266
xwddiff(1) 43

command argument 174
command delay 39
command line

debugging 259
interface 3, 6, 238
options 259

command substitution 174
comment entries 124
comments 173
comparing snapshots programmatically 43
component

names 39
null 39

compress command 110
Compress Image Command 110, 221
Compress Image Snapshots 110, 220
compress motion 114
condition Tcl expression 250
conducting a play session 152
conducting a record session 143
Connect Application 115
connected applications 203
Context Sensitive Lists 114
control file 5
control panel

play 15
controlling debugger executions 247
controls

record 134
coordinates 149

@x,y 230
GUI 3

creating a new test package 7, 51, 53
creating lists 175

.cshrc 6, 49
current active client

displaying 32
currentwin 207
cursor

grabbing 111, 259
customizing utility commands 51

D
data types

strings 171
dblclick 4
debug 254
debug play control panel 241
DEBUG_SLOTS 113
debugger commands 247
debugger interfaces 238
Debugger Warp Back Hot Key 118
debuggerWarpBackKey

See also Debugger Warp Back Hot Key 222
deconify command 202
Default Application 115
default command

to bring up an edit window 56
default properties

record and play 108
defaultDelayTime 149

See also Delay Time 222
delay command 214
Delay Time 117
delays 149
Deleting 9
deleting a Test Package 9
dialog boxes 3
diff 43
Diff Command 118
direct comparison of the widget contents 43
directory

script 6
snapshot 6
test package 6

directory listing display 51
Replay Xcessory User’s Guide 281



Index

Display Image Differences 116, 221
double quotes 175
drag 4
DRIVER_DEBUG_ON 111
DUMP_TAG_INFO 112
DUMP_WIDGET_NAMES 112
dynamic dependencies

checking 100
listing 100

dynamically-linked multiple clients 99

E
echo command 215
echoreport command 215
editability of recorded scripts 35
editres 36
embedded spaces 174
env variable 172
environment variable 48

env 172
for the tutorial 6
LD_RUN_PATH 99
library path 31, 98, 100
MANPATH 49
REPLAY_TESTSUITE_PROPS 102, 123
setting 6

errors 21
event synchronization 44
excludeApps 101
exec command 44, 218
execution stack 248
Exit On Snapshot Mismatch 116
exitOnDiffMismatch

See also Exit On Snapshot Mismatch 221
explicit pass/fail 204
expression evaluation

Tcl 172
expressions 177
extended commands 36, 198, 223, 224
extended Tcl commands 196
External diff program 118

F
fail command 205
features

Test Manager 33, 48
$file 57
file

.cshrc 6, 49

.profile 6, 49

.Replay 109, 121, 135

.Replaytm 56

.Vrdump 5, 123, 135, 140

.Xdefaults 124
~/.Xdefaults 135
baseline 61
report 17, 33
results 61
script 138
snapshot 20
test suite 50
test.data 27
vrImageSaveFile 127
wcChildren 127, 130
wcClassName 127, 129
wcManaged 127, 129
wcPopups 127, 130

file access commands 193
file icon 55
file menu commands 59
forms

Snapshot Specification Entry 140
full snapshot 139

G
generateHtmlReport 222
getchildren command 209
getclass command 208
getconnectedapps 203
getcurrentwin 207
getfocuswidget 208
getparent command 208
getpopups command 209
getproperty command 213
282 Replay Xcessory User’s Guide



Index

getting widget state 210
getvalue command 43, 44, 210, 211, 270
glob 194
global variables 185
grabbing

cursor
See also warp 111, 248

granularity
snapshot 5

GUI debugger options 247
GUI interface 2

script debugging 238

H
hot key 109, 137

end a session (Ctrl+s) 140
entering 109
pause (Ctrl+p) 111, 140
request a snapshot (Ctrl+i) 108, 115, 139
Resume 140
specifying 109
Stop 140
terminate a session (Ctrl+s) 111
w 139
warping 118

I
icon 4

baseline snapshot directory 54
directory 55
file 55
report file 55
results snapshot directory 55
script 19
script file 54
selecting 59
selecting multiple 59
test package elements 48

iconify command 202
image comparisons 43
image snapshots 5, 42, 64, 122, 122, 125
implicit pass/fail 204

includeButtonupMotion 150
incr command 176
insertion caret

moving 233
instance number 39, 214
instrumented Xt library 98
interactive mode 161
isconnectedapp 203, 208
ismanaged command 213
iswidget 207

K
key command 201
Key Delay 117, 222
keyboard commands 201
keyboard shortcuts

See also hot keys 109
keyed list 196

L
labels

multiple 225
Launch button 32
LD_LIBRARY_PATH 99

setting library paths 50
LD_RUN_PATH environment variable

setting 99
ldd 100
Learn Tag 37, 140, 142
Learn Tag Hot Key 111
learnTagKey 221
library path 110

button 110
environment 110
environment variable 31, 98, 100
LD_LIBRARY_PATH 50
modifying 98
multiple 50
setting 49, 99

life cycle of an application 3
link options 99
linking library routines dynamically 98
Replay Xcessory User’s Guide 283



Index

list

items 230
ranges 230
Tcl 171

list commands 180, 187, 224, 230
list_extend command 230
list_select command 230
loadspec 141, 142
local variables 185
location specifier 250
lower command 202

M
main menu commands 58
main window

Test Manager 7
MANPATH

setting 49
menu

items 224
Record/Play 22
Test Package 54
Test Suite 52

menu selection command 224
menubar_pick command 224
menubar_select command 226
mergespec 141, 142
message command 203
minimized name 38
miscellaneous commands 203
monitoring servers 268
Motif™ 41
mouse buttons 63
mouse commands 198

click 198
dblclick 198
drag 198
multiclick 198
press 198
release 199

move command 202
msg_data 203

msg_fmt 203
msg_type_ID 203
multiple application shells 39
multiple applications

dynamically-linked 50
multiple labels 225
multiple library paths 50, 99
multi-process testing 4

N
names

widget 142
narrative command 215
nested X server 263

starting 266
new test package

creating 53
NULL 220
null components 39

O
omitButtonUpMotionWidgetClasses 150
omitCoordinatesWidgetClasses 149
omitDelay 149
ONEFILE 112
Open Look™ 41
opening a test package 7, 51
operands 177

constants 177
variables 177

operators 178
arithmetic 178
bitwise 179
logical 179
relational 178

option_pick command 224
option_select command 226
options

record and play 163
Record Tag Name 37, 39
284 Replay Xcessory User’s Guide



Index

P
-p option 7
panes 4
pass command 205
pass/fail commands 204
PATH 49

setting 49
pattern matches

See also wild cards 250
pause command 214
Pause Hot Key 111, 140
pause session 111
pauseKey

See also Pause Hot Key 220
play

control panel 15, 152
example 165

play mode debugger 238
play session 15
play speed 17, 39

adjusting 39
playbackSpeed

See also speed 219, 222
popdown command 203
popup command 203
popup_menu_pick command 225
popup_menu_select command 226
portability of scripts 35
portable test cases 22
preparing an application for VistaREPLAY 98
press command 44
proc 184
procedure commands 187
process 31
.profile 6, 49
program synchronization points 44
programmability of scripts 35
programmatic testing 3, 22
programmed synchronization 44
prompt 204
Prompt For Test Case Name 115

Prompt on Error 116, 221
Prompt on Snapshot Difference 116
promptOnSnapshotDiff

See also Prompt On Snapshot Difference 221
properties

Active Pause 110
Click Offset Tolerance

See also clickOffsetTolerance 115
Client Startup Timeout

See also clientTimeout 111
Compress Image Command

See also compressImageCommand 110
Compress Image Snapshots

See also compressImageSnapshots 110
context-sensitive lists 114
Debugger Warp Back Hot Key

See also debuggerWarpBackKey 118
Delay Time

See also defaultDelayTime 117
Diff Command

See also diffCmd 118
Display Image Differences

See also displayImageDiff 116
Exit On Snapshot Mismatch

See also exitOnDiffMismatch 116
Key Delay

See also keyDelay 117
Learn Tag Hot Key 111
learnTagKey

See also Learn Tag Key 221
Library Path 110
Pause Hot Key

See also pauseKey 111
Prompt For Test Case Name 115
Prompt on Error

See also promptOnError 116
Prompt on Snapshot Difference

See also promptOnSnapshotDiff 116
Record Button Up Motion 114
Retry Timeout

See also retryTimeout 117
Snapshot Hot Key 115
Replay Xcessory User’s Guide 285



Index

Stop Session Hot Key

See also stopKey 111
test-suite wide 102
Uncompress Image Command

See also uncompressImageCommand 110
Ungrab Pointer Hot Key, See also ungrab-

PointerKey 111
Use Tag Name

See also useTagNames 110
properties settings

test suite 50
pseudo resources 127

Q
question mark 225
quoting 175

braces 175
double quotes 175

R
raise command 202
README

file 9
record

control panel 10, 134
example 167

record and play options 163
Record Button Up Motion 114
record controls 134
record session 10, 33

properties 114
Record Tag Names option 37, 39
Record/Play 15

commands 61
menu 22

recorded script
editing 22, 35

recording widget names 39
recording widget tags 145
regression testing 4, 5, 42

multi-client 32
multiple applications 32

regression tests 5
relative path for a file name 133
release command 44
removing a breakpoint 252
.Replay 135, 149

file 121
replay command 32

form 163
Replay file 103, 109
replay session 33
replay.sh 7
.Replay_Appname 103
$replay_args

baselineDir 220
clientPid 220
reportFile 220
resultsDir 220
scriptFile 219

replay_args 219
REPLAY_TERM_SYNCS 214, 262
REPLAY_TESTSUITE_PROPS 102

environment variable 123
setting 50

.Replaytm 56
Replaytm 56
replaytm 7
report file 17, 33, 55, 220
report view area 61, 63
.res 155

See also results snapshot directory 55
resize command 40, 202
resource type conversion 269
result snapshot view area 61
result snapshot view pane 62
results file 61
results snapshot directory 55
results verification 41
resultsDir 220
Resume hot key 140
retesting applications 42
Retry Timeout 117, 221
return value
286 Replay Xcessory User’s Guide



Index

procedure 185

.rpt 155
See also report file 55

rubber-banding snapshots 129
rxexit 218

S
scale commands 229
scale scrollbar 44
scale_max command 229
scale_min command 229
scale_set command 229
scales 224
screen results

verification 3
script 4

adding comments to 173
editability 41
portability 35, 41
Tcl 27, 170
viewing

continous stream 243
writing 40

script commands 35
script debugger 238

popup menu 255
starting 238

script editing 41
ASCII editor 41

script file 54, 138
portability 41

script file directory
viewing 57

script icon 19
script location

specifying 250
script view area 17, 61
script view pane 19
script.tcl 241
scriptFile 219
scroll bar commands 227
scroll bar slider 228

scroll bars 224
scroll_line command 228
scroll_max command 227
scroll_min command 227
scroll_page command 228
scroll_set command 227
see also commands 44
seektext 212
servwatch 268
session

play 33
record 33

session properties
controlling 103

set command 171, 176
setting

breakpoints 249
environment 48
environmental variables 6
library path 49
play speed 155
the environment 48
widget state 210

setting test suite properties
REPLAY_TESTSUITE_PROPS 50

setvalue command 43, 211
shell script 217
shortcuts

keyboard
See also hot keys 109

slider
scroll bar 228
setting speed 241

snapshot 4, 41
baseline 5, 42
button 5, 13
command 205
comparing programatically 43
comparisons 152
compressed image 110
directory 6

viewing 57
Replay Xcessory User’s Guide 287



Index

file 20
full 139
granularity 140
hot key 115, 139
image 42, 125
scope 115
types 125
widget 41, 125

snapshot granularity 141
snapshot specifications

loaded 141
merged 141

.snp suffix 20
source debugger 268
special characters 174

interpreting 174
specifying a script location 250
specifying cursor location 201
spee

setting 155
speed

setting
See also playbackSpeed 155

speed slider 152
square brackets 225
starting the script debugger 238
starting the Test Manager 7, 48
state

verification 44
static images

viewing 267
status information

widget 44
stdout 155
Stop button 14
Stop hot key 140
stop session 111
Stop Session Hot Key 111
stopKey

See also Stop Session Hot Key 221
string 171

arbitrary 172

Tcl 171
string manipulation commands 191
sub-image snapshots 129
substitution

backslash 173, 174
command 173
quoting 174
variable 173

Subtest 204
system command 44, 217

invoking 44

T
Tag Manager 79
tag name

See also widget tags 110, 114
target widget 199
Tcl 34, 170

arrays 172
command structure 171
debugger 32, 252

in play mode 32
expression 177
expression evaluation 172
list 171
procedure 184
string 171
verb 170
zero indexing 189

.tcl 155
See also script file 54

Tcl commands
extended 196

Tcl scripts
writing 27

Tcl_CreateCommand 272
tclsh 170
terminal emulation 203
termsync 262
test case 6, 12, 13

management commands 204
multiple 33
288 Replay Xcessory User’s Guide



Index

report 4
report summary 23
success 43
verification 15

test data 27
test management commands 198
Test Manager 6

features 33
main window 7, 52
set up and starting 3, 6
starting 7

test package 6, 33
commands 48, 57
creating 7
deleting 9
directory 6
menu 54
opening 7
window 8, 239

test portability 3
test scripts

manual 22
test sequence number 27
test suite 6, 31, 33

commands 48, 51
directory listing 45
displaying test packages 33
menu 52
properties setting 50

test suite-wide properties 50, 102
testcase command 33
testing

multi-process 4
programmatic 3
regression 4, 5

text 4
text area

multiple rows 232
text command 40, 201, 224, 232

text_delete command 233
text_delete_string command 233
text_find_pos command 233

text_find_string command 233
text_insert command 233
text_replace command 234, 235
text_replace_string command 234, 235
text_select command 233
text_select_string command 233
text_set command 232

$title 57
Tool Command Language

See also Tcl 34
tutorial

play session 15
type converters 269

U
unattended VistaREPLAY sessions

See also batch mode 6
uncompress command 110
Uncompress Image Command 110, 221
Ungrab Pointer Hot Key 111
ungrabPointerKey

See also Ungrab Pointer Hot Key 221
Update Baseline Transparently 116
updating baselines 5
usage model 3
Use Tag Name 110, 220
user interaction commands 198
useVirtualKeyNames 219
utilities

diff 43
xwddiff 43

V
variable number of arguments 186

See also arg 186
variable substitution 173
variables

environmental 6
global 185
local 185

verification of screen results 3
verification of states 44
Replay Xcessory User’s Guide 289



Index

verification points 4, 43
verifying results 41

widget snapshots 42
verifying widget snapshot differences 159
version 204
viewing test package elements 57
virtual server 268
virtual X server 266

starting 267
VISTAHOME environment 49
VISTAHOME/bin 262
VistaREPLAY

architecture 30
customizing options 6
driver 31, 32
features and concepts 30
preparing an application 98
script debugger 238
Test Manager main window 7

VistaREPLAY Test Manager
features 48
starting 51

Vralias 135
.Vrdump 123, 140
Vrdump 5, 123, 135, 205
vrImageSaveFile 127
VrRString 270
.vrSave 125
VrSetTypeConverter 211

W
warp 118
warping

See also cursor and grabbing 111
wcChildren 127, 130
wcClassName 127, 129
wcManaged 127, 129
wcPopups 127, 130
whatlib command 49
widget

ancestor 38
custom 269

identifying 36, 38, 207
instance 125
name 36, 39, 142

minimized 37
qualified 37
recording 39

pop up children 127
regular children 127
resources 269
snapshot file format 128
status information 44

widget class 125, 127
widget class specification 125
widget comparisons 43
widget hierarchy 37, 208

graphical view 36
widget ID 199, 210

obtaining 210
widget information commands 198, 199, 206
widget snapshot differences

verifying 159
widget snapshots 41, 125
widget state

getting 210
setting 210

widget synchronization
automatic 44

widget tags 36
fulley-qualified 39
minimized 39
recording 145

widget tree 38
widgetid command 207
widgetname command 207
widgettag command 207
wild cards 225, 230

asterisk(*) 38
wildcard notation 41
window management 202
windowid command 207
writin Tcl scripts 27
290 Replay Xcessory User’s Guide



Index

X
X resource file format 20
X Toolkit 269
X Toolkit library 31
X11R5 99
xdebug 254
.Xdefaults 124, 269
xmcalc 11
XmPushButton 125
Xnest 265, 266
Xt library 100

instrumented 98
linking dynamically 98
routines 110

XTLIB_DEBUG_ON 111
XtRWidget 270
xwd 5
xwd bitmap file 42
xwddiff utility 43
xwddiff(1) 43
xwud 267

Z
zero indexing 189
Replay Xcessory User’s Guide 291



Index
292 Replay Xcessory User’s Guide


	preface.pdf
	Preface
	Overview
	What This Manual is About
	Using Sample Programs
	What You Should Know Before Starting
	For More Information
	Documentation Conventions


	replayxcessoryv3TOC.pdf
	Preface v
	List of Figures xiii
	List of Tables xvii
	Chapter 1- Getting Started
	Chapter 2- Concepts of Operation
	Chapter 3- Replay Xcessory Test Manager
	Chapter 4- The New Replay Xcessory Test Manager
	Chapter 5- Record and Play Sessions
	Chapter 6- Introduction to the Scripting Language
	Chapter 7- Replay Xcessory Command Language
	Chapter 8- Replay Xcessory Extended Commands
	Chapter 9- Script Debugger
	Chapter 10- Advanced Topics
	Index 279


	replayxcessoryv3LOF.pdf
	List of Figures

	replayxcessoryv3LOT.pdf
	List of Tables

	1_intro.pdf
	Getting Started 1
	Overview
	Introduction
	License File Notes
	Replay Xcessory Capabilities
	Replay Xcessory Roadmap
	Usage Model
	Replay Xcessory Test Manager
	Command-line Interface

	Tutorials
	Setting Up and Starting the Test Manager
	Tutorial 1-A Record/Play Session
	Tutorial 2-Programmatic Testing



	2_terms.pdf
	Concepts of Operation 2
	Overview
	Introduction
	Replay Xcessory architecture
	Applications Under Test
	Multi-Process Testing
	Replay Xcessory Driver
	Replay Xcessory Test Manager
	Replay Xcessory Script Language
	Script Command Actions and Objects
	Widget Names and Tags
	Command Delay
	Command-Specific Information
	Script Programmability
	Script Editability
	Script Portability

	Results Verification
	Snapshots
	Baselines
	Regression Testing
	Determining Subtest Success

	Event Synchronization
	Automatic Widget Synchronization
	Programmed Synchronization



	3_wkplv2.pdf
	Replay Xcessory Test Manager 3
	Overview
	Introduction
	Setting up the Environment
	Setting REPLAYHOME
	Setting MANPATH
	Using Whatlib
	Multiple Library Paths
	Setting Test Suite Properties
	Setting the Automatic Evaluation of Environment Variables

	Starting the Test Manager
	Test Suite Commands
	Changing Test Suite Directory
	Creating a Test Package
	Opening a Test Package
	Customizing Utility Commands

	Test Package Commands
	Viewing Test Package Elements
	Test Package Menu Bar
	Test Package View Panes

	Test Case Commands


	4_newrtm.pdf
	The New Replay Xcessory Test Manager 4
	Overview
	Introduction
	Starting the New Replay Xcessory Test Manager (rtm)
	Creating the Test Suite Directory
	Changing the Test Suite Directory
	Creating a Test Package

	Preferences
	Edit Menu
	Record/Play Menu
	Window Menu
	Snapshots Pane
	Description Tab
	Tcl Files Tab

	Replay Xcessory Tag Manager
	Vrdump Editor Window


	5_vroptsv2.pdf
	Record and Play Sessions 5
	Overview
	Introduction
	Preparing Applications for Replay Xcessory
	Linking Library Routines Dynamically
	Linking Library Routines Statically
	Checking Dynamic Dependencies
	Excluding Applications

	Understanding the Replay Xcessory Property Files
	Controlling Session Properties
	Invoking the Session Properties Window
	Properties Controls

	Controlling Snapshot Scope and Granularity
	Snapshot Scope
	Snapshot Granularity
	Controlling Widget Resources
	Invoking the Snapshot Properties Editor
	Snapshot Types
	Controlling Widget Snapshots

	Image Snapshots
	Image Snapshot Scope
	Sub-Image Snapshot Scope

	Record Control Panel
	Record Controls
	Changing Snapshot Granularity During Record

	Recording Widget Tags
	Conducting a Learn Tag Session

	Tag File Generation
	Streamlined Recorded Scripts
	Omit Delay
	Omit Coordinates by Widget Class
	Omit Button Up Motion by Widget Class

	Play Control Panel
	Conducting a Play Session
	Play Controls
	Verifying Results

	Replay Xcessory Driver - Command-Line Interface
	Batch Mode
	Batch Mode without GUI
	Interactive Mode
	Replay Command Form
	Options
	Command Line Examples

	Obtaining a Test Suite Report


	6_tcl.pdf
	Introduction to the Scripting Language 6
	Overview
	Introduction
	Command and Script Basics
	Command Structure

	Controlling Character Interpretation
	Substitution
	Quoting

	Variable Manipulation Commands
	Expressions
	Operands
	Operators

	Control Flow Commands
	Procedures
	Return Value
	Global and Local Variables
	Variable Number of Arguments
	Procedure Commands

	List Commands
	String Manipulation Commands
	File Access Commands
	Extended Tcl Commands


	7_rplcmd.pdf
	Replay Xcessory Command Language 7
	Overview
	Introduction
	User Interaction Commands
	Mouse Commands
	Keyboard Commands
	Window Management Commands
	Miscellaneous User Interaction Commands

	Test Management Commands
	Widget Information Commands
	Widget Identification
	Walking the Widget Tree
	Getting and Setting Widget State

	Session Management Commands
	Play Synchronization
	Session Communication
	Application Management

	Initialization Scripts
	Accessing Command-Line Arguments
	Accessing Run Time Parameters
	General Property Arguments
	Play Property Arguments



	7_rplcmd.pdf
	Replay Xcessory Command Language 7
	Overview
	Introduction
	User Interaction Commands
	Mouse Commands
	Keyboard Commands
	Window Management Commands
	Miscellaneous User Interaction Commands

	Test Management Commands
	Widget Information Commands
	Widget Identification
	Walking the Widget Tree
	Getting and Setting Widget State

	Session Management Commands
	Play Synchronization
	Session Communication
	Application Management

	Initialization Scripts
	Accessing Command-Line Arguments
	Accessing Run Time Parameters
	General Property Arguments
	Play Property Arguments



	8_extcmd.pdf
	Replay Xcessory Extended Commands 8
	Overview
	Introduction
	Menu Selection Commands
	Standard Menu Selection Commands
	Alternate Menu Selection Commands

	Scroll Bar Commands
	Scale Commands
	List Commands
	Text Manipulation Commands
	Tabs Control Commands
	XmTree Control Commands
	XmContainer Control Commands


	8_extcmd.pdf
	Replay Xcessory Extended Commands 8
	Overview
	Introduction
	Menu Selection Commands
	Standard Menu Selection Commands
	Alternate Menu Selection Commands

	Scroll Bar Commands
	Scale Commands
	List Commands
	Text Manipulation Commands
	Tabs Control Commands
	XmTree Control Commands
	XmContainer Control Commands


	9_debugv2.pdf
	Script Debugger 9
	Overview
	Introduction
	Debugger Interfaces
	Using the Replay Xcessory Script Debugger

	Debugger Commands
	Controlling Executions
	Showing the Execution Stack with the w Command
	Controlling Scope with the u and d Commands
	Controlling Output with the -width Option
	Setting Breakpoints with the b Command
	Other Commands

	Enhanced Tcl Debugger
	The Popup Menu

	Debugging Using the Command-Line
	Command-Line Options



	10_adv.2.pdf
	Advanced Topics 10
	Overview
	Using Terminal Emulators
	Using VNC, Nested and Virtual X Servers
	VNC
	Nested X Server
	Virtual X Server

	Monitoring Background Tests
	Using Replay Xcessory with Source Debuggers
	Using Custom Widgets
	Using Type Converters
	X Toolkit type Converters
	Replay Xcessory Type Converters
	Alternate String Formats
	Extracting Application Data
	Environment Variables That Can Be Used with Replay Xcessory
	Using Additional Libraries with Tcl: Itcl
	Automating Application with Data from RDBMS






