
�������	
���	������

Copyright © 2005 Integrated Computer Solutions, Inc.

The UIM/X Advanced Topics™ manual is copyrighted by Integrated Computer Solutions, Inc., with all rights
reserved. No part of this book may be reproduced, transcribed, stored in a retrieval system, or transmitted
in any form or by any means electronic, mechanical, photocopying, recording, or otherwise, without the
prior written consent of Integrated Computer Solutions, Inc.

Integrated Computer Solutions, Inc.
54 Middlesex Turnpike, Bedford, MA 01730

Tel: 617.621.0060

Fax: 617.621.9555

E-mail: info@ics.com

WWW: http://www.ics.com

UIM/X Trademarks
UIM/X, Builder Xcessory, BX, Builder Xcessory PRO, BX PRO, BX/Win Software Development Kit, BX/Win
SDK, Database Xcessory, DX, DatabasePak, DBPak, EnhancementPak, EPak, ViewKit ObjectPak, VKit,
and ICS Motif are trademarks of Integrated Computer Solutions, Inc.

Motif is a trademark of Open Software Foundation, Inc.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through
X/Open Company Limited.

X/Open is a trademark of X/Open Company Limited in the UK and other countries.

X Window System is a trademark of the Massachusetts Institute of Technology.

All other trademarks are properties of their respective owners.
ii UIM/X Advanced Topics

http://www.ics.com

Contents

Preface ..v

Chapter 1—Compound Widgets
Specifying the Widgets in a Compound .. 2
The Adjust Button and Compound Widgets .. 2
Creating Compound Properties and Swidget Methods ... 6
Putting a Compound Widget in a Palette .. 8
Installing Compound Editors ... 8

Chapter 2—Integrating Widgets
Getting Started .. 12
Swidget Class Source Files .. 14
Writing the Private Header File ... 14
Writing the Swidget Class Source File .. 18
Writing the Public Header File .. 25
Building UIM/X .. 31
Creating Widgets from UIM/X’s Menus ... 31
Customizing UIM/X’s Create Menus ... 32
Customizing the Browser’s New Option ... 36
Customizing the Main Window Editor’s Option Menus .. 36
Defining New Xtypes .. 38
Overriding Inherited Class Methods ... 43
Generating Code and Reading UIL .. 44
Extending the Ux Convenience Library .. 47
Summary of Naming Conventions .. 48

Chapter 3—Integrating Components
Understanding What to Do ... 50
Overriding the Geometry-Handling Methods .. 56
Generating Integration Code .. 62
Writing the Integration Code ... 64
Writing the Header File ... 65
Writing the Source File ... 71
Writing Initialization Code for UIM/X ... 81
Augmenting UIM/X .. 82
Building a Palette .. 83
UIM/X Advanced Topics iii

Chapter 4—Building Executables
Using the Custom Makefile ... 88
Using the Build Makefile ... 92
Augmenting UIM/X .. 94
Using central.mk ... 99

Appendix A—Compound Properties..................................101

Appendix B—Interface File Format107
File Format Concepts .. 107
Facets ... 108
Interface-Specific Resources .. 109
Methods .. 111
Connections .. 112
Swidget Methods ..113
Loading Interface Files of an Earlier Version .. 114

Appendix C—Swidget Class Hierarchy..............................115
Appendix D—Resource Types..121

Utypes ... 122
Xtypes ... 122
Validator And ValuesOf Functions ..124

Appendix E—Class Methods ..129
Appendix F—Resource Descriptors...................................155

Resource Descriptor Fields ... 156

Appendix G—Ux Builder Functions159
Index..229
iv UIM/X Advanced Topics

Preface

Overview
UIM/X provides a diverse set of configurable tools and capabilities which enable you
to extend and customize UIM/X to suit your own unique application.

Using these features, you can:

• Create compound widgets and compound properties

• Create your own palettes

• Create and integrate new widget classes

• Extend the Ux Convenience Library

• Integrate components you have built yourself or purchased from other vendors

• Build and customize UIM/X executables

• Augment UIM/X executables with object code of other applications

This manual describes the mechanisms which allow you to tailor, add to, or simplify
UIM/X to create a custom GUI builder.
UIM/X Advanced Topics v

Who Should Use this Guide
This manual assumes that you have some knowledge of programming and a general
understanding of the X Window System. You should also know how to use
common items such as menus, buttons, and scroll bars. If you are not familiar with
these items, you may find it useful to review the OSF/Motif User’s Guide.

Before you begin, check with your system administrator to ensure that the software
has been installed as described in UIM/X Installation Guide.

Before You Read this Guide
This guide makes the following assumptions:

• You are familiar with the basic functions of selecting from menus and dialog
boxes; opening, moving, resizing and closing windows; and clicking icons.

• You are a competent software developer and wish to extend and customize the
standard features of UIM/X to accommodate your unique application.

Related Books
For more information on UIM/X, see the following documents, available at
http://www.ics.com/support/docs/:

• UIM/X Installation Guide. Explains how to install and run UIM/X. Includes
information on the files provided with UIM/X, backwards compatibility issues,
and compiler considerations.

• UIM/X Beginner’s Guide. Introduces UIM/X by presenting Novice Mode, the
simplified Palette that enables new users to be productive immediately.
Includes information on a number of important features for creating, testing
and running applications.

• UIM/X Tutorial Guide. A series of step-by-step tutorials, teaching tools and
techniques that will greatly assist you in developing your own applications.
Features tutorials in Novice Mode, Standard Mode, and on advanced topics.

• UIM/X User’s Guide. Explores the UIM/X features common to both Motif and
cross-platform development. Includes discussions of how to use UIM/X’s
editors to set properties, add behavior, etc.
vi UIM/X Advanced Topics

For more information on designing user interfaces, see any of the following:

• OSF/Motif Style Guide release 1.2 (Prentice Hall, 1993, ISBN 0-13-643123-2)
The Windows Interface Guidelines for Software Design: An Application
Design Guide (Microsoft Corporation, 1995, ISBN 1-55615-679-0)

• Human Interface Guidelines: The Apple Desktop Interface (Addison-Wesley,
1987, ISBN 0-201-17753-6)

How this Guide Is Organized
This document comprises four chapters, seven appendices, and an index, organized
as follows:

• Chapter 1, “Compound Widgets,” discusses creating and working with
compound widgets and explains their properties.

• Chapter 2, “Integrating Widgets,” describes how to integrate a widget class
into UIM/X.

• Chapter 3, “Integrating Components,” describes how to integrate any class into
UIM/X.

• Chapter 4, “Building Executables,” describes how to customize and build
UIM/X executables.

• Appendix A, “Compound Properties,” provides alphabetical listings of
compound properties.

• Appendix B, “Interface File Format,” describes file format concepts and facets
and defining new classes.

• Appendix C, “Swidget Class Hierarchy,” provides a graphical representation of
the hierarchy of swidget classes, as well as a table listing each swidget class,
the corresponding widget class and the swidget class’ private and public header
files.

• Appendix D, “Resource Types,” describes the mechanism for converting
between the different data types expected by swidgets and widgets.

• Appendix E, “Class Methods,” contains the reference pages for the class
methods used by UIM/X to operate on widgets.

• Appendix F, “Resource Descriptors,” describes data objects called resource
descriptors. Every widget property in UIM/X is described by a resource
descriptor.

• Appendix G, “Ux Builder Functions,” contains the reference pages for each of
the Ux Builder Functions.
UIM/X Advanced Topics vii

Conventions Used in this Guide
Unless otherwise noted in the text, we use the following symbolic conventions:

Setting Application Defaults
Application Defaults configure the way UIM/X looks and set the default
preferences for many of its operations. You can set the Application Defaults for all
UIM/X users or for a single user. For more details on setting your Application
Defaults see The UIM/X User’s Guide.

For optimum performance, set the following resources in your Application
Defaults:

Mwm*autoKeyFocus: false

Mwm*clientAutoPlace: false

Mwm*focusAutoRaise: false

Mwm*focusFollowsPointer: true

Mwm*keyboardFocusPolicy: pointer

Typeface or
Symbol

Meaning

literal names Bold words or characters in command descriptions
represent words or values that you must use literally.

user-supplied
values

Italic words or characters in command descriptions
represent values that you must supply. Italic words in text
also indicate the first use of a new term, or emphasis

sample user
input

In interactive examples, information that you must enter
appears in this typeface.

output/source
code

Information that the system displays appears in this
typeface.

... Horizontal ellipsis points indicate that you can repeat the
preceding item one or more times.
viii UIM/X Advanced Topics

If you have a gray-scale monitor, you might try the following settings:

Mwm*activeBackground: #666666

Mwm*activeForeground: #e5e5e5

Mwm*background: #666666

Mwm*foreground: #e5e5e5

Uimx3_0*calculatedColors: false

Uimx3_0*background: #ededed

Uimx3_0*BottomShadowColor: #000000

Uimx3_0*foreground: #000000

Uimx3_0*TopShadowColor: #ffffff

Uimx3_0*XmText.background: #b3b3b3

Uimx3_0*XmTextField.background: #b3b3b3

Note: The resources above prefixed with Mwm are specific to the Motif Window
Manager. If you are using a different window manager consult your Systems
Administrator for the equivalent settings.
UIM/X Advanced Topics ix

x UIM/X Advanced Topics

Compound Widgets 1
Overview

A compound widget is a hierarchy of one or more widgets and Component
Instances. For brevity, however, this section refers only to widgets in its discussion
of compound widgets. Keep in mind that a compound widget can contain
Component Instances.

Unlike Component Instances, the instances of a compound widget do not share a
common template. Each time you create an instance of a compound widget, you
create a duplicate of the original. Changes to a compound widget are not
propagated to the instances of that compound widget.

With compound widgets, you can give users the ability to edit the individual
widgets in an instance of the compound widget. The compound properties allow
you to control the editing operations applicable to each widget in a compound
widget. At the same time, you can have operations such as move, resize, and drag
and drop apply to the compound widget as a whole.

Compound widgets can also have their own specialized editors.
UIM/X Advanced Topics 1

1

Specifying the Widgets in a Compound
A compound widget consists of a parent widget and zero, one, or more
descendants. The parent is the top (and perhaps only) widget in the compound.
Given a hierarchy, you specify the widgets included in the compound widget as
follows:

1. Set the compound property IsCompound to true for the top widget or
Component in the compound.

2. Set the compound property IsInCompound to true for each of the parent’s
descendants that you want to include in the compound. Leave the IsCom-
pound property set to false for the descendants.

You can then specify the editing operations that can be applied to the individ-
ual widgets and Components in the compound.

The Adjust Button and Compound Widgets
A compound widget can be manipulated as a single widget with the Adjust button
(normally the middle mouse button). To do this, you make all widgets in the
compound except the top widget transparent to the Adjust button.

When a widget is transparent, pressing the Adjust button on the widget causes the
move or resize action to be applied to another widget in the compound. The widget
is said to be transparent because it appears to a user that the Adjust button is acting
on a widget underneath the one where the mouse pointer is positioned.

Consider the FileSelectionBox widget provided by Motif. It looks like a collection
of many widgets, but no matter where you press the Adjust button, you can only
move or resize a file selection box as a whole. You can achieve this same behavior
by making the individual widgets in a compound transparent.

For example, consider the form shown in Figure 1-1. Note that although the mouse
pointer is positioned on the Next Screen button, the form is being resized. Pressing
the Adjust button on a transparent button is the same as pressing the Adjust button
on the move or resize region of the form underneath the button.

One advantage of transparent widgets is that the user gets some visual feedback
when they press the Adjust button on a widget where the move or resize action is
disabled. Another is that transparent widgets visually reinforce the idea that a
compound widget is an integral whole.
2 UIM/X Advanced Topics

1

Figure 1-1 Regions and Transparent Widgets

There are three compound properties used to make a widget transparent.

IsRegion Setting IsRegion to true makes a widget a region widget. UIM/X uses region
widgets to determine whether the Adjust button was pressed on a move or a resize
region.

When the Adjust button is pressed, a grid is superimposed on the region widget
underneath the mouse pointer (see Figure 1-1). This grid divides the widget into
nine different move and resize regions. UIM/X looks at the region where the Adjust
button was pressed, and performs the appropriate move or resize operation.

When the Adjust button is pressed on a widget in a compound where IsRegion is
false, UIM/X tries to find a region widget in the widget hierarchy. UIM/X will
not perform a move or resize if it cannot find a widget which is a region.

Note that UIM/X cannot know whether a widget is being moved or dragged until
the widget is dropped. If a swidget in a compound is reparentable but not moveable,
then the user will be able to drag the widget. If the result is a move, then the
operation is disallowed.
UIM/X Advanced Topics 3

1

ResizeRecursion This property determines the direction in which UIM/X traverses the compound
widget hierarchy when looking for a resizable widget. UIM/X only checks the
value of this property if the region widget is not resizable. Possible values are up,
down, or none.

DragRecursion This property determines whether or not UIM/X traverses up through the
compound widget hierarchy to look for a draggable widget if the region swidget is
not draggable. Possible values are up or none.

Finding a Region

When the user presses the Adjust button on a widget, UIM/X checks whether the
widget is a region widget. If the widget is not a region widget, UIM/X checks the
value of the widget’s IsInCompound property to see if the widget is in a
compound.

If the widget is not in a compound, UIM/X does nothing—there is no widget for it
to resize or move.

If the widget is in a compound, UIM/X goes up the hierarchy of the compound
looking for a region widget. If no region widget is found, UIM/X does nothing. If
UIM/X finds a region widget, it checks the mouse press location to determine
whether to perform a move or resize.

Once UIM/X knows what action to perform, it has to find a widget to which it can
apply the action. This widget may or may not be the region widget. The following
sections describe how UIM/X finds resizable and draggable widgets.

Finding a Resizable Widget

If the IsResizable property is set to true for the region widget, UIM/X allows
the user to resize the widget. Otherwise, UIM/X checks the value of the region
widget’s ResizeRecursion property.

The ResizeRecursion property tells UIM/X in which direction it must traverse
the compound widget’s hierarchy. If ResizeRecursion is set to none, no
resize is performed.
4 UIM/X Advanced Topics

1

UIM/X traverses the compound widget’s hierarchy in the specified direction until it
finds one of the following:

• A widget that can be resized. UIM/X then allows the user to resize the widget.

• A widget whose ResizeRecursion value is not equal to that of the region
swidget. If the widget is resizable, UIM/X allows the user to perform a resize.

• A widget that is not in the compound. No resize is performed.

If a resizable widget is not found, nothing happens. If the ResizeRecursion of
the region widget is down, only one descendant, if any, is resized.

Finding a Draggable Widget

If the IsDraggable property is set to true for the region widget, UIM/X allows
the user to drag the widget. Otherwise, UIM/X checks the value of the

region widget’s DragRecursion property.

The DragRecursion property tells UIM/X whether or not it should look for a
draggable widget by traversing up the compound widget’s hierarchy.

UIM/X traverses up the compound widget’s hierarchy until it finds one of the
following:

• •A widget that can be dragged. UIM/X then allows the user to drag the widget.
When the user drops the widget, UIM/X checks if the widget is

• being moved. If so, UIM/X then checks the value of the widget’s

• IsMovable property.

• A widget whose DragRecursion value is not equal to that of the region
swidget. If the widget is draggable, UIM/X allows the user to drag the widget.

• A widget that is not in the compound. In this case, nothing happens since no
draggable widget was found.
UIM/X Advanced Topics 5

1

Creating Compound Properties and Swidget
Methods

UIM/X enables you to access and manipulate the properties and swidget methods
of each individual widget in a compound widget. This is accomplished through the
use of the CompoundResourceSet and CompoundSwidgetMethodSet
properties.

Compound resources and compound swidget methods, in effect, allow you to
create design-time properties and methods for the individual widgets in the
compound.

The Group Box, for example, is a compound widget which comprises a frame, a
label, and a form. If you were to change a Group Box’s background color, only
the color of the frame (the parent widget) would change; the background colors
of the label and form would remain unchanged. This is where compound
resources and compound swidget methods become useful.

Using compound resources and compound swidget methods, you can ensure that
changes applied to the compound widget are applied to the individual widgets in
the compound. Accessible through the Compound category of the Property Editor,
compound resources and compound swidget methods are specified according to the
following formats:

• For compound resources, a quoted string containing one or more resource
specifiers, as follows:

“<new_resource>:<swidget1>.<resource1>,
<swidget2>.<resource2>,

...

<swidgetN>.<resourceN>;”

You separate adjacent resource specifiers with semi-colons. No semi-colon is
required after the last resource specifier.
6 UIM/X Advanced Topics

1

• For compound swidget methods, a quoted string containing one or more

swidget method specifiers, as follows:

“<new_sw-method>:<swidget1>.<sw-method1>,
<swidget2>.<sw-method2>,

...

<swidgetN>.<sw-methodN>;”

You separate adjacent swidget method specifiers with semi-colons. No
semi-colon is required after the last swidget method specifier. This property
cannot be modified if the swidget owning the property is the target of a con-
nection.

Note: In the interest of legibility, the above examples have been placed on separate
lines. When you enter design-time properties and swidget methods, specifiers must
be placed on one continuous line.

The following is an example of how the CompoundResourceSet property may
be set for the Group Box compound widget.

*groupBox.compoundResourceSet:

“Alignment:labelBox1.childHorizontalAlignment;

Background:groupBox1.background,labelBox1.background,

formBox1.background;FontList:labelBox1.fontList;

Foreground:groupBox1.foreground,labelBox1.foreground,

formBox1.foreground;

LabelPixmap:labelBox1.labelPixmap;

LabelString:labelBox1.labelString;

LabelType:labelBox1.labelType”

This code creates the design-time properties Alignment, Background,
Foreground, FontList, LabelPixmap, LabelString, and LabelType
to be applied to the respective widgets in the Group Box.

Note: The design-time properties that you create will appear in the Specific
category of the Property Editor.
UIM/X Advanced Topics 7

1

Similarly, the CompoundSwidgetMethodSetproperty may be set for the
Group Box compound widget.

*groupBox.compoundSwidgetMethodSet:

“SetBackground:groupBox1.SetBackground,

labelBox1.SetBackground,formBox1.SetBackground;

SetForeground:groupBox1.SetForeground,labelBox1.SetF
oreground,

formBox1.SetForeground;SetLabelPixmap:labelBox1.SetL
abelPixmap;

SetLabelString:labelBox1.SetLabelString”

This code creates the design-time swidget methods SetBackground,
SetForeground, SetLabelPixmap, and SetLabelString to perform the
appropriate operations on the respective widgets in the Group Box.

Putting a Compound Widget in a Palette
You put a compound widget in a palette as you would any other collection of
widgets. As well, you can define the name and the icon used to represent the
compound widget in the palette. UIM/X provides compound properties for the
name and icon of a compound widget.

Note: Once a compound widget is in a palette, its name and icon can be set from
the Edit menu of the palette.

Compound-
Name

This property holds the name given to the compound widget. This name is
displayed on the palette.

CompoundIcon This property identifies the icon used to represent the compound widget. The value
of this property must be the name of the file containing the pixmap or bitmap of the
icon. Valid file formats are X11 bitmap and XPM.

Installing Compound Editors
Compound widgets can have their own specialized editors. These editors are called
compound editors.

There are two compound properties used to install a compound editor. These
properties are set for the top widget in the compound—that is, the widget where
IsCompound is true.
8 UIM/X Advanced Topics

1

Note: UIM/X ignores the settings of the Editor and EditorClientData
properties for the other widgets in a compound—that is, the widgets where
IsInCompound is true.

Editor This property allows you to enter the callback which pops up the compound editor.
This callback function is called whenever you do one of the following:

• Create an instance of the compound widget.

• Double-click the Select mouse button on one of the widgets in the compound
widget.

• Select the Compound Editor item from a menu.

• An Editor callback function, like all callback functions, takes three arguments:

• The first argument is UxWidget, the widget which triggered the callback.
This is always the top widget in the compound widget.

• The second argument is UxClientData, the value entered for the
EditorClientData property of the top widget in the compound.

• The third argument is UxCallbackArg, which is NULL for the Compound
Editor callback.

Note: In the interface files generated by UIM/X, the Editor property is set by a
resource specification that looks like this:
bulletinBoard1.compoundEditor:/ Callback code */

A custom example of how to install a compound editor is provided in the
RadioPanel contrib located in uimx_directory/contrib/RadioPanel.

EditorClientData This property holds any client data to be passed to the callback function that pops
up the compound editor.

When you install a compound editor, the value of the property CompoundName
identifies the compound editor on UIM/X’s menus. For example, if you give the
name Radio Box to a compound widget, the menu item Compound Editor becomes
Radio Box Editor for the compound widget.
UIM/X Advanced Topics 9

1

10 UIM/X Advanced Topics

Integrating Widgets 2
Overview

This chapter describes how to integrate a widget class into UIM/X.

UIM/X fully supports the Motif widget set, which is a library of widget classes
derived from the base classes provided by the X Toolkit. The Motif widgets were
developed using the general mechanism provided by the X Toolkit for creating new
widget classes.

Using this mechanism, developers can create new widget classes by subclassing
one of the Motif classes, or by directly subclassing one of the base Xt classes.
UIM/X can be extended to support any such custom widget class derived from a
Motif or Xt class.

UIM/X treats a new widget class exactly as it does the Motif widget classes. You
can interactively create and edit instances of the new class, set property values, and
generate code, just as you would for any other widget.
UIM/X Advanced Topics 11

2

Getting Started
To integrate a widget class, you must write a new swidget class and integrate it into
UIM/X.

UIM/X uses swidgets to represent widgets. A swidget is a shadow widget—a
widget’s inseparable companion. A swidget is an object containing the code and
data that allows UIM/X to manipulate widgets.

When Ux Convenience Library C++ bindings are being used, an extra level of
encapsulation exists. Although UIM/X manipulates Motif widgets internally as
swidgets, they are declared in the builder as objects of the Motif wrapper classes
provided by the Ux C++ Convenience Library.

UIM/X defines a swidget class hierarchy that parallels the Motif widget class
hierarchy. When you integrate a subclass of a Motif (or Xt) widget class, you must
subclass the corresponding swidget class. For example, to integrate a subclass of
the Motif Primitive class, you must subclass the UIM/X primitive swidget class.

Note: The name of a UIM/X swidget class is the same as the name of the
corresponding Motif widget class, except that the swidget class name begins with a
lowercase letter. The name of the Ux C++ Convenience Library wrapper class for a
swidget is the same as the name of the corresponding Motif widget, except that the
name of the class is prefixed with “Ux”.

The general procedure for integrating a widget class is as follows:

1. Create a working directory.

2. If you have the source files for the new widget class, copy them to your work-
ing directory. If you have only the header files and library for the new widget
class, you will have to modify the supplied Makefile to point to these files. See
Building UIM/X.
12 UIM/X Advanced Topics

2

3. Copy the following files from uimx_directory/custom/src to your work-

ing directory:

• Makefile

Template makefile for compiling and linking the widget source code, the
swidget source code, and the template .c files listed below with UIM/X.
Also used to build extended versions of uxcgen and uxreaduil that
support new widget classes.

• cr-menus.c

Template for adding menu items for new widget classes to the UIM/X
Create menus. See Customizing UIM/X’s Create Menus.

• cr-mwe.c

Template for adding menu items to the option menus in the Main Window
Editor. See Customizing the Main Window Editor’s Option Menus.

• uxddcppMF.h

Template for defining the design-time implementation of the wrapper
class member functions.

• user-cg-cl.c

Template file for extending uxcgen and uxreaduil, the utilities for

generating code and reading UIL code.

• user-class.c

Template for placing calls to the functions that register new swidget
classes with UIM/X (these functions are defined in the source files for the
swidget classes).

• user-rtime.c

Template for registering properties for run-time conversion (between the
different data types expected by widgets and swidgets). This allows you to
use the Ux Convenience Library in the code generated for new widget
classes.

• user-xtype.c

Template for defining new xtypes. An xtype specifies the data type and

values of a widget property.

4. Write the source for a new swidget class.

5. Fill in the template .c files as required to integrate your new swidget class.
UIM/X Advanced Topics 13

2

6. Modify Makefile to point to the correct files.

7. Compile and link extended versions of uimx, uxcgen, and uxreaduil.

The rest of this chapter is a detailed discussion of how to write a new swidget class
and integrate it with UIM/X. As an example, the discussion refers to the code
required to integrate the Dog and Square widget classes. The source for these
examples can be found in uimx_directory/contrib/DogAndSquare.

Swidget Class Source Files
The source for a swidget class is contained in two header files and one file of
source code. The names of these files are derived from the name of the swidget
class. For example, the dog swidget class is implemented in the following files:

• The private header file, dog.cl.h, defines the swidget’s class and instance
structures.

• The source code file, dog.cl.c, contains the code defining the swidget class.

• The public header file, UxDog.h, contains the definitions of the macros used
to manipulate instances of the swidget class, as well as a definition of the
UxDog wrapper class.

Writing the Private Header File
The private header file of a swidget class (the .cl.h file) defines its class and
instance structures. UIM/X uses these two structures to implement swidget classes
and instances.

The class structure’s fields contain the properties—such as pointers to data
structures and methods—common to all instances of the swidget class. The
instance structure contains the internal details of a swidget instance—for example,
pointers to the swidget’s Values and Expressions lists.

New swidget classes don’t add fields to the instance structure, since these fields
contain information used only by UIM/X. For this reason, the following discussion
focuses on the class structure.

The Class Structure

The organization of the class (and the instance) structure is determined by the
swidget class hierarchy from which the new class is derived. The class structure of
the dog swidget class, for example, contains the class fields defined by each of its
superclasses, as well as its own class fields.
14 UIM/X Advanced Topics

2

Note: Given the superclass of the new widget class, you can determine which
swidget class to subclass by consulting Appendix C, “Swidget Class Hierarchy.”
You can use this appendix to find the swidget class corresponding to the superclass
of the new widget class.

A swidget class defines its class fields in a separate structure called a ClassPart.
This ClassPart structure is then combined with the ClassPart structures of
each of the superclasses to form a Class structure. By convention, these structures
are named UxWidgetNameClassPart and UxWidgetNameClass in the private
header files of the UIM/X swidget classes.

The definitions of the ClassPart and Class structures for the dog swidget class
are shown below:

#include “prim.cl.h” /* swidget-superclass header
file */

/* Definition of the dog class structure */

typedef struct UxDogClassPart

{
Resource_t *RD_wagTime;
Resource_t *RD_barkTime;
Resource_t *RD_barkCallback;

} UxDogClassPart;

typedef struct UxDogClass

{

UxObjectClassPart object;

UxVeditableClassPart veditble;

UxShadowWidgetClassPart ShadowWidget;

UxRectObjectClassPart RectObject;

UxCoreClassPart Core;

UxPrimitiveClassPart primitive;

UxDogClassPart dog;

} UxDogClass;
UIM/X Advanced Topics 15

2

The UxPrimitiveClassPart structure is defined in prim.cl.h, the private
header file of the immediate superclass of the dog swidget class. Note that
prim.cl.h is included at the top of the dog class’ private header file.

The private header file of a swidget class includes the private header file of its
superclass. Thus prim.cl.h includes Core.cl.h, Core.cl.h includes
RectO.cl.h, and so on. Including prim.cl.h gives you access to the
definitions of the ClassPart structures for each of its superclasses.

Note: When you write the private header file for a new swidget class, you can
simply copy and modify the definitions of the ClassPart and Class structures
in the private header file of its superclass.

Class
Properties

The ClassPart structure of a swidget class contains a field of type
Resource_t* for each new property defined by the swidget class. The dog
swidget class, for example, defines three new properties. The ClassPart
structures of the superclasses of a swidget class define the properties inherited by
the swidget class.

The Resource_t* variables are pointers to the resource descriptors associated
with the new properties. A resource descriptor is a data structure defined by UIM/X
(see uimx_directory/custom/include/resource.h). By convention, these
variables are named RD_propertyName.

These resource descriptors are initialized and installed in the swidget’s source
(.cl.c) file.

Class Methods A swidget class inherits the methods of its superclasses. You can replace or
augment inherited methods.

A swidget class can also define new methods. The ClassPart structure contains
a field of type vhandle for each new method defined by the swidget class. The
vhandle variables are internal identifiers used by UIM/X. By convention, these
variables are named _MethodName. For example, if the dog class was to define a
new method named Woof, the ClassPart structure would look like this:

typedef struct UxDogClassPart

{
vhandle _Woof;
Resource_t *RD_wagTime;
Resource_t *RD_barkTime;
Resource_t *RD_barkCallback;

} UxDogClassPart;
16 UIM/X Advanced Topics

2

New class methods are registered in the swidget’s source (.cl.c) file.

The Instance Structure

As mentioned previously, a swidget class does not need to add fields to the instance
structure. However, an instance structure must still be defined for the swidget class.
The standard approach is to use the definition of the superclass’ instance structure:

typedef primitive dog;

In this example, the dog instance structure is defined to be the instance structure of
the primitive swidget class.

Global Variables

The private header file should contain extern declarations for the global
variables used by the class:

/* Declarations of global variables for dog class */

/* Swidget class ID returned by UxRegister_class

 * in dog.cl.c.

 */

extern Class_t UxC_dog;

/* Class property IDs returned by calls to

* UxFixed_class_prop in dog.cl.c.

 */

extern binptr UxP_DogRD_wagTime;

extern binptr UxP_DogRD_barkTime;

extern binptr UxP_DogRD_barkCallback;

/*
* Class method IDs (if any) returned by calls to

 * UxFixed_class_method in the .cl.c file. There are
none

* for the dog class.

*

* extern binptr UxM_Woof;

*/
UIM/X Advanced Topics 17

2

Summary

The private header file of a swidget class always has the same basic layout:

• An #include of the private header file of the swidget superclass.

• A typedef for the ClassPart structure.

• A typedef for the Class structure.

• A typedef for the instance structure.

• extern declarations for the global variables of the swidget class. These
variables are declared and initialized in the swidget’s source file.

• The swidget class ID (a Class_t variable).

• IDs of class properties.

• IDs of class methods.

Writing the Swidget Class Source File
The swidget class’ .cl.c file contains the function that defines the swidget class.
This function registers the swidget class with UIM/X and initializes the class
structure.

This section describes the organization of the .cl.c file, and tells you how to
write the function that registers the swidget class.

Include Files

The .cl.c file includes the following files:

• <Xm/Xm.h>, the general header file for Motif.

• The public header file of the widget class.

• "veos.h", for the declarations of VEOS (Internal Object System) functions.

• "valuesOf.h", which also includes "validate.h" and "utype.h",
for the declarations of the UxValuesOf functions, the UxValidate
functions, and the xtype and utype IDs. These names are referred to when you
initialize the resource descriptors of the new class properties.

• The private header file of the swidget class.
18 UIM/X Advanced Topics

2

The #include statements from dog.cl.c are shown below:

Global Variable Definitions

Following the #include statements, the .cl.c file should define the global
variables used to hold the swidget class ID, the class property IDs, and the class
method IDs. These variables are assigned values in the function that registers the
dog class.

The dog swidget class defines the following global variables:

Class_t UxC_dog = NULL_CLASS;

binptr UxP_DogRD_wagTime;

binptr UxP_DogRD_barkTime;

binptr UxP_DogRD_barkCallback;

• UxC_dog, the swidget class ID, is the value returned by
UxRegister_class.

• The binptr variables are the class property IDs returned by
UxFixed_class_prop.

• The dog class does not define any new class methods. Class method IDs,
which are also binptr variables, are returned by
UxFixed_class_method.

Defining the Swidget Class

The .cl.c file contains the definition of the function that defines the swidget
class. This function, conventionally named UxRegister_swidgetClass, is called
from the function UxAddUserDefClasses in user-class.c.

The function which defines the swidget class has to accomplish two main tasks:

1. Register the swidget class with UIM/X.

2. Initialize the class structure.

#include <Xm/Xm.h> /* Motif header file */
#include “Dog.h” /* Widget-class public header file */

#include “veos.h” /* object system */
#include “valuesOf.h” /* ValuesOf & Validator functions */

#include “dog.cl.h” /* private swidget-class header file */
UIM/X Advanced Topics 19

2

Registering the
Swidget Class

A swidget class is registered by calling UxRegister_class. This is the first
thing done by UxRegister_dog:

{

UxC_dog = UxRegister_class(“dog”,

UxC_primitive,

sizeof(dog),

sizeof(UxDogClass));

This call registers the dog swidget class as a subclass of the primitive swidget class
(UxC_primitive is the class ID of the primitive class). The value returned by
UxRegister_class is the ID of the dog class.

Initializing the
Class Structure

The class structure is initialized by a series of function calls. The initialization
process can be broken down as follows:

• Perform general class initialization by setting various UIM/X class properties.
These are internal class properties defined by UIM/X, and there are no
resource descriptors associated with these properties.

• Initialize the class resource descriptors:

• Inherit the class properties of the swidget superclasses.

• Initialize the resource descriptors of any new class properties and add them to
the class’ resource set (the PList of resource descriptors for the class
properties—see UxGetResourceSet in Appendix G, “Ux Builder
Functions”).

• Register any new or overriding class methods.

General Class
Initialization

A swidget class has a number of properties that can be set during class
initialization. In particular, there are two UIM/X class properties that must be set.
These are the class properties that specify the name of the swidget class public
header file and the name of the corresponding widget class:

/* General class initialization */

UxPutUxFilename(UxC_dog, “UxDog.h”);

UxPutToolKitClass(UxC_dog, (char *) dogWidgetClass
);
20 UIM/X Advanced Topics

2

There are a number of other UIM/X class properties that can be set:

• The name of the bitmap file containing the icon used to represent the swidget
class. This property is set by UxPutIconBitmap.

• The Class Editor properties. These class properties specify the specialized
editor to be used to edit instances of the class. These properties are set by the
UxPutClassEd* functions.

For example, suppose you wrote a specialized editor for dog swidgets. You could
install this editor by adding the following code in UxRegister_dog:

/* The popup function for the editor */

extern swidget UxPopupDogEditor();

UxPutClassEdName (UxC_dog, “Dog Editor...”);

UxPutClassEdMnemonic (UxC_dog, “d”);

UxPutClassEdIsFavorite (UxC_dog, 1);

UxPutClassEdForChild (UxC_dog, 1);

UxPutClassEdPopup (UxC_dog, UxPopupDogEditor);

Initializing the
Resource
Descriptors

There are two steps to initializing the resource descriptors of a swidget class. First,
the properties of the swidget superclass must be inherited. This is accomplished by
calling UxInheritResources:

 UxInheritResources(UxC_dog);

Note: UxInheritResources must be called before you add any new properties
defined by the swidget class. UxInheritResources gives the derived class (the dog
class in the above example) its own copy of the superclass’ resource set. If you
don’t call UxInheritResources, any properties you add will be added to the
resource set of the superclass.

This is because a derived class shares the resource descriptor of an inherited
property with the class that originally defined the property. Note that
UxPutClassResource and UxDefineResource can be used to give a
derived class its own resource descriptor for an inherited property.

Second, the resource descriptors of any new properties defined by the swidget class
must be initialized and added to the class’ resource set. Before you can do this,
however, you must obtain a class property ID:
UIM/X Advanced Topics 21

2

UxP_DogRD_wagTime = UxFixed_class_prop(

“RD_wagTime”,

UxC_dog,

T_PNTR,

Offset(UxDogClass, dog.RD_wagTime));

UxFixed_class_prop registers the wagTime property and returns its ID. The class
property ID is passed to UxPutClassResource, the function that adds the property’s
resource descriptor to the resource set:

UxPutClassResource(UxC_dog,

UxP_DogRD_wagTime,

UxDefineResource(

RD_NAME, “wagTime”,

RD_XTNAME, DogNwagTime,

RD_UTYPE, UxUT_int,

RD_XTYPE, UxXT_int,

RD_VALUESOF, UxValuesOfNonnegativeInt,

RD_VALIDATOR, UxValidateNonnegativeInt,

RD_DIVISION, UxSPECIFIC,

/* RD_PUT, UxStdPut_int, (default) */

/* RD_GET, UxStdGet_int, (default) */

/* RD_PASS, UxPASS0, (default) */

RD_END));

In the above code, UxDefineResource initializes a resource descriptor for the
wagTime property and returns its Resource_t*, which is then passed to
UxPutClassResource. This must be repeated for each new property defined
by the swidget class. See Appendix F, “Resource Descriptors,” for a description of
the fields in the resource descriptor.

Note: Note that UxDefineResource specifies the utype and xtype of the new
property. If a widget class declares a property for which there is no corresponding
UIM/X xtype, you must define a new xtype before initializing the resource
descriptor. See Defining New Xtypes.
22 UIM/X Advanced Topics

2

A derived class can be given its own resource descriptor for an inherited property.
For example, the following call to UxPutClassResource gives the dog class
its own resource descriptor for the background property defined by the core class:

UxPutClassResource(UxC_dog,

UxP_CoreRD_background,

UxDefineResource

(RD_EXAMPLE, UxGetRD_background(UxC_dog),

RD_END));

The parameter RD_EXAMPLE tells UxDefineResource to get a copy of the
resource descriptor specified by the following parameter and re-initialize its fields.

Registering
New Class
Methods

Suppose the dog class defined a class method named Woof. This would require a
number of changes to dog.cl.c:

• There would be a global declaration at the top of dog.cl.cfor the ID of the
class method:

binptr UxM_Woof;

• The UxDogClassPart structure would contain a field of type vhandle for
the class method:

typedef struct UxDogClassPart

{
vhandle _Woof
Resource_t *RD_wagTime;
Resource_t *RD_barkTime;
Resource_t *RD_barkCallback;

} UxDogClassPart;

• UxRegister_dog would contain a call to UxFixed_class_method to
register the Woof method:

UxM_Woof = UxFixed_class_method(“UxWoof”, UxC_Dog,
T_void, Offset(UxDogClass,dog._Woof));

• After the registration of the Woof method, UxInit_method would be
called to install the function to be used as the Woof method:

UxInit_method(UxC_dog, UxM_Woof, WoofFunction);
UIM/X Advanced Topics 23

2

The declaration of WoofFunction would also have to be made available in
dog.cl.c.

Class methods are invoked using the UxType_get_op functions (where Type is
one of PNTR, Void, or Int, and corresponds to the return type of the method). For
convenience, you may want to use a macro to invoke a class method. For example,
this macro definition could be added to dog.cl.h:

#ifndef UxWoof

#define UxWoof(obj) UxType_get_op(obj, UxM_Woof)(
obj)

#endif

Note: If you add a new method, you are responsible for making sure that the
method is not invoked by a swidget or class that does not know about the method.
For example, the Woof method cannot be invoked by the superclasses of the dog
class:
if (UxIsSubclass(sw, UxC_dog))UxWoof(sw);
24 UIM/X Advanced Topics

2

Summary

The .cl.c file for a swidget class has this basic structure:

• •#include statements for the required header files:

• <Xm/Xm.h>

• The public header file of the widget class.

• "veos.h"

• "valuesOf.h"

• The private header file of the swidget class.

• Global declarations for the variables used by the swidget class:

• A Class_t variable for the swidget class ID.

• binptr variables for the class property and class method IDs.

• The definition of the function UxRegister_class. This function does the
following:

• Registers the class by calling UxRegister_class.

• Sets UIM/X class properties by calling UxPutUxFilename and
UxPutToolKitClass.

• Inherits properties by calling UxInheritResources.

• Registers new properties by calling UxFixed_class_prop.

• Initializes the resource descriptors for new properties by calling
UxDefineResource, and installs the resource descriptors by calling
UxPutClassResource.

• Registers new class methods.

Writing the Public Header File
The public header file for a swidget class contains the conditional definitions of
C++ class bindings, design-time, and run-time macros:

• UxPut and UxGet macros for setting and retrieving the values of the new
properties defined by the swidget class.

• UxCreate macros for creating instances of the new swidget class.

• C++ class declarations.
UIM/X Advanced Topics 25

2

The design-time macros are used in code compiled with the -DDESIGN_TIME
flag, namely UIM/X. The run-time macros are used in applications compiled from
generated code.

Note: When you compile generated code, you define the symbol DESIGN_TIME
only if you want to link your application with UIM/X.

The public header files use an #ifdef … #else … #endif construct to
conditionally define the macros. The #ifdef directive tests whether or not the
symbol DESIGN_TIME is defined. For example, UxDog.h, the public header file
for the dog swidget class, has the following structure:

#ifndef UXDog_INCLUDED

#define UXDog_INCLUDED

#include “Dog.h”/* Widget class public header file */

#include “UxPrim.h”

#if defined(__cplusplus) && !defined(XT_CODE)

/* Class declaration */

/* Constructors */

/* Initialisation */

/* Resource accessor functions */

#endif /* __cplusplus */

#ifdef DESIGN_TIME

#if defined(__cplusplus) && !defined(XT_CODE)

/* extern binding */

#endif /* __cplusplus */

/* Design-time UxGet and UxPut macros */

/* Design-time create macro */

#else

#if defined(__cplusplus) && !defined(XT_CODE)

/* Constructors */

/* Initialization */

#endif /* __cplusplus */
26 UIM/X Advanced Topics

2

/* Run-time UxGet and UxPut macros */

/* Run-time create macro */

#endif /* DESIGN_TIME */

#endif /* UXDog_INCLUDED */

This example shows the include files required by a public header file:

• The public header file of the corresponding widget class (UxDog.h above)
must be included.

• The public header file of the swidget superclass (UxPrim.h above) must be
included if the symbol DESIGN_TIME is defined.

Design-Time Macros

For each new property defined by the swidget class, the public header file must
define design-time UxPut and UxGet macros:

/* Design-time UxGet and UxPut macros for DogNwagTime
*/

extern binptr UxP_DogRD_wagTime;

#define UxGetWagTime(sw) \

UxGET_int(sw, UxP_DogRD_wagTime, “wagTime”)

#define UxPutWagTime(sw, val) \

UxPUT_int(sw, UxP_DogRD_wagTime, “wagTime”, val)

In general, the design-time UxGet and UxPut macros should use the UxGET_type
and UxPUT_type functions corresponding to the utype of the property. For
example, if the utype of a property is UxUT_string, then the UxGET_string and
UxPUT_string functions should be used.

Note that an extern declaration of the class property ID is required.

You must also define a macro for creating instances of the swidget class in UIM/X:

/* Design-time create macro */

extern Class_t UxC_dog;

#define UxCreateDog(name, parent) \

UxCreateSwidget(UxC_dog, name, parent)
UIM/X Advanced Topics 27

2

Design-Time C++ Member Functions

For each new property defined by the swidget class, the file uxddcppMF.cc must
define Get and Set accessor member functions for design-time use. For example:

int UxDog::GetWagTime() const

{ return UxGET_int(UxThis, UxP_DogRD_wagTime,
“wagTime”); }

void UxDog::SetWagTime(int val)

{ UxPUT_int(UxThis, UxP_DogRD_wagTime, “wagTime”,
val); }

In general, the bodies of these member functions should be equivalent to the bodies
of the corresponding design-time macros.

You must also define a parameterless constructor, a parametered constructor, and a
CreateSwidget member function for the class. For example:

// Constructors
UxDog::UxDog() {};
UxDog::UxDog(const char* name, swidget uXParent)
{

CreateSwidget(name, uXParent);
};

Run-Time Macros

For each new property defined by the swidget class, the public header file must also
define run-time UxPut and UxGet macros:

/* Run-time UxGet and UxPut macros for DogNwagTime */

#define UxGetWagTime(sw) \

(int) UxGetProp(sw, DogNwagTime)

#define UxPutWagTime(sw, val) \

UxPutProp(sw, DogNwagTime, (XtArgVal)(val))

You can use UxGetProp and UxPutProp when no run-time conversion of
property values is required. Run-time conversion of property values is
28 UIM/X Advanced Topics

2

required when the xtype and utype of a property differ—that is, when the swidget
and the widget don’t use the same data type to represent a property value. Note that
the value returned by UxGetProp must be cast to the appropriate type.

When run-time conversion of property values is required, the macros must use
UxDDGetProp and UxDDPutProp.

You must also define a macro for creating instances of the swidget class in
compiled generated code:

/* Run-time create macro */

#define UxCreateDog(name, parent)
\UxCreateSwidget(name, dogWidgetClass, parent)

Run-Time C++ Member Functions

For each new property defined by the swidget class, the public header file must also
contain Get and Set accessor member functions for run-time use. For example:

inline int UxDog::GetWagTime (void) const

{ return (int)DDGetProp(DogNwagTime);}

inline void UxDog::SetWagTime (int val)

{ DDSetProp(DogNwagTime, ((XtArgVal)(val)));};

inline int UxDog::GetBarkTime (void) const

{ return (int)DDGetProp(DogNbarkTime);}

inline void UxDog::SetBarkTime (int val)

{ DDSetProp(DogNbarkTime, ((XtArgVal)(val)));};

In general, the bodies of these member functions should be equivalent to the bodies
of the corresponding run-time macros.

You must also define a parameterless constructor, a parametered constructor and a
CreateSwidget() member function for the class. For example:
UIM/X Advanced Topics 29

2

// Constructors

inline UxDog::UxDog(void) {};

inline UxDog::UxDog(const char* name, swidget
uXParent)

{

 CreateSwidget(name, uXParent);
};

Note: The design-time UxPut and UxGet macros as well as the design-time C++
accessor member functions for existing properties are defined in the public header
files of the UIM/X swidget classes. The run-time macros are defined in the files
UxPutsMF.h and UxGetsMF.h in uimx_directory/custom/include.

Summary

The public header file of a swidget class should contain the following elements:

• An #include of the public header file of the widget class.

• Definitions of the design-time macros for the swidget class:

• UxPutProperty and UxGetProperty macros for setting and retrieving the
values of the new properties defined by the swidget class.

• A UxCreateSwidget macro for creating instances of the swidget class in
UIM/X.

• Definitions of the run-time macros for the swidget class:

• UxPutProperty and UxGetProperty macros for setting and retrieving the
values of the new properties defined by the swidget class.

• A UxCreateSwidget macro for creating instances of the swidget class in
generated code.

• Definitions of the run-time C++ accessor member functions for the swidget
class:

• SetProperty and GetProperty macros for setting and retrieving the
values of the new properties defined by the swidget class.

• A CreateSwidget constructor for creating instances of the swidget class
in generated code.
30 UIM/X Advanced Topics

2

In addition, the following should be added to the file uxddcppMF.cc:

• Definitions of the design-time C++ accessor member functions for the swidget
class:

• SetProperty and GetProperty macros for setting and retrieving the
values of the new properties defined by the swidget class.

• A CreateSwidget constructor for creating instances of the swidget class
in generated code.

Building UIM/X
You can use the makefile uimx_directory/custom/src/Makefile to compile
the source for the new widget and swidget classes and link them with UIM/X.

If you have the source for the widget class, the WIDGET_OBJECTS must list the
object files for the new widget class. The macro SWIDGET_OBJECTS must list the
object files for the swidget class. For example, you would define these macros as
follows to build a version of UIM/X that supports the Dog and Square widget
classes:

WIDGET_OBJECTS = Dog.o Square.o

SWIDGET_OBJECTS = dog.cl.o square.cl.o

If you have only the header files and library for a new widget class, you must
modify the makefile to point to these files. You can use the X_CFLAGS macro to
specify the include path, and the UX_LIBS macro to specify the library:

X_CFLAGS = -I/usr/include/X11R5 -I/where/they/are

UX_LIBS = ExistingFLAGS -L/where/they/are -lXfwf

As well, you would have to compile and link any of the template .c files you
have modified. See Using the Custom Makefile for more about using this makefile.

Creating Widgets from UIM/X’s Menus
In UIM/X, users create widgets from the Create menus of the Project Window, the
Browser, and the Selected Widgets popup menu. You can add items to these Create
menus to allow users to create instances of a new widget class.

As well, you can add items to the Message Window and Work Area option menus
of the Main Window Editor. These option menus create the message window and
work area elements of a main window.
UIM/X Advanced Topics 31

2

Customizing UIM/X’s Create Menus
UIM/X’s Create menus list the types of widgets the user can create. Figure 2-1
shows the Create menu for custom widgets (custom widgets are new widget classes
derived from the base Xt and Motif widget classes).

The Create menus are defined by the functions in
uimx_directory/custom/src/cr-menus.c. By modifying this file, you can
customize the Create menus:

• You can add new menu items. For example, when you integrate new widget
classes with UIM/X, you can let users create instances of the new classes from
the Create menus.

• You can remove menu items. For example, you might want to remove the
menu items for hidden classes.

• You can rearrange the Create menus. In a custom GUI builder, you might want
to rename and rearrange the items on the Create menus.

Figure 2-1 Example of a Create Menu
32 UIM/X Advanced Topics

2

In uimx_directory/custom/src/cr-menus.c, there is a function for each
Create menu:

• The Create menus of the Project Window.

• The Create menus of the Browser.

• The Create menus of the Selected Objects popup menu.

The following table lists the functions that define UIM/X’s Create menus. Each of
these functions contains a series of calls to UxAddToCreateMenu. Each call to
UxAddToCreateMenu adds an item to a menu. You customize the Create menus
by adding, removing, and modifying calls to UxAddToCreateMenu.

The following code adds the Square menu item (see Figure 2-1) to the Project
Window Custom menu. This code is taken from
uimx_directory/contrib/DogAndSquare/cr-menus.c.

Interface Create menu Function

Project Window Shells
Managers
Dialogs Custom

UxSpecifyTopShellsMenu()
UxSpecifyTopManagersMenu()
UxSpecifyTopDialogsMenu()
UxSpecifyTopCustomMenu()

Browser Selected Objects
popup

Managers
Primitives
Gadgets
Custom Menus

UxSpecifyManagersMenu()
UxSpecifyPrimitivesMenu()
UxSpecifyGadgetsMenu()
UxSpecifyCustomMenu()
UxSpecifyMenusMenu()
UIM/X Advanced Topics 33

2

void UxSpecifyTopCustomMenu(casc_swgt, rowcol_swgt
)

swidget casc_swgt;

swidget rowcol_swgt;

{
extern Class_t UxC_square;

(void) UxAddToCreateMenu(rowcol_swgt,

“Square”,

“q”,

TRUE,

NULL,

UxC_square,

NULL);

}

34 UIM/X Advanced Topics

2

This code shows the general format of the functions that define the Create menus:

• There is an extern Class_t declaration for each swidget class for which
there is an item on the menu. The Class_t variables are the swidget class
IDs returned by UxRegister_class during class registration.

In the above example, UxC_square is the ID of the square swidget class.
This swidget class is registered in uimx_directory/contrib/DogAnd-
Square/square.cl.c.

A Class_t variable is required for each menu item that allows the user to
interactively create a widget—that is, by clicking, pressing, and dragging the
mouse pointer.

• UxAddToCreateMenu is called once for each item on a menu. For full
details, see the reference page for this function in Appendix G, “Ux Builder
Functions”. In the call to UxAddToCreateMenu in the above example:

• The first argument is the rowColumn swidget (the Custom menu pane)
passed to UxSpecifyTopCustomMenu by UIM/X.

• The next two arguments are the label and mnemonic of the menu item.
These strings can be defined in the UIM/X message system.

• The fourth argument specifies whether or not the menu item creates a
top-level widget. The value TRUE indicates that a top-level square widget
will be created.

• The two NULL arguments tell UIM/X that there are no user-supplied
functions to be called before and after the user creates a square widget.

• The sixth argument, the swidget class ID UxC_square, tells UIM/X
what type of widget to create when the user selects the item from the
menu.

If this argument is NULL, the widget is not interactively created using the
mouse. NULL is passed when you want to pop-up a specialized
editor—such as the Menu Editor—to create the widget. This can be done
by passing the popup function for the editor as the fifth argument to
UxAddToCreateMenu. See UxSpecifyMenusMenu in
uimx_directory/custom/src/cr-menus.c.
UIM/X Advanced Topics 35

2

Customizing the Browser’s New Option
When the Browser is the start-up interface, its File menu contains an item named
New. This menu item creates a widget. The class of widgets created by the New
option is specified in the function UxSpecifyTheNewMenu:

swidget UxSpecifyTheNewMenu(rowcol_swgt)

swidget rowcol_swgt;

{

extern Class_t UxC_drawingArea;

extern void UxSetUntitledName();

swidget new;

new = (swidget) UxAddToCreateMenu(rowcol_swgt,

CGETS(MS_WB_NEW, DS_MS_WB_NEW),

CGETS(MS_WB_NEW_ACC, DS_MS_WB_NEW_ACC),T

RUE,

(void (*)()) NULL,

UxC_drawingArea,

UxSetUntitledName);

return new;

}

This function is also defined in uimx_directory/custom/src/cr-menus.c.

By default, the New item creates DrawingArea widgets. To create an instance of
another widget class, simply replace both occurrences of UxC_drawingArea
with another swidget class ID. The function UxSetUntitledName generates a
unique name for a widget.

Customizing the Main Window Editor’s Option Menus
The Main Window Editor has option menus for creating the work window and
message window components of a main window. You can customize these option
menus.

The file uimx_directory/custom/src/cr-mwe.c contains the two functions
that create the Main Window Editor’s option menus.
36 UIM/X Advanced Topics

2

Each of these functions is a series of calls to the functions UxAddToMweEditor
and UxAddMweEditorSeparator. Refer to the reference pages for these two
functions in Appendix G, “Ux Builder Functions”.

For example, in uimx_directory/custom/src/cr-mwe.c, the following code
defines the Message Window option menu:

void UxCreateMweMsgWindow(ptr)
void *ptr;

{

extern Class_t UxC_separator,

UxC_label,

UxC_text,

UxC_textField;

UxAddToMweEditor(ptr, CGETS_MWE(NONE), (Class_t)0);

UxAddMweEditorSeparator(ptr);

UxAddToMweEditor(ptr, CGETS_MWE(LABEL), UxC_label);

UxAddToMweEditor(ptr, CGETS_MWE(TEXT), UxC_text);

UxAddToMweEditor(ptr,CGETS_MWE(TEXTFIELD),
UxC_textField);

}

• The Class_t variables are the swidget class IDs returned by UxRegister_class
during class registration. The Class_t variable passed to UxAddToMweEditor
tells UIM/X the class of the swidgets created by the menu item.

• The first call to UxAddToMweEditor adds the None item to the Message
Window option menu. None destroys any previously selected Message
Window swidget. This behavior is achieved by passing (Class_t)0 as the
swidget class ID.

• UxAddMweEditorSeparator adds a separator between the first two items
on the option menu.

• The subsequent calls to UxAddToMweEditor add menu items for label,
text, and textField swidgets.
UIM/X Advanced Topics 37

2

The CGETS_MWE macro retrieves Main Window Editor messages from the
message catalog. This macro is defined in
uimx_directory/custom/include/cat_macros.h. It calls the macro
UXCATGETS which is defined in
uimx_directory/custom/include/uimx_cat.h.

When you add your own menu items, you can just pass the actual message strings,
unless you have set up catalog messages.

You can customize the Message Window option menu by modifying
UxCreateMweMsgWindow. For example, adding the following code to
UxCreateMweMsgWindow would add the Dog menu item to the Message
Window option menu:

extern Class_t UxC_dog;

UxAddToMweEditor(ptr, “Dog”, UxC_dog);

Figure 2-2 shows the Message Window option menu obtained by adding this code
to UxCreateMweMsgWindow.

Figure 2-2 Message Window Option Menu

Defining New Xtypes
The data types used to store the property values of a swidget are not necessarily the
same as the data types used by the actual widget (in UIM/X, most property values
are stored as strings and integers).

UIM/X provides a mechanism for converting between the different data types
expected by swidgets and widgets. In UIM/X, each property has a utype and an
xtype. The utype specifies the data type of a swidget property. The xtype specifies
the data type and possible values of a widget property. For each utype-xtype pair,
UIM/X defines a converter function to convert values between the utype and the
xtype.
38 UIM/X Advanced Topics

2

If a widget class declares a property for which there is no corresponding xtype, you
must do the following before initializing a resource descriptor for the property:

• Define a new xtype. The ID of the xtype is stored in the resource descriptor of
the property.

• Define and register a converter function for the new xtype.

As well, you may want to supply new Validator and ValuesOf functions for the
property. A Validator function validates property values. A ValuesOf function
provides a textual description of the allowable property values.

UIM/X uses the ValuesOf functions to compose error messages and construct
option menus (if a ValuesOf function returns a non-zero value, UIM/X constructs
an option menu for the property). The error messages are displayed in the Message
Window when an invalid property value is entered, and the option menus are used
in the Property Editor to set property values.

You specify the names of the ValuesOf and Validator functions in the call to
UxDefineResource that initializes the property’s resource descriptor.

Enumerated Xtypes

An enumerated xtype describes a widget property whose value range is restricted to
a small set of values. For example, the xtype UxXT_Boolean describes a widget
property whose value is either 0 or 1.

To define an enumerated xtype, fill in the file user-xtype.c:

1. Include the public header file of the widget class.

2. Declare a global UxXT_ variable of type int to hold the ID of the new xtype.

3. Define three static arrays. These arrays describe the values expected by the
swidget, the values expected by the widget, and the names of constants defined
for the values expected by the widget. These arrays are used for type conver-
sion and code generation.

4. Define a converter function (only if the widget expects values of types other
than int or unsigned char). The reference page for UxAddConv in
Appendix G, “Ux Builder Functions,” describes the required format.

If the widget expects values of type int or unsigned char, you can
use the built-in converters UxStringToIntEnum and
UxStringToCharEnum.

5. Define new ValuesOf and Validator functions for the new xtype.
UIM/X Advanced Topics 39

2

6. Add a call to UxAddEnumType in the function UxAddUserDefEnum-
Types to register your new xtype with UIM/X. The value returned by UxA-
ddEnumType is stored in the UxXT_ variable declared in step 2 above.

Example The Square widget class declares a new property called MajorDimension. The
possible values of this property are SquareWIDTH and SquareHEIGHT (these
two constants are defined in Square.h). The definition of a new xtype for this
property is contained in the file
uimx_directory/contrib/DogAndSquare/user-xtype.c.

First, the public header file for the widget class is included:

#include “Square.h”

A global variable is then declared to hold the ID of the new xtype:

int UxXT_MajorDimension;

Next, three static arrays are defined for the new xtype:

static char *uMajorDimension[] = {

“width”, “height”
};

static int xMajorDimension[] = {

SquareWIDTH, SquareHEIGHT};

static char *dMajorDimension[] = {

“SquareWIDTH”, “SquareHEIGHT”};

• uMajorDimension contains the string values accepted by a swidget.

• xMajorDimension contains the values accepted by the widget.

• dMajorDimension contains the constants defined by Motif for the possible
property values.

These three arrays are passed to UxAddEnumType. The ValuesOf and Validator
functions defined for the new xtype refer to the array uMajorDimension.
40 UIM/X Advanced Topics

2

The ValuesOf function defines the option menu given to the property in the
Property Editor.

int UxValuesOfMajorDimension(list, n)

char ***list;

int *n;

{

*list = uMajorDimension;

*n = XtNumber(uMajorDimension);

return (*n);

}

The Validator function simply checks that a supplied value is one of the strings
contained in uMajorDimension:

int UxValidateMajorDimension(sw, val)
swidget sw;
char *val;

{

int i, n = XtNumber(uMajorDimension);

if (val != NULL)

{
for (i = 0; i < n; i++)
{

if (strcmp(val, uMajorDimension[i]) == 0)

return (NO_ERROR);

}

}

return (ERROR);

}

UIM/X Advanced Topics 41

2

Note: The resource descriptor for the property majorDimension contains pointers
to the UxValuesOfMajorDimension and UxValidateMajorDimension
functions. These function pointers are stored in the resource descriptor by
UxDefineResource. See
uimx_directory/contrib/DogAndSquare/square.cl.c.

Finally, the new xtype definition is registered with UIM/X by calling
UxAddEnumType:

void UxAddUserDefEnumTypes()
{

UxXT_MajorDimension = UxAddEnumType(
SquareNmajorDimension,

sizeof(int),

xMajorDimension,

uMajorDimension,

dMajorDimension,

XtNumber(uMajorDimension),

UxStringToIntEnum);

}

Note that this call to UxAddEnumType installs the built-in converter
UxStringToIntEnum for the new xtype.

Non-Enumerated Xtypes

Non-enumerated xtypes can take on any value that can be stored in the data type of
the widget property. Like enumerated xtypes, non-enumerated xtypes are defined
by filling in the file user-xtype.c:

1. Declare a global UxXT_ variable of type int to hold the ID of the new xtype.

2. Define a converter function. The reference page for UxAddConv in

3. Appendix G, “Ux Builder Functions,” describes the required format.

4. Define new ValuesOf and Validator functions, if necessary.

5. Add a call to UxAddXtype in the function UxAddUserDefTypes to regis-
ter your new xtype with UIM/X. The value returned by UxAddXtype is
stored in the UxXT_ variable declared in step 1.

6. Add a call to UxAddConv in the function UxAddUserDefTypes to register
the converter function for the new xtype.
42 UIM/X Advanced Topics

2

Overriding Inherited Class Methods
UIM/X operates on widgets through a suite of methods defined in the swidget
classes. For example, when the user attempts to create a new widget as a child of an
existing widget, a method is called on the proposed parent to verify that it can
accept such a child. Some classes, such as drawingArea, accept most children.
Other classes, such as scrolledWindow, can have only a fixed number of children.
Each class has its own version of the method that implements the class-specific
rules.

A swidget class inherits the methods of its superclasses. You can override these
inherited class methods. Adding new class methods was discussed earlier in this
chapter, in Defining the Swidget Class.

To override an inherited method, you must define a function and install it as the
class method. This function can either augment or replace the existing class
method. To augment a class method, use UxType_get_op to invoke a superclass
method, and then execute any class-specific code:

#include “prim.cl.h”

void UxDogApply(swidget sw)

{

/* Invoke superclass method */

UxVoid_get_op(UxC_primitive, UxM_UxApply) (sw
);

/* Dog-specific stuff

*/printf(“Woof ! Woof !\n”);

}

If the function does not invoke the inherited method, then the derived class is
effectively replacing the inherited method.

You install a function as a class method using the function UxInit_method:

UxInit_method(UxC_dog, UxM_UxApply, UxDogApply)

UxInit_method must be called from the function which registers the class
(UxRegister_dog, in this example).

Note: A function installed as an overriding method must have the same return type
and number and type of arguments as the inherited method.
UIM/X Advanced Topics 43

2

Generating Code and Reading UIL
To generate code or load UIL code for a new widget class, you must extend the
uxcgen and uxreaduil utilities. To do this, you must define the new widget
class and its properties in the file user-cg-cl.c.

This file contains the stub function CgInitUserDefWidgetClasses. You
enter the definition of a new class and its properties in this stub function as follows:

• Declare a static variable of type WGT_CLASS_INFO. The
WGT_CLASS_INFO structure holds the definition of a new widget class. The
following table lists the fields in the WGT_CLASS_INFO structure.

1. You set this field when you want to extend the uxreaduil utility.

• Declare a static array of type RES_INFO. The RES_INFO structure holds
the definition of a property. This array must contain an element for each new
property defined by the new widget class. Note that the WGT_CLASS_INFO
structure contains a pointer to the array of RES_INFO structures. The
following table lists the fields in the RES_INFO structure.

Field Description
char *name The name of the swidget class.
char *filename The base name for the name of the public

header file of the swidget class. This base
name is put in initial caps, prefixed with
Ux, and given a .h extension. For
example, dog becomes UxDog.h.

char *supername The name of the swidget superclass.
char *xt_name The name of the widget class.
char *uil_name1 The name of the UIL class. The default

name is
XmClassName.

char *xt_filename The public header file for the widget class.
int dialog 1 if this is a dialog, 0 otherwise.
int num_resources The number of new properties (the number

of
elements in the array of RES_INFO
structures).

RES_INFO *resources The array of RES_INFO structures.
44 UIM/X Advanced Topics

2

• Add an extern declaration for each new xtype (the UxXT_propertyName
variables) defined in user-xtype.c.

• Fill in the fields of a RES_INFO structure for each new property. Fill in the
fields of the WGT_CLASS_INFO structure for the new widget class.

• Call CgEnterWidgetClassInfo. The address of the WGT_CLASS_INFO
structure must be passed to CgEnterWidgetClassInfo.

Field Description

char *name
The name of the property (the string entered into the resource
descriptor with the RD_NAME parameter).

char *xt_name The Xt name of the property.

char *xt_name_def
The defined constant used in Xt code for this property. The
default is XmNpropertyName.

int callback 1 if this property is a callback, 0 otherwise.

int constraint 1 if this property is a constraint, 0 otherwise.

int rt_conv 1 if this property needs run-time conversion, 0 otherwise.

char *converter The name of the converter function (for Xt code).

int xtype ID of this resource’s XTYPE.

int wgt_val 1 if this property is of type Widget, 0 otherwise.

int wgt_class_val 1 if this property is of type WidgetClass, 0 otherwise.

int pass
0, 1, or 2. Corresponds to the Pass field in the resource
descriptor.

int res-type The type of resource: NORMAL or SYNTHETIC.

char *list_count_res
The name of the property that counts the number of list items
(for example, selectionArrayCount or listItemCount).

char *attach_res
The name of the attachment property associated with a
widget-valued constraint resource.
UIM/X Advanced Topics 45

2

The code shown below declares and fills in the RES_INFO and
WGT_CLASS_INFO structures for the Dog widget class:

void CgInitUserDefWidgetClasses()

{

static WGT_CLASS_INFO dog_class;

static RES_INFO dog_res[3];

dog_res[0].name = “barkTime”;

dog_res[0].xt_name_def = “DogNbarkTime”;

dog_res[1].name = “wagTime”;

dog_res[1].xt_name_def = “DogNwagTime”;

dog_res[2].name = “barkCallback”;

dog_res[2].xt_name_def = “DogNbarkCallback”;

dog_res[2].callback = 1;

dog_class.name = “dog”;

dog_class.filename = “dog”;

dog_class.supername = “primitive”;

dog_class.xt_name = “dogWidgetClass”;

dog_class.xt_filename = “Dog.h”;

dog_class.num_resources = 3;

dog_class.resources = dog_res;

CgEnterWidgetClassInfo(&dog_class);

}

Note that the Dog (and the Square) examples do not set the uil_name field of the
WGT_CLASS_INFO structure. This is because the uxreaduil utility is not
extended in these examples.

Note: The RES_INFO and WGT_CLASS_INFO structures are defined in
uimx_directory/custom/include/class_info.h.
46 UIM/X Advanced Topics

2

Building uxcgen

You can use the makefile uimx_directory/custom/src/Makefile to compile
user-cg-cl.c and link it into an extended version of uxcgen. Note that if
you define new xtypes, you must also compile and link the file user-xtype.c.
See Using the Custom Makefile.

Building uxreaduil

You can use the makefile uimx_directory/custom/src/Makefile to compile
user-cg-cl.c and link it into an extended version of uxreaduil. Note that
if you define new xtypes, you must also compile and link the file
user-xtype.c. See Using the Custom Makefile.

Note: There is no point in extending uxreaduil unless you have extended the
UIL interpreter to handle the new widget class.

Extending the Ux Convenience Library
To use the Ux Convenience Library in code generated for a new widget class, you
must register the properties that need run-time conversion. A property needs
run-time conversion if the widget and the swidget expect different types.

You register properties for run-time conversion using UxDDInstall. The file
user-rtime.c contains a stub function where you can add calls to
UxDDInstall:

void UxAddRuntimeResources()

{
extern int UxXT_MajorDimension;

UxDDInstall(SquareNmajorDimension,
UxUT_string,UxXT_MajorDimension);

UxDDInstall(SquareNmakeSquare,
UxUT_string,UxXT_Boolean);}

This code registers the two properties of the Square widget class for run-time
conversion.
UIM/X Advanced Topics 47

2

Building the Ux Convenience Library

You can use the makefile uimx_directory/custom/src/Makefile to compile
user-rtime.c and replace it in the Ux Convenience Library. See Using the
Custom Makefile.

Summary of Naming Conventions
The following table summarizes the naming conventions for the variables, data
structures, and functions associated with a swidget class.

Name Description
UxClassClassPart The name of the ClassPart structure. This structure

contains the new fields added to the class structure by a
swidget class. For example, UxDogClassPart.

UxClassClass The name of the class structure. For example,
UxDogClass.

UxClass The name of the instance structure. For example, UxDog.

UxC_class The name of the Class_t variable that holds the
swidget class ID returned by UxRegister_class. For
example, UxC_dog.

RD_propertyName A pointer to the resource descriptor for the property. For
example, RD_wagTime.

UxP_classRD_propertyNam
e

The class property ID returned by
UxFixed_class_prop. For example,
UxP_DogRD_wagTime.

_MethodName The vhandle of a class method.
UxM_MethodName A class method ID returned by

UxFixed_class_method.
UxRegister_class The function which registers the class and initializes the

class structure. For example, UxRegister_dog.
48 UIM/X Advanced Topics

Integrating Components 3
Overview

You can use UIM/X to build applications with components you have built
yourself or purchased from other vendors. To do this, you must integrate your
components with UIM/X. The integration procedure involves the following
steps:

1. Preparing the integration code for your components.

2. Compiling the integration code.

3. Augmenting UIM/X with this compiled code.

4. Putting your components in a palette so you can distribute them to users.

To help you understand how to integrate components with UIM/X, this chapter
provides a conceptual overview of the tasks performed by the integration code.
It also explains how to augment UIM/X with the integration code and put your
components in a palette.

“Writing Initialization Code for UIM/X” dissects the integration code for a
typical component.
UIM/X Advanced Topics 49

INTEGRATING COMPONENTS
Understanding What to Do 3
Understanding What to Do
Integrating a component with UIM/X is a lot like integrating a widget. To
integrate a widget, you need a swidget. UIM/X uses swidgets to represent
widgets. A swidget is a shadow widget—a widget’s inseparable companion.
UIM/X uses swidgets to hold the code and data it needs to manipulate widgets.

To integrate a component, you also need a swidget. In fact, you need a special
kind of swidget called an adapter swidget. An adapter swidget connects
UIM/X to the widgets in a component.

When you integrate a widget, you need to write the code that defines the
swidget. You don’t have to do this when you integrate a component. UIM/X
includes a convenience function for creating adapter swidgets (see the
reference page for UxAdapterSwidget() in Appendix G, “Ux Builder
Functions”).

What you do have to do is write some integration code that wraps the
component in a UIM/X-compatible interface. UIM/X, via an adapter swidget,
operates on the component through this interface.

The integration code presents your component to UIM/X as if it was actually
developed in UIM/X. In other words, the integration code gives the illusion of
being the generated code for a UIM/X Component.

This procedure is similar to augmenting UIM/X with the generated code for
UIM/X Components (components created within UIM/X). The difference is
that you must write, rather than generate, some integration code for each of
your components.

Wrapping Components

A component defines a public interface consisting of a constructor and a suite
of methods. The methods set and retrieve property values, perform operations
on the component, and register event procedures (callbacks).

To integrate a component, you write both a C and a C++ version of a wrapper
around the component. The C wrapper is a set of methods implemented using
the UIM/X Method system. The C++ wrapper is a C++ class.
50 UIM/X Advanced Topics

INTEGRATING COMPONENTS
Wrapping Components 3
The wrappers give UIM/X and generated code a way to operate on the
component. UIM/X and generated C code use the C wrapper and generated
C++ code uses the C++ wrapper. Figure 3-1 shows how the wrapper code
provides an interface between a component and both UIM/X and generated
code.

Figure 3-1 Wrapping a Component
UIM/X Advanced Topics 51

INTEGRATING COMPONENTS
Understanding What to Do 3
Wrapping a component for integration with UIM/X involves these tasks:

• Writing the C wrapper constructor. This function is like the Interface
Function of a UIM/X Component. In UIM/X, the name of this function is
the value of an instance’s Constructor property. UIM/X and generated
code calls the wrapper constructor to create instances of the component.

• Writing the C++ wrapper constructor.

• Writing the wrapper methods. These are functions that wrap the real
methods of the component, and are used in UIM/X and in generated C
code.

For some components, you will need to write wrapper methods that over-
ride methods inherited from the UxVisualInterface base class, such as
_set_x(), _get_x(), childSite(), and Manage().

• Getting a class code for the component. You need a class code to be able
to register methods for the component in the UIM/X Method system.

You use UxNewInterfaceClassId() to get a class code for your
base component class, and UxNewSubclassId() to get class codes for
its subclasses. This creates a class hierarchy in UIM/X that parallels your
component class hierarchy. In particular, this allows methods to be inher-
ited within UIM/X.

• Registering the wrapper methods and their signatures. You do this by
calling UxMethodRegister() and
UxMethodSignatureRegister() with the class code of the
component.

• Defining the context structure used by UIM/X to create subclasses of the
component.

• Defining the C++ wrapper class. This class is used in generated C++ code
and when the wrapper implementation itself is compiled. The member
functions of the class wrap the real methods of the component.

For some components, you will need to write member functions that over-
ride virtual member functions inherited from the UxVisualInterface base
class, such as _set_x(), _get_x(), childSite(), and Man-
age().

• Defining C and C++ bindings. These bindings are macros whose
definitions are conditional on the language being used.
52 UIM/X Advanced Topics

INTEGRATING COMPONENTS
Creating Adapter Swidgets 3
The C bindings use the UIM/X Method system (UxMethodLookup())
to invoke the wrapper methods. The C++ bindings call member functions
of the component’s wrapper class. The binding macros are used by UIM/X
and by generated code to set and retrieve properties and to manipulate the
component.

Creating Adapter Swidgets

UIM/X handles all of the interface elements in a project using swidgets. Each
component must have a constructor function that returns a swidget. When you
build components inside UIM/X, this swidget is supplied by the generated
code. For your other components, you must create a special adapter swidget to
connect UIM/X to the Motif elements in your components.

An adapter swidget is a special class of swidget that represents an instance of a
component in UIM/X. The adapter swidget holds on to the design-time (or
run-time, for generated code) swidget information such as the class code used
for method dispatch.

You obtain this class code by calling UxNewInterfaceClassId() or
UxNewSubclassId(). You attach methods to the adapter swidget by
registering methods against this class code.

To create an adapter swidget, you use UxAdapterSwidget(). This
function requires a Motif widget (usually the controlling widget of the
component) and a class code.

Managing Instances

The C wrapper constructor must not manage (in the Xt sense of the word) the
widgets of the underlying component. UIM/X expects the C wrapper
constructor to create the component, call UxAdapterSwidget(), and
return an adapter swidget. At that point, the component should have created its
widgets, but not managed them.

UIM/X manages the component by invoking the method
VisualInterface_Manage() on the component. Components inherit a
version of this method from the UxVisualInterface base class, but can provide
their own version if required.
UIM/X Advanced Topics 53

INTEGRATING COMPONENTS
Understanding What to Do 3
Designating a Child Site

Components that can accept children must define a childSite() method.
This method designates a child site by returning the swidget whose widget can
be used as the parent of the component’s children.

A component’s child site widget is usually the widget linked to the
component’s adapter swidget by UxAdapterSwidget(). If the child site
widget is some other widget, you must create another adapter swidget for that
widget.

Creating Instances of your Components

In UIM/X, you create an Instance when you reuse one interface in another
interface. The interface being reused is called a Component, and each use of
the Component is an Instance.

When you integrate your components with UIM/X, they can be used as
Components too. The user can build an interface with your components and
then reuse it by creating an Instance of it.

UIM/X calls the method UxCanBeAnInstance() to determine whether or
not the user can create an Instance of a component. If
UxCanBeAnInstance() returns False for a component, then the user can
not create an Instance of that component. This means that any interface where
the component is top-level cannot be reused as an Instance.

If UxCanBeAnInstance() returns True, or if the component has no such
method, UIM/X lets the user create an Instance of the component. So if you
don’t want the user to create Instances of one of your components, you must
define a method named UxCanBeAnInstance() for the component.
54 UIM/X Advanced Topics

INTEGRATING COMPONENTS
Defining Design-Time Methods 3
#ifdef DESIGN_TIME

int UxMessageDialog_UxCanBeAnInstance_Id = -1;

char* UxMessageDialog_UxCanBeAnInstance_Name
=“UxCanBeAnInstance”;

static int
_MessageDialog_UxCanBeAnInstance(swidget sw,

Environment *pEnv)

{

if (pEnv)

pEnv->major(CORBA::NO_EXCEPTION);

return 0;

}

#endif

Defining Design-Time Methods

In addition to writing wrapper methods for a component’s own methods, you
may have to implement some methods for UIM/X to use internally during
design-time.

The adapter swidget forwards some design-time actions to the underlying
component by translating them into methods. These design-time methods are
UxCheckChildren(), UxDrawHandles(), and
UxObjectToRecreate():
UIM/X Advanced Topics 55

INTEGRATING COMPONENTS
Overriding the Geometry-Handling Methods 3
• UxCheckChildren() determines whether or not the parent can accept
the proposed children. By default, the method rejects children if the parent
does not have a childSite() method.

char *UxCheckChildren(swidget parent, Environment
*pEnv,int nkids, Class_t *classes, swidget
*kids);

If parent can accept children, UxCheckChildren() returns NULL.
Otherwise, it returns an error message. The adapter relays the design-time
method UxWidgetCannotAcceptChildren() to this component
method.

• UxDrawHandles() draws selection handles on the component. By
default, it draws the selection handles on the widget passed to
UxAdapterSwidget().

void UxDrawHandles(swidget adapter, Environment
*pEnv);

The adapter relays the design-time method UxDrawHandles() to the
component method of the same name.

• UxObjectToRecreate() specifies the object to recreate when the
user edits one of the children of a component. By default, it returns the
adapter swidget for the component.

swidget UxObjectToRecreate(swidget
adapter,Environment *pEnv, swidget parent);

The adapter relays the design-time methods UxRecreateSwidget()
and UxRecreateParentOrChild() to this component method.

You use the convenience function UxAdapterDesignMethods() to
register one or more of these methods. See the reference page for

UxAdapterDesignMethods() in Appendix G, “Ux Builder Functions.”

Overriding the Geometry-Handling Methods
The UxVisualInterface base class is an abstract base class that defines accessor
methods for handling instance geometry, both during design time and in
generated code. It defines set and get accessors for the x, y, height, and
width properties of an instance. These properties appear as Core properties in
the Property Editor.
56 UIM/X Advanced Topics

INTEGRATING COMPONENTS
Adding Event Procedures 3
When you integrate components with UIM/X, you need to override these
accessor methods with versions that let the component handle geometry in its
own way.

Adding Event Procedures

Components provide methods for registering event procedures. From the point
of view of a component, an event procedure is like a property whose value
happens to be a function pointer. This function will be called when the
component recognizes that an event has occurred. The function must have the
signature expected by the component. For example, the signature for a
KeyDown event might be:

typedef void (*VwKeyDownEventProcedurePtr_t)
(VwGuiComponent *comp, void *user_data, short
*key, short state);

You could add event procedures as properties by defining set and get
accessors, but this would force the user to define external functions and then
enter function pointers directly in the Property Editor. A more elegant
approach is to give users access to an editor such as the UIM/X Callback
Editor.

Giving users a Callback Editor for event procedures is easy, but you must
follow this rule: all event procedures defined in UIM/X must have the standard
Xt callback signature:

typedef void (*XtCallbackProc)(Widget wid,
XtPointer client_data, XtPointer call_data);

If your component has an event procedure with a different signature, like the
KeyDown example, you must write a wrapper event procedure in the
integration code to bridge the gap between Xt-style callback procedures and
the actual event procedure defined by the component.

You can do this because the call_data argument of an XtCallbackProc
is meant to be a structure holding whatever arguments a particular callback
requires. So for an event procedure with special arguments, the wrapper event
procedure will transfer these arguments into a call data structure and pass them
along to the user’s callback. For the KeyDown event, the callback structure
would contain the fields key and state.
UIM/X Advanced Topics 57

INTEGRATING COMPONENTS
Overriding the Geometry-Handling Methods 3
You install the wrapper event procedure, not the callback function defined in
the Callback Editor, on the component. When the event occurs, the component
calls the wrapper event procedure, which composes a call to the user’s callback
function.

This explanation leaves several important questions unanswered. For example,
how do you install a wrapper event procedure? And how does UIM/X know to
use the Callback Editor for a given property? Finally, where does the wrapper
event procedure store the XtCallbackProc pointer? After all, doesn’t the
wrapper event procedure need this pointer every time an event occurs?

The answers to these questions define what you must do to give a component
an editable callback property in UIM/X:

1. To add an event procedure as a Behavior property, define a special type of
accessor method called a callback accessor. Callback accessors are named
AddEventNameProc(). In this method, you register an event procedure
with the component.

Note: You must use the AddEventNameProc() naming convention to define
a callback accessor. UIM/X examines the name of a method to determine
whether or not it is a callback accessor method.

• Define a callback structure to hold the arguments passed to the event
procedure by the component.

• Write the wrapper event procedure registered by the callback accessor.
This procedure stores the arguments received from the component in the
callback structure and then composes a call to the user’s callback function
(exactly how this is done is explained below). The callback structure is
passed as call data to the callback.

Defining the Event
Procedure

By defining a callback accessor named AddEventNameProc(), you are
telling UIM/X that the component has a property named EventName, and that
this property belongs in the Behavior category of the Property Editor. UIM/X
automatically makes the Callback Editor available for the property.
58 UIM/X Advanced Topics

INTEGRATING COMPONENTS
Adding Event Procedures 3
The job of the callback accessor is to install a wrapper event procedure on the
component. The method accepts an XtCallbackProc pointer and a client
data pointer, both of which must be passed on to the wrapper event procedure.

• The XtCallbackProc pointer is the callback defined by the user in the
Callback Editor.

• The client data pointer is the context structure for the interface. You must
pass this on to the user’s callback. UIM/X uses it to give the user access to
the interface-specific variables and the swidgets in the interface.

Both the callback and the client data must somehow be passed on to the
wrapper event procedure. If the component allows you to pass user data into
the event procedure, you can store the callback and the client data in a structure
and pass it as the user data. For example, consider the following callback
accessor:

static void _TextBox_AddKeyDownEventProc(swidget
UxThis,Environment *pEnv, XtCallbackProc proc,
void *cd)

{

VwText *pCmpnt =
(VwText*)UxGetComponentRef(UxThis);

if (pEnv)

pEnv->major(CORBA::NO_EXCEPTION);

if (pCmpnt) {pCmpnt->PutKeyPressEvent(

(VwKeyPressEventProcedurePtr_t)XkKeyPressEv
entHandler,

XkPackageEventHandlerData(proc, cd, pCmpnt)

);

}
}

This method sets an event procedure by calling the component method
PutKeyPressEvent(). The first argument is the event procedure, and the
second the user data.
UIM/X Advanced Topics 59

INTEGRATING COMPONENTS
Overriding the Geometry-Handling Methods 3
The user data is obtained from XkPackageEventHandlerData(), which
allocates a structure and stores the callback and the client data in it:

typedef struct evh_data {

XtCallbackProc proc;

void* clientData;

} XkEventHandlerData;

XkPackageEventHandlerData() also installs a destroy callback on the
component (which is passed as the third argument) to free this user data
structure.

An alternative to passing the callback and client data as user data would be to
use the X context manager. The callback accessor would store the callback and
client data, and let the wrapper event procedure retrieve it later.

Defining a
Callback Structure

You need to define a callback structure for each event type that passes special
arguments to the user’s event procedure. In your wrapper event procedure, you
use the callback structure to pass arguments (as call data) to the user’s callback
function. For example, the following callback structure is defined for the
KeyDown, KeyUp, and KeyPress events of a TextBox:

typedef struct xk_key_cb_data {

unsigned char char_code;

short key;

short state;

} XkKeyEventCallbackData;

Writing the Event
Procedure

You need a wrapper event procedure only if the event procedure’s signature
does not match XtCallbackProc. The job of the wrapper event procedure
is to build a callback structure containing its arguments and then call the given
callback.
60 UIM/X Advanced Topics

INTEGRATING COMPONENTS
Adding Event Procedures 3
For example, consider XkKeyDownEventHandler(), the wrapper event
procedure for the TextBox’s KeyPress event:

void XkKeyDownEventHandler(VwGuiComponent*
vwcomp,void* cd, short ascii_char, short *key,
short state)

{

XkEventHandlerData* ehd =
(XkEventHandlerData*)cd;

XkKeyEventCallbackData cbd;

if (ehd) {

/*

* Store the arguments in the callback
structure */

cbd.char_code = 0;

cbd.key = *key;

cbd.state = state;

/*

* Call the callback passed by the

* AddKeyDownEventProc * method, and pass
along the

* original client data. */

(*(ehd->proc))(vwcomp->GuiTarget(),
ehd->clientData,(void*)&cbd);

*key = cbd.key;

}
}

The expression vwcomp->GuiTarget() is just this component’s way of
getting the widget that received the event. The argument key is a pointer
because the user can modify it in the callback.
UIM/X Advanced Topics 61

INTEGRATING COMPONENTS
Generating Integration Code 3
Generating Integration Code
To better understand how to integrate a component with UIM/X, you may wish
to start by integrating a component built in UIM/X.

UIM/X provides a code generation option called Ux Integration Code, so you
can integrate generated C++ classes with UIM/X.

When you have a project that involves a lot of Components, you can use an
overnight build process to integrate finished Components into UIM/X. This
keeps the size of the project down, making it easier to load, edit, and test.

When you finish a Component, you save its .i file and then remove it from the
project. The overnight build process converts the .i file to C++ code (using
uxcgen), compiles it, and then links it into UIM/X.

Another reason for integrating a Component into UIM/X is to make it available
to other developers. Typically this is done by integrating the Component into
UIM/X, creating an Instance, and then putting it in a Palette.

If you intend to generate C++ code for projects and interfaces that use the
Components you integrate with UIM/X, it makes sense to generate C++ code
for the Component.

But UIM/X is written in C, so to link a generated C++ class with UIM/X, you
need extern C wrappers. But that’s not all. You also need some special
integration code to fit the generated class into the design-time framework of
UIM/X. The Ux Integration Code option generates this special integration
code.

These options are not normally available on the standard Code Generation
Options dialog. (Figure 3-2 shows both Standard and Advanced Code
Generation Options dialogs). In order to display the options required, you must
merge two Builder Engine resources into the current X-resource database.

The C wrappers make a C++ class callable from a C program. The Ux
Integration Code allows UIM/X to manage the component.
62 UIM/X Advanced Topics

INTEGRATING COMPONENTS
Adding Event Procedures 3
Figure 3-2 Standard UIM/X Code Generation Options Dialog

These advanced C++ code generation options become available in the UIM/X
Code Generation Options when UxPrjOptionsCGenGenCWrappers and
UxPrjOptionsCGenGenUxIntCode are set to true. It is simply a
matter of merging the above resources into the current X-resource database
prior to starting UIM/X, as follows:

1. Add the required Builder Engine resources to the resource database:

xrdb -m

Uimx3_0*UxPrjOptionsCGenGenCWrappers.set:true

Uimx3_0*UxPrjOptionsCGenGenUxIntCode.set:true

When you are through typing, press Ctrl-d to end your xrdb session.

2. Start UIM/X from your current directory::

uimx &
UIM/X Advanced Topics 63

INTEGRATING COMPONENTS
Writing the Integration Code 3
Note: When you generate Ux Integration code, you must also use the Ux
Convenience Library and select the Context Support option.

The constant UX_C controls whether or not the integration code is compiled.
Note that to properly compile the integration code you need to define both
EXTERN_C_WRAPPERS and UX_C. In fact, you can generate integration code
only if you also generate extern C wrappers.

When you generate integration code for a class, you can either compile and
link it with UIM/X or with generated code that uses the class:

• To link with UIM/X, compile the integration code with the
-DEXTERN_C_WRAPPERS, -DUX_C, -DDESIGN_TIME, and
-Iuimx_directory/custom/include flags.

The -DDESIGN_TIME flag is required for any code that you intend to
link into the UIM/X executable. The -Iuimx_directory/cus-
tom/include flag is necessary because UIM/X requires header files
located in the /custom/include directory to compile the integration
code.

• To link with generated C++ code that uses the class, compile the
integration code without these flags.

• To link with generated C code that uses the class, compile the integration
code with the -DEXTERN_C_WRAPPERS flag.

Note: A component that contains an instance of a second component cannot be
integrated into UIM/X at the same time as the second component—UIM/X
requires that both components be compiled with integration code, while the
component containing the instance expects the instance component’s code to
be compiled normally.

The UIM/X distribution includes a makefile (uimx_directory/config/
Makefile.uimx) for augmenting the UIM/X executable with object code.
You use this makefile to link the integration code into UIM/X. See Augmenting
UIM/X later in this chapter.

Writing the Integration Code
The previous section showed how to integrate interfaces designed in UIM/X
back into UIM/X as components. Any class where a widget can be provided
can be integrated with UIM/X. However, for these you must write the
integration code yourself.
64 UIM/X Advanced Topics

INTEGRATING COMPONENTS
Adding Event Procedures 3
This section explains how to write the code that integrates your components
with UIM/X. The approach taken is to explain by example, using the
integration code for an actual CheckBox component. For this reason, the
discussion is very specific about the details of files and source code.

You can choose to do some things differently, as long as you satisfy the
essential requirement for integration. You must wrap your components in a
software layer that matches the kind of API UIM/X generates for its own
components. To do this, your integration code must contain the following
elements:

• A C-callable constructor function that takes a parent swidget as its first
argument and returns a swidget bound to the widget that represents the
component.

• A set of C-callable methods registered through the UIM/X Method
system, so that UIM/X can operate on the component. These include the
Manage(), childSite(), and the set and get accessor methods.

• A context structure or class declaration (for C or C++ code, respectively)
that can be subclassed by the kind of code UIM/X generates.

• A destroy callback on the widget bound to the component’s swidget.
UIM/X uses XtDestroyWidget() on this widget to destroy the
component. You must attach a destroy callback to that widget (in the
constructor) to free any extra data structures allocated by your component.

Writing the Header File
When you create a Component in UIM/X and generate code for it, a header file
is generated. This header file is specified by an instance’s HeaderFile
property in UIM/X. To integrate an external component, you have to write its
header file yourself. In this header file, you do the following:

• Include the required files.

• Define the C and C++ bindings for the wrapper methods.

• Define the context structure.

• Define a C++ wrapper class for the component.

• Declare the C wrapper constructor, if necessary. Abstract base classes
don’t have a wrapper constructor, since they are never instantiated
directly.
UIM/X Advanced Topics 65

INTEGRATING COMPONENTS
Writing the Header File 3
Note: When you write the header file for a component, you use conditional
compilation to create a common C and C++ header.

Including the Required Files

The header file for the base component class of your class hierarchy should
include any general header files required by your components. You must also
include the standard UIM/X headers:

#ifdef XT_CODE

#include “UxXt.h”
#else
#include “UxLib.h”
#include “uxproto.h”
#endif

The header UxLib.h contains the declarations and definitions for the Ux
Convenience Library. UxXt.h is the equivalent header for Xt code, which is
code that does not use the Ux Convenience Library.

The header file of a derived component class should also include the header
file of its superclass.

Defining the C and C++ Bindings

The C and C++ bindings for a component’s wrapper methods are two sets of
macros. The C bindings are macros that expand to calls to
UxMethodLookup(). The C++ bindings are macros that expand to calls to
member functions of the component’s C++ wrapper class. In this example, the
UX_C macro controls whether the C or the C++ bindings are in force:

#ifdef UX_C

// #define C bindings

#else// #define C++ bindings

#endif

The C binding for a wrapper method is a macro that uses
UxMethodLookup() to find and invoke the method. For example, the C
binding for the Check Box’s _set_Alignment() method is defined as
follows:
66 UIM/X Advanced Topics

INTEGRATING COMPONENTS
Defining the C and C++ Bindings 3
#define CheckBox__set_Alignment(UxThis,pEnv,
Value) \

((int(*)UXPROTO((swidget, Environment *,
int)))\

UxMethodLookup(UxThis,
UxCheckBox__set_Alignment_Id,\

UxCheckBox__set_Alignment_Name))(UxThis,
pEnv, Value)

EXTERNC int UxCheckBox__set_Alignment_Id;

EXTERNC char* UxCheckBox__set_Alignment_Name;

All C binding macro definitions follow the same format:

#define Component_Method(UxThis, pEnv, Value) \
((int(*)UXPROTO((swidget, Environment *,
long))) \

UxMethodLookup(UxThis, UxComponent_Method_Id,\

UxComponent_Method_Name)) \(UxThis, pEnv,
Value)

EXTERNC int UxComponent_Method_Id;

EXTERNC char* UxComponent_Method_Name;

• Component is the name of the component.

• Method is the name of the wrapper method. This is the value assigned to
UxComponent_Method_Name in the component’s source file. For
example, _set_BackColor is the name of the wrapper method that sets
the component’s BackColor property.

• UxComponent_Method_Id holds the method ID returned by
UxMethodRegister().

• UxComponent_Method_Name is the method name passed to
UxMethodRegister(). This name is assigned in the component’s
source file.

• The EXTERNC macro controls the linkage of an identifier. For C++ code,
it is defined as extern "C". For C code, it is defined as extern.
UIM/X Advanced Topics 67

INTEGRATING COMPONENTS
Writing the Header File 3
The C++ binding for a wrapper method calls a member function of the C++
wrapper class:

#define Component_Method(c,e,v) \

(int)(((_UxCComponent*)UxGetContext(c))->Method(e
,v))

Defining the Context Structure

You need to define a stub context structure for each component:

#if UX_C

typedef struct {

int classId;

} _UxCComponent;

#else

// C++ wrapper class definition.
#endif

The context structure is used in generated C code. When you subclass the
component, its context structure becomes the base part of the subclass’s
context structure. In generated C++ code, the context structure is replaced with
a true C++ class.

Defining the C++ Wrapper Class

When you integrate components, you must create a hierarchy of wrapper
classes that parallels the hierarchy of your component classes. For example, if
component A is derived from component B, then the wrapper class for
component A is publicly derived from the wrapper class for component B.

The wrapper class for your base component class must be derived from the
UxVisualInterface base class. For example, the CheckBox wrapper class
_UxCCheckBox is derived from _UxCComponent, which is derived from
UxVisualInterface:
68 UIM/X Advanced Topics

INTEGRATING COMPONENTS
Defining the C++ Wrapper Class 3
#include <vwcheck.hh>

class _UxCCheckBox : public _UxCComponent
{
protected:

 _UxCCheckBox () {}

public:
 _UxCCheckBox (swidget parent, String
ObjectName);

swidget _create_CheckBox()

{ return UxThis; }

VwCheck* CheckBox()

{return (VwCheck*)XkThisComponent; }

// …inline accessors…
}

The UxVisualInterface class is the base class for every component or interface
class in UIM/X. It defines set and get accessor methods for the x, y, height,
and width properties. It also defines the Manage() and childSite()
methods. Subclasses of the UxVisualInterface base class inherit these methods
and can override them as required.

Each wrapper class defines member functions that wrap the real methods of the
corresponding component:

• A public member function that returns XkThisComponent, cast to the
appropriate type. The data member XkThisComponent is the class
pointer for the underlying component. It is inherited from the base
wrapper class (see “Defining the Base Wrapper Class” on page 70).

For example, the wrapper class for the Check Box defines the following
member function:
UIM/X Advanced Topics 69

INTEGRATING COMPONENTS
Writing the Header File 3
VwCheck* CheckBox()

{ return (VwCheck*)XkThisComponent; }

This member function is used by the member functions that invoke the
component’s methods.

• Public member functions that wrap the component’s real methods (the
inline accessors). These member functions are invoked by the C++
bindings defined earlier in the header file.

For example, the following member function sets the Alignment prop-
erty of a Check Box:

int _set_Alignment(Environment*, int value) {

return ((int) CheckBox()->PutAlignment(

(VwToggleAlignment)value));

}

The name of the member function is the same as the name of the C lan-
guage wrapper method registered with the UIM/X Method system. Note
that the Environment pointer is the first argument because this method
is CORBA 1.1.

Defining the Base
Wrapper Class

In addition to the member functions that wrap the component methods, the
base wrapper class also defines the following data members and member
functions:

• A public data member XkThisComponent. At run-time, this data
member stores the class pointer of the underlying component. The C++
wrapper constructor sets XkThisComponent after it creates the
underlying component.

Each derived wrapper class provides a member function for accessing this
data member and casting it to the appropriate type.

• A constructor that initializes XkThisComponent.

• A destructor that destroys XkThisComponent.

• A version of the childSite() method inherited from the
UxVisualInterface base class.

• Versions of the x, y, width, and height property accessor methods
inherited from the UxVisualInterface base class.
70 UIM/X Advanced Topics

INTEGRATING COMPONENTS
Declaring the C Wrapper Constructor 3
Defining a Derived
Wrapper Class

In addition to the member functions that wrap the component’s methods, a
wrapper class derived from the base wrapper class also defines the following
member functions:

• A public, default constructor that does nothing.

• A public constructor. The constructor definition is placed in the
integration source file.

• A public member function that returns UxThis (the adapter swidget).
The data member UxThis is inherited from the UxBase base class. The
wrapper class constructor sets UxThis after it creates the underlying
component.

Note: Abstract classes do not require any constructors.

Declaring the C Wrapper Constructor

The header file must contain a declaration for the C wrapper constructor. Note
that you must use the extern "C" linkage when compiling under C++.

EXTERNC int create_CheckBox_ClassId
UXPROTO((void));

EXTERNC swidget create_CheckBox UXPROTO((swidget
parent, string Objectname));

The function create_CheckBox_ClassId() is used by the C wrapper
constructor, and by subclasses of this class, to get a class code and to register
the wrapper methods.

Writing the Source File
In the source file for a component, you do the following:

• Include the required files.

• Write the wrapper methods.

• Write the C++ wrapper constructor.

• Write the C wrapper constructor.

• Register the wrapper methods.
UIM/X Advanced Topics 71

INTEGRATING COMPONENTS
Writing the Source File 3
Including the Required Files

The source file for a component includes the following files:

• The header files required by the underlying component.

• The wrapper header file for the component.

• The UIM/X header files veos.h and uxmethod.h. These header files
are required only for design-time code.

Writing the Wrapper Methods

For each component method that you want to expose to UIM/X (including
property accessor methods), you must write a wrapper method. A wrapper
method is a static function that you register using UxMethodRegister().
This function calls the corresponding method of the component itself:

static int _CheckBox__set_Alignment(swidget
UxThis,

Environment *pEnv, int val)

{

VwCheck *pCmpnt =
(VwCheck*)UxGetComponentRef(UxThis);

if (pEnv)

pEnv->major(CORBA::NO_EXCEPTION);

if (pCmpnt) {

return((int) pCmpnt->PutAlignment(

(VwToggleAlignment)val));

}
return ERROR;

}

72 UIM/X Advanced Topics

INTEGRATING COMPONENTS
Writing the Wrapper Methods 3
This example is the set accessor for the Check Box’s Alignment property. It
illustrates the essential elements of a wrapper method:

• The return type of the wrapper method corresponds to the return type of
the component method.

• Like all UIM/X methods, the first argument is a swidget (the adapter
swidget). The Environment pointer is the second argument because
this method is CORBA 1.1. Subsequent arguments are values passed to
the component method. For example, a set accessor method takes a third
argument, which is the property value.

• You use UxGetComponentRef() to get the component reference (a
pointer to the component) from the adapter swidget, and then cast it to the
appropriate type.

• You set the _major field of the Environment structure to
NO_EXCEPTION.

• You invoke the component method using the component reference.

For each wrapper method, you must also define the method Id and Name
variables that you declared in the component’s header file:

int UxCheckBox__set_Alignment_Id = -1;

char* UxCheckBox__set_Alignment_Name =
“_set_Alignment”;

The Id variable holds the value returned by UxMethodRegister() when
you register the method. Initialize this variable to -1. The Name variable holds
the name of the method. You pass this variable to UxMethodRegister()
when you register the method.

By convention, the name of the function that implements the wrapper method
is derived from the name of the wrapper method. However, the name of the
function is not important—it is the value of the Name variable that identifies
the method in the UIM/X Method system.

The names of property accessors must be _set_Property and
_get_Property, where Property is the name that appears in the Property
Editor. Other wrapper methods use the same name as the component method.
UIM/X Advanced Topics 73

INTEGRATING COMPONENTS
Writing the Source File 3
Understanding the Wrapper Constructors

The constructor is the function that creates instances of a component. You
need two constructors: a C wrapper constructor (an Interface Function) for
UIM/X and generated code and a C++ wrapper constructor.

At design time, the C wrapper constructor does the work. At run time, the C
wrapper constructor invokes the C++ wrapper class constructor. The
design-time C wrapper constructor must return the adapter swidget that
connects UIM/X to the widgets in the component.

Both constructors accept the same arguments. The first argument is the swidget
parent of the component. This argument is always required. Subsequent
arguments are property values passed to the constructor of the underlying
component. In UIM/X, these properties appear as Core properties in the
Property Editor.

Writing the C++ Wrapper Constructor

The C++ wrapper constructor creates the underlying component as a member
of the wrapper class. You use conditional compilation to define the wrapper
class constructor only for run-time code:

#ifndef DESIGN_TIME

_UxCCheckBox::_UxCCheckBox (swidget parent,
String ObjectName)

{

Widget widgetParent;

widgetParent = (parent == NULL) ?

XkCreateImplicitShell(ObjectName) :
UxGetWidget(parent);

VwContainer *vwparent =
VwGetContainerAdaptor(widgetParent);

XkThisComponent = new VwCheck (ObjectName,
vwparent,VW_DEF_X, VW_DEF_Y, VW_DEF_WIDTH,
VW_DEF_HEIGHT,VwFalse);

VwCheck *real_VwCheck = CheckBox();

if (parent == NULL && widgetParent != NULL) {
74 UIM/X Advanced Topics

INTEGRATING COMPONENTS
Writing the C++ Wrapper Constructor 3
//

// Install destroy callback to free implicit
shell when

// component is destroyed.//

XtAddCallback(real_VwCheck->GUI(),
XmNdestroyCallback,

(XtCallbackProc) XkDestroyImplicitShell,
widgetParent);

}

UxThis = XkAdapter (parent,
create_CheckBox_ClassId(),this,
XkThisComponent);

}

#endif /* DESIGN_TIME */

The wrapper class constructor for the Check Box has to do more than just
create the component and get an adapter swidget for it. The process involves
some additional steps that may or may not apply to your own components:

1. Determine the parent widget. A CheckBox component must have a parent
widget, so it is parented to a shell widget if no parent is given. This han-
dles the case when the user creates a primitive component on the desktop.

The function XkCreateImplicitShell() creates a topLevelShell
widget and returns it.

2. Get the corresponding component for the parent widget. This parent com-
ponent is passed to the component’s class constructor.

3. Create an instance of the component. Store the pointer in XkThisCom-
ponent.

4. Install a destroy callback to free the implicit shell when the component is
destroyed.

5. Get a class code for the component and register its methods. The Check-
Box constructor does this by calling the function
create_CheckBox_ClassId(). To understand what this function
does, see “Registering the Methods” on page 79.

6. Get an adapter swidget by calling XkAdapter(). Use this to pass a
pointer to the wrapper class object. Store the adapter swidget returned by
XkAdapter() in UxThis. See “Wrapping UxAdapterSwidget()” on
page 77.
UIM/X Advanced Topics 75

INTEGRATING COMPONENTS
Writing the Source File 3
Writing the C Wrapper Constructor

By convention, the C wrapper constructor is named create_Component,
where Component is the name of the component. When you put an instance of
a component in a palette, you use this name as the value of the instance’s
Constructor property.

You use conditional compilation to define the C wrapper constructor so that it
uses the wrapper class constructor at run time:

swidget create_CheckBox (swidget parent, String
ObjectName)

{
#ifdef DESIGN_TIME

Widget widgetParent;

widgetParent = (parent == NULL) ?

XkCreateImplicitShell(ObjectName) :
UxGetWidget(parent);

VwContainer *vwparent =
VwGetContainerAdaptor(widgetParent);

VwCheck *real_VwCheck = new VwCheck
(ObjectName, vwparent,VW_DEF_X, VW_DEF_Y,
VW_DEF_WIDTH, VW_DEF_HEIGHT,VwFalse);

if (parent == NULL && widgetParent != NULL) {

//

// Install destroy callback to free implicit
shell when

// component is destroyed.

//

XtAddCallback(real_VwCheck->GUI(),
XmNdestroyCallback,(XtCallbackProc)
XkDestroyImplicitShell, widgetParent);

}

return XkAdapter(parent,
create_CheckBox_ClassId(), 0,real_VwCheck);

#else
76 UIM/X Advanced Topics

INTEGRATING COMPONENTS
Wrapping UxAdapterSwidget() 3
_UxCCheckBox *uxc_CheckBox = new _UxCCheckBox
(parent,ObjectName);

return uxc_CheckBox->_create_CheckBox();
#endif
}

The C wrapper constructor is the C-callable version of the C++ wrapper class
constructor. It does what the wrapper class constructor does, with one
exception: it passes 0 to XkAdapter() as the wrapper class pointer.

At run time, the C wrapper constructor creates an _UxCCheckBox object.
The function _create_CheckBox() retrieves the adapter swidget, which
the wrapper class constructor stores in the data member UxThis.

Wrapping UxAdapterSwidget()

The CheckBox example uses the function XkAdapter() as a wrapper for
UxAdapterSwidget(). This wrapper function takes care of setting things
up properly so both UIM/X and generated code can work with the CheckBox
component.

The four arguments are the parent swidget, the class code, a pointer to the
wrapper class object, and a pointer to the component. (In the generated code,
the wrapper class object is the context.)

While the code in XkAdapter() is specific to the CheckBox, it is a good
example of what you have to do:

• Get the principal widget of a component, and get an adapter swidget for
this widget by calling UxAdapterSwidget():

Widget it = vwcomp->GUI();

sw = UxAdapterSwidget(it, parent, XtName(it),
clsCode,vwcomp, UxNO_CONTEXT);

• Check whether or not the component can be an instance by calling its
UxCanBeAnInstance() method.
UIM/X Advanced Topics 77

INTEGRATING COMPONENTS
Writing the Source File 3
#ifdef DESIGN_TIME

int (*canBeAnInstance)(swidget, void *) =
NULL;

canBeAnInstance = (int (*)(swidget, void *))

UxMethodLookup(sw, -1,
“UxCanBeAnInstance”);

if (canBeAnInstance)

{

/* If it cannot be an instance, then we must
mark

 * it as a shell.

 */

if (!(*canBeAnInstance)(sw, &UxEnv))

{

XkSetShell(sw);
}

}

Note: A top-level component is either a shell widget or a widget with an
implicit shell. An example of a widget with an implicit shell is the
FileSelectionBoxDialog widget, which consists of a DialogShell with a
FileSelectionBox widget as its child.

• Add a callback to the widget to destroy the component when the widget is
destroyed:

#ifdef DESIGN_TIMEXt

AddCallback(it, XmNdestroyCallback,
(XtCallbackProc)
XkComponentWidgetDestroyed, vwcomp);

if (XtIsShell(it)) {XtVaSetValues(it,
XmNdeleteResponse, XmUNMAP, NULL);

}

#else

XtAddCallback(it, XmNdestroyCallback,
78 UIM/X Advanced Topics

INTEGRATING COMPONENTS
Registering the Methods 3
(XtCallbackProc) XkComponentWidgetDestroyed,
uxc_if);

Note: During design time, some shells cause UIM/X to exit when they are
destroyed, so XmNdeleteResponse must be set to XmUNMAP if the widget
is a shell.

• At run time, store a pointer to the wrapper class object with
UxPutContext():

UxPutContext (sw, (void *) uxc_if);

This makes the wrapper class object the context in generated code. (Hint:
look for calls to UxGetContext() in the generated code.)

• Install a callback on the component to clear XkThisComponent (the
component pointer stored in the wrapper class) when the component is
destroyed:

vwcomp->AddDestroyCallback(

(VwCallbackProcedurePtr_t)XkComponentDestroyed
,(void *)uxc_if);

• Return the adapter swidget obtained from UxAdapterSwidget().

Note: One last thing to note about XkAdapter() is the following line:

vwcomp->PutUserData(sw);

The CheckBox component has a user data field, which XkAdapter() uses to
store the adapter swidget. This provides a way to get the adapter swidget for a
given component.

Registering the Methods

You must register the methods of your component so that UIM/X can call them
from C code. To do this, you use a function separate from the wrapper
constructor. This allows subclasses to check that their base class methods are
registered.

You use a separate function to register the methods. This function contains a
one-time block of code that gets the class code and then registers the methods:
UIM/X Advanced Topics 79

INTEGRATING COMPONENTS
Writing the Source File 3
int create_Derived_ClassId(void)

{

static int IfClassCode = -1;

if (IfClassCode == -1)

{

IfClassCode = UxNewSubclassId
(create_Base_ClassId())

// Register methods.

}

return IfClassCode;
}

You use UxNewSubclassId() to get a class code for the component class.
UxNewSubclassId() accepts one argument, which is the class code for the
component’s base class. To get this class code, you simply call the base class’s
ClassId() function.

For the root class of your hierarchy, you call
UxNewInterfaceClassId() instead of UxNewSubclassId().
UxNewInterfaceClassId() registers a class as a subclass of the
UxVisualInterface base class.

Once you have a class code, you can register methods against that code with
UxMethodRegister():

UxCheckBox__set_Alignment_Id =
UxMethodRegister(IfClassCode,UxCheckBox__set_A
lignment_Name,(void (*)
())_CheckBox__set_Alignment);

As well, if you want your methods to be available from the Connection Editor,
you must register the method’s signature using
UxMethodSignatureRegister():
80 UIM/X Advanced Topics

INTEGRATING COMPONENTS
Loading Header Files 3
UxMethodSignatureRegister(ifClassCode,

UxCheckBox__set_Alignment_Name,

UxCreateMethodSignature(UxCheckBox__set_Alignm
ent_Name,Corba1, “int”, UxEnvArgResource(),
UxGetArgResource(“value”, UxUT_int,
“VwAlignLeft”,

XkValidateVwToggleAlignment,
XkValuesOfVwToggleAlignment),

NULL));

Writing Initialization Code for UIM/X
Some of the integration code for your components has to take care of
initializing UIM/X. This code makes the Interpreter aware of your components
and customizes the Property Editor.

The standard way of doing this is to put all the initialization code in one
function, and then call it from the main program file used to augment UIM/X.

Loading Header Files

You must load the integration header files for your components into the
Interpreter during UIM/X initialization. Otherwise, the definitions and
declarations they contain will not be known to UIM/X.

To load a component’s integration header file, you call
UxLoadGlobalInclude() with the name of the header file:

UxLoadGlobalInclude(“xkcheck.h”);

You call UxLoadGlobalInclude() from main() in the UIM/X main
program file uimx_directory/config/uimx_main.cc. This ensures that
the header files are loaded before any palette files, so palette files can use
symbols defined in the header files.

Because UxAppInitialize() initializes the Interpreter, you can not call
UxLoadGlobalInclude() before UxAppInitialize().

Registering Functions

You must register the wrapper constructors with the Interpreter during UIM/X
initialization. Otherwise, these functions will not be linked into the augmented
UIM/X executable.
UIM/X Advanced Topics 81

INTEGRATING COMPONENTS
Augmenting UIM/X 3
To register a wrapper constructor, you call UxRegisterFunction() with
the name of the function and the function pointer:

UxRegisterFunction(“create_CheckBox”,
create_CheckBox);

You call UxRegisterFunction() from UxRegisterFunctions() in the UIM/X
main program file uimx_directory/config/uimx_main.cc.

Installing Option Menus and Resource Editors

You use the functions UxInstanceResource() and
UxGlobalInstanceResource() to install option menus and resource
editors for instances of your components. In UIM/X, these functions support
properties added by defining set and get accessor methods on the component.

UxInstanceResource() installs an option menu or resource editor for a
given property of a given component.

UxGlobalInstanceResource() installs an option menu or resource
editor for a property with a given name. Every property with that name gets the
same option menu or resource editor. If two components have a property with
the same name, both properties get the same option menu or resource editor.

For example, suppose two components have an Alignment property, but
each component defines a different set of possible values for the property. If
you use UxGlobalInstanceResource() to install an option menu, both
Alignment properties get the same option menu.

See Chapter 2, “Integrating Widgets,” for more information on installing
option menus and registering resource editors.

Augmenting UIM/X
Once you have prepared the integration code for your components, you are
ready to build an augmented UIM/X. By augmenting UIM/X, you give users
the ability to create instances of your components.

To build an augmented UIM/X, you use the template makefile
uimx_directory/ config/Makefile.uimx

1. Create a working directory.

2. Copy uimx_directory/config/Makefile.uimx to your working
directory. Rename the file to Makefile, and use chmod to make the file
writable.
82 UIM/X Advanced Topics

INTEGRATING COMPONENTS
Installing Option Menus and Resource Editors 3
3. Copy any required source files to your working directory. For example,
you may have customized the UIM/X main program file (by modifying
the template file uimx_directory/config/uimx_main.cc).

4. Edit the makefile macros:

a. Use AUGEXEC to change the name of the augmented UIM/X
executable. The default name is uimx_aug.

b. Use AUGMAIN to change the name for the UIM/X main program
file. The default name is uimx_main.cc.

c. Use APPL_OBJS to list any C object files, such as the main
program file, that you want to link into the augmented executable.

d. Use APPL_CPLUSOBJS to list any C++ object files you want to
link into the augmented executable. For example, if you did not
compile your integration code into a library, you would use
APPL_CPLUSOBJS to list the object files for your integration code.

e. Use EXTRA_CFLAGS to add C compiler flags.

f. Use EXTRA_CPLUSFLAGS to add C++ compiler flags.

g. Use EXTRA_LDFLAGS to add linker flags.

h. Use EXTRA_UXLIBS to list any libraries you want to link into the
augmented executable. For example, you use EXTRA_UXLIBS to list
the design-time library of integration code and the implementation
library for your components.

5. Use touch to ensure that all dependent files are more recent than their
targets.

6. Invoke make using the name of the augmented executable as the target.

Building a Palette
Once you have integrated your components with UIM/X, you need to give
users a way to create instances of these components. You do this by building a
palette that contains an instance of each component.

Before you start creating instances, you need to create a new palette (or open
an existing one), and decide what categories you need. For example, you may
want to divide your components into categories such as Primitives, Dialogs,
and Managers.

Note: Refer to the UIM/X User’s Guide for more information on creating and
editing palettes.
UIM/X Advanced Topics 83

INTEGRATING COMPONENTS
Building a Palette 3
Creating Instances

After you decide where you are going to put your components and create any
new categories or palettes, you can start creating instances:

1. Make sure there are no selected interfaces.

2. Create an empty instance by selecting CreateSubclass from the Project
Window menu bar. (When you create a Subclass without first selecting an
interface, you actually end up creating an empty instance—an instance
that has no component.)

In the augmented UIM/X, your components exist only as compiled
code. To create an instance of one of these components, you fill in the
Declaration properties of an empty instance. These properties define
the component for an instance.

3. Double-click on the instance to load it into the Property Editor.

4. Select Declaration from the Category option menu.

5. Enter the name of the component in the Component property.

6. Enter the name of the component’s header file in the HeaderFile prop-
erty.

7. Enter the arguments to the component’s constructor in the ArgDefini-
tion property. The ArgDefinition property is a string of declara-
tions:

“swidget parent; char *name;”

8. Enter the properties and callbacks in the PropDefinition property.
The PropDefinition property is a string of declarations, one for each
accessor property or callback:

“int x; int y; int wid; int h; void
(*ClickEvent)();”

Note: Sometimes you may not want to give the user access to a property or
event of a component. To hide properties and events, omit them from the string
of declarations you enter in the PropDefinition property. The user sees
only the properties and events specified by the PropDefinition property.

9. If the component can accept children, enter the class of the component’s
child site in the ChildSiteClass property.

10. Click Apply.
84 UIM/X Advanced Topics

INTEGRATING COMPONENTS
Putting Instances in the Palette 3
Putting Instances in the Palette

You now have an instance to put in the palette. But before you do, you might
want to give it an icon and a name. Otherwise, you will get the same icon and
name shown in the Interfaces Area for a subclass.

1. Select Compound from the Category option menu.

2. Set CompoundIcon to the name of the file containing the icon you want
to use.

3. Set CompoundName to the name you want to appear in the Palette. Use
the underscore character (_) to break a long name across two or more
lines. This only works if the UIM/X resource splitPalIconNames is
set to true (its default value). Note also that you can truncate long names
by changing shortPalIconNames from false (its default value) to
true.

4. Click Apply. You are now ready to put the instance in the palette.

5. Drag the instance to the palette and drop it in the appropriate category.
Continue for each component until you have a full palette.
UIM/X Advanced Topics 85

INTEGRATING COMPONENTS
Building a Palette 3
86 UIM/X Advanced Topics

Building Executables 4
Overview

This chapter describes how to customize and build UIM/X executables using
the makefiles supplied with UIM/X. These makefiles are generic templates
that you can use to update executables and libraries.

By changing the macro definitions in a copy of a makefile template, you can
quickly adapt a makefile to new requirements. In most cases, you have only to
change the macros that specify the names of files and paths.

The following makefiles are discussed in this chapter:

• uimx_directory/custom/src/Makefile

This makefile template updates executables and libraries that depend on
the source files in uimx_directory/custom/src.

• uimx_directory/build/src/Makefile

This makefile template updates executables and libraries that depend on
the source files in uimx_directory/build/src.

• uimx_directory/config/Makefile.uimx

This makefile augments the UIM/X executable by linking it with object
code from other applications.

• uimx_directory/mkinclude/central.mk

This makefile contains the rules and additional macro definitions required
by uimx_directory/config/Makefile.uimx and several contrib
makefiles.
UIM/X Advanced Topics 87

BUILDING EXECUTABLES
Using the Custom Makefile 4
Using the Custom Makefile
Use the makefile uimx_directory/custom/src/Makefile when you want
to do one of the following:

• Make the library libuxcustom.a. The library must be recompiled
when:

• You modify copies of the source files found in the directory
uimx_directory/custom/src. There are many reasons for
modifying the code in one or more of these files. For example,
you can change UIM/X’s Create menus by modifying the code in
cr-menus.c, or you can hard-code UIM/X resources by
inserting code in uimx-conf.c.

• You want to integrate a new widget class with UIM/X.

• Make a new UIM/X executable. Do this when:

• You modify uimx_directory/custom/src/uimx_main.cc.

• You want to link in a new version of the library
libuxcustom.a.

• Make an extended version of the uxcgen utility. When you integrate new
widget classes with UIM/X, you must extend uxcgen so that it can
generate code for the new widget classes.

This involves modifying the files user-cg-cl.c and
user-xtype.c in the directory uimx_directory/custom/src.

• Make an extended version of the uxreaduil utility. As with the
uxcgen utility, you would do this to support new widget classes.

• Make a new version of the libux.a, the Ux Convenience Library. You
must re-build this library when you integrate a new widget class with
properties that require run-time conversion.

Note: UIM/X must be compiled under ANSI mode.To customize UIM/X with
K&R code, modify the custom makefile
uimx_directory/custom/src/Makefile so that UIM/X is compiled
under ANSI mode and the K&R code is compiled under K&R mode.

Note: If the SoftBench Encapsulator is not installed on your system, remove
the flag -DUSING_SOFTBENCH from the SB_CFLAGS macro before using
the custom makefile.
88 UIM/X Advanced Topics

BUILDING EXECUTABLES
Custom Makefile Macros 4
Custom Makefile Macros

The makefile template uimx_directory/custom/src/Makefile contains a
number of macros that you can redefine when you use the makefile. The
following are some common reasons for changing a macro definition:

• To change the file name of an executable.

• To specify the object files used to update a library or executable.

• To adapt the makefile to a different directory structure.

The following table defines the macros that you are most likely to want to
modify. You should also examine the makefile itself.

Macro Name Definition

UIMXDIR UIM/X’s home directory.
UX_CFLAGS Used to specify the path or directory containing the

header files included by the source files in
uimx_directory/custom/src.

LIBUXCUSTOM The copy of libuxcustom.a being updated. Note
that the makefile template assumes this file is in the
current directory.

LIBUXBUILD The copy of libuxbuild.a linked with the UIM/X
executable. Change this macro definition to link an
updated version of the library. For example, you may
have used uimx_directory/build/src/Makefile to
make a new libuxbuild.a.

LIBUXRUNTIME The copy of libux.a being modified. Note that the
makefile template assumes that this file is in the
current directory.

EXECUTABLE The name of the UIM/X executable. Change this
macro definition if you want another name for your
executable.

CGEN The name of the code generation utility.

READUIL The name of the utility that reads UIL files.
MAIN The name of the source file containing the main()

function that initializes UIM/X.
WIDGET_OBJECTS A list of the object files for new widget classes being

integrated with UIM/X.
UIM/X Advanced Topics 89

BUILDING EXECUTABLES
Using the Custom Makefile 4
Invoking Make on the Custom Makefile

The following table lists the targets in
uimx_directory/custom/src/Makefile whose names are not macro
values. These targets are constant and are always valid arguments for make,
which will always update the same file(s) each time it is passed one of these
target names.

For example, consider the target and rule lines shown below (these lines are
taken from uimx_directory/custom/src/Makefile). The command
make executable updates the UIM/X executable no matter what value is
assigned to the EXECUTABLE macro.

executable: $(EXECUTABLE)

$(EXECUTABLE): libuxcustom $(MAINOBJ) $(UXOBJ)

@echo “***** Linking $(EXECUTABLE)“$(CPLUS)
$(LDFLAGS) $(MAINOBJ) $(UXOBJ) $(LIBS) -o \
$(EXECUTABLE)

Macro Name Definition

SWIDGET_OBJECTS A list of the object files for new swidget classes.
BE_OBJECTS A partial list of the object files in libuxcustom.a.

You can remove references to files that are unchanged.
SB_CFLAGS Defines the constant USING_SOFTBENCH. If your

system does not have the SoftBench include files, you
should replace this macro’s definition with
“SB_CFLAGS = “. Otherwise you may get errors if
you recompile any of the files UxIo.c,
UxSbinit.c, UxSbutils.c, and UxSbappl.c.

CUSTOM_OBJECTS A list of the object files used to update
libuxcustom.a. The macros WIDGET_OBJECTS,
SWIDGET_OBJECTS, and BE_OBJECTS are expanded
and added to this list. You can remove references to
files that are unchanged.

RUNTIME_OBJECTS A list of the object files used to update libux.a. You
can remove references to files that are unchanged. To
archive the run-time object files for components in the
run-time library, add the names of the object files to
this list.

CPLUS_OBJECTS A list of the object files compiled in C++.
90 UIM/X Advanced Topics

BUILDING EXECUTABLES
General Procedure for Using the Custom Makefile 4
Contrast this with the command make uimx, which only updates the
executable if the macro EXECUTABLE is set to uimx. If you change the value
of EXECUTABLE to something other than uimx, there is no longer any target
named uimx in the makefile.

In the following table, entries such as $(EXECUTABLE) refer to the value of
the macro whose name is enclosed in parentheses.

1. Invoking make with no arguments will make the library libuxcustom.a.

General Procedure for Using the Custom Makefile

The general procedure for using the makefile template
uimx_directory/custom/src/Makefile is as follows:

1. Create a working directory.

2. Copy uimx_directory/custom/src/Makefile to your working
directory.

3. Copy uimx_directory/custom/src/uimx_main.cc to your working
directory.

4. Copy any source files and header files in uimx_directory/custom/src
or uimx_directory/custom/include that you intend to modify to your
working directory. Edit the files as required.

5. If you are integrating a new widget class, copy the .cc and .h files for
the new widget and swidget classes to your working directory. Modify the
makefile macros WIDGET_OBJECTS and SWIDGET_OBJECTS to list
the object files for the new widget and swidget classes.

Target Name File(s) Updated
libuxcustom libuxcustom.a1

libux libux.a
executable $(EXECUTABLE)
cgen $(CGEN)
readuil $(READUIL)
all libuxcustom.a

$(EXECUTABLE)
libux.a
$(CGEN)
$(READUIL)
UIM/X Advanced Topics 91

BUILDING EXECUTABLES
Using the Build Makefile 4
To ensure that make properly handles the file dependencies, you
should list the files in the following format:

WIDGET_OBJECTS = \

$(LIBUXCUSTOM)(Dog.o)

SWIDGET_OBJECTS = \

$(LIBUXCUSTOM)(dog.cl.o)

6. Copy the libraries libuxcustom.a and libux.a to your working
directory from uimx_directory/lib. Note that the makefile template
already refers to the local copies of these libraries.

7. Execute the command touch *.cc. This ensures that the source files
are more recent than the libraries.

8. Execute the command make all.

Using the Build Makefile
Use the makefile uimx_directory/build/src/Makefile when you want
to do one of the following:

• Make the library libuxbuild.a. The library must be recompiled when
you modify copies of the files in uimx_directory/build/src or
uimx_directory/build/include.

These files control the interfaces and widget classes linked into the
UIM/X executable.

• Make a new UIM/X executable. You would do this when:

• You modify uimx_directory/build/src/uimx_main.cc.

• You want to link in a new version of the library
libuxbuild.a.

Note: UIM/X must be compiled under ANSI mode.
92 UIM/X Advanced Topics

BUILDING EXECUTABLES
Build Makefile Macros 4
Build Makefile Macros

The makefile template uimx_directory/build/src/Makefile contains a
number of macros that you can redefine when you use the makefile. The
following are some common reasons for changing a macro definition:

• To change the name of the UIM/X executable.

• To specify the object files used to update a library or executable.

• To adapt the makefile to a different directory structure.

The following table defines the macros that you are most likely to want to
modify. We suggest you also examine the makefile itself.

Invoking Make on the Build Makefile

The following table lists the target in
uimx_directory/build/src/Makefile whose names are not macro
values. These targets are constant and are always valid arguments for make,
which will always update the same file(s) each time it is passed one of these
target names.

Entries such as $(EXECUTABLE) refer to the value of the macro whose
name is enclosed in parentheses.

Macro Name Definition

UIMXDIR UIM/X’s home directory.
LIBUXBUILD The copy of libuxbuild.a being updated. Note that the

makefile template assumes this file is in the current
directory.

LIBUXCUSTOM The copy of libuxcustom.a linked with the UIM/X
executable. Change this macro definition to link an
updated version of the library. For example, you may
have used uimx_directory/custom/src/Makefile to
make a new libuxcustom.a.

MAIN The name of the source file containing the main()
function that initializes UIM/X.

EXECUTABLE The name of the UIM/X executable. Change this macro
definition if you want another name for your executable.

BUILD_OBJECTS A list of the object files in libuxbuild.a. You can
remove references to files that are unchanged.
UIM/X Advanced Topics 93

BUILDING EXECUTABLES
Augmenting UIM/X 4
1. Invoking make with no arguments will make the library libuxbuild.a.

General Procedure for Using the Build Makefile

The general procedure for using the makefile template
uimx_directory/build/src/Makefile is as follows:

1. Create a working directory.

2. Copy uimx_directory/build/src/Makefile to your working direc-
tory.

3. Copy uimx_directory/build/src/uimx_main.cc to your working
directory.

4. Copy any source files in uimx_directory/build/src that you intend to
modify to your working directory. Copy the corresponding header files for
these source files to your working directory from
uimx_directory/build/include. Edit the files as required.

5. Copy the library libuxbuild.a to your working directory from
uimx_directory/lib. Note that the makefile template already refers to the
local copy of this library.

6. Execute the command touch *.cc. This ensures that the source files
are more recent than the library.

7. Execute the command make all.

Augmenting UIM/X
The UIM/X executable can be augmented with the object code of other
applications. In particular, you can compile code generated by UIM/X and link
it into the UIM/X executable.

Linking object code with UIM/X gives the Interpreter access to the functions
in the object code. The Interpreter can execute any compiled function (or
method) contained within the UIM/X executable.

Target Name File(s) Updated

libuxbuild libuxbuild.a1

executable $(EXECUTABLE)

all libuxbuild.a $(EXECUTABLE)
94 UIM/X Advanced Topics

BUILDING EXECUTABLES
4

Augmenting UIM/X allows you to:

• Simplify the development of an interface for an application program. You
can design the application’s interface, insert calls to the compiled
application functions, and test the interface, all without having to exit
UIM/X.

• Link in Components distributed in object form.

• Link interfaces into the development environment.

Large projects have many interfaces. As individual interfaces are finished,
you can remove them from the project and make them part of the UIM/X
development environment. As the project progresses, there will be fewer
interfaces to load, edit, and test.

To do this, you generate the code for the interface, compile it, link it with
UIM/X, and remove the interface from the project (but keep a backup
copy of the interface’s .i file).

UIM/X allows you to mix compiled and interpreted code, so you can still
test the entire project—the interfaces you load and create interactively can
call the create functions of the interfaces that exist only as object code.

• Use a compiled interface as an editor within UIM/X. Suppose you use
UIM/X to create a specialized widget editor. You can make this editor a
part of UIM/X by compiling its generated code and linking it with UIM/X.

The makefile template uimx_directory/config/Makefile.uimx allows
you to augment UIM/X with C and C++ object files and libraries.

Note: The object code should not contain a main() function. Any
initialization required by the application can be done from within the main()
function in uimx_directory/config/uimx_main.cc. If you need to access
the internal data structures of the swidget classes in augmented UIM/X, you
must make sure that the symbol PRIVATE_SWIDGET is defined when you
compile UIM/X. You can do this by adding the flag -DPRIVATE_SWIDGET
to the cflags resource or to one of the makefile macros in
Makefile.uimx.
UIM/X Advanced Topics 95

BUILDING EXECUTABLES
Augmenting UIM/X 4
Registering Functions

The file uimx_directory/config/uimx_main.cc contains the function
UxRegisterFunctions. You register a function with the Interpreter by
inserting a call to UxRegisterFunction in UxRegisterFunctions.

Registering a function has two advantages:

• It makes the address of the function known to the Interpreter, eliminating
the delay associated with looking up the function the first time it is
encountered.

• It ensures that functions from X, C, or other libraries are included in the
executable, and are thus accessible from the Interpreter.

UxRegisterFunction is declared as follows:

void UxRegisterFunction(char *name, void *fptr);

The parameter name is the name of the function, and fptr is a pointer to the
function.

When you register a function, you must also declare it. (If a function is not
referenced, it will not be linked into the UIM/X executable.) You can do this
by including the appropriate header file in uimx_main.cc, or adding an
extern declaration. The following example illustrates both approaches:

#include <math.h>

extern char *yourFunction(void);

void UxRegisterFunction()

{

UxRegisterFunction(“sin”, sin);

UxRegisterFunction(“yourFunction”,
yourFunction);

}

Note: Ensure that the function you are preregistering has been declared with its
proper linkage. A C function must be declared as extern “C”.
96 UIM/X Advanced Topics

BUILDING EXECUTABLES
Registering Globals 4
Registering Globals

The file uimx_directory/config/uimx_main.cc contains the function
UxRegisterGlobals. You register a global with the Interpreter by
inserting a call to UxRegisterGlobal in UxRegisterGlobals.

Registering globals has the same advantages as registering functions.

Note: UIM/X preregisters the globals in the C library that are part of the ANSI
standard. To use any other globals in the C library, you must register them with
the Interpreter.

UxRegisterGlobal is declared as follows:

void UxRegisterGlobal(void *name, void *gptr);

The parameter name is the name of the variable, and gptr is a pointer to the
variable.

When you register a global, you must also declare it. You can do this by
including the appropriate header file in uimx_main.c, or adding an
extern declaration. The following example illustrates the second approach:

Note: Ensure that the global you are preregistering has been declared with its
proper linkage. A C global must be declared as extern “C”.

Conditional Compilation in Generated Code

When you compile generated code and link it with UIM/X, you may want to
avoid certain function calls. A good example is XtCloseDisplay. Calling
this function during testing will terminate the UIM/X session. You can use the
DESIGN_TIME symbol to control compilation:

#ifndef DESIGN_TIME

XtCloseDisplay(UxDisplay);

#endif

{

extern int yourGlobal;

void UxRegisterGlobal();

}

UxRegisterGlobal(“yourGlobal”,
&yourGlobal);
UIM/X Advanced Topics 97

BUILDING EXECUTABLES
Augmenting UIM/X 4
When you use Makefile.uimx to augment UIM/X (see below), this symbol
is defined.

Using Makefile.uimx

If you examine uimx_directory/config/Makefile.uimx, you will see
that the makefile contains a limited number of macro definitions. The rules and
additional macro definitions required to build an augmented UIM/X are
contained in the makefile uimx_directory/mkinclude/central.mk,
which is included at the end of Makefile.uimx.

The macros in uimx_directory/config/Makefile.uimx define the target
and dependent files for augmenting the UIM/X executable. The following
table describes these macros.

General
Procedure for
Using
Makefile.uimx

The general procedure for using the makefile
uimx_directory/config/Makefile.uimx is as follows:

1. Create a working directory.

Macro Name Definition
AUGEXEC The name of the augmented UIM/X executable. In

uimx_directory/mkinclude/central.mk,
$(AUGEXEC) is the target that builds an augmented
UIM/X.

AUGMAIN The object file for the main program file of the
augmented executable.

APPL_OBJS The list of C object files to be linked with UIM/X.

APPL_CPLUSOBJS A list of C++ object files to be linked with UIM/X.

EXTRA_CFLAGS
Use this macro to define extra C compiler options
required for compiling the files $(APPL_OBJS). By
default, this macro sets the -DDESIGN_TIME flag.
Generated code must be compiled with the
-DUIMX_INTERNAL flag to make an interface into an
editor in UIM/X. You can also use this macro to add the
-DPRIVATE_SWIDGET flag.

EXTRA_CPLUSFLAGS Use this macro to add C++ compiler flags.
EXTRA_LDFLAGS Use this macro to define any extra link editor options

required for linking object code with UIM/X.

EXTRA_UXLIBS

Use this macro to list the libraries you want linked into
the UIM/X executable.
98 UIM/X Advanced Topics

BUILDING EXECUTABLES
Using Makefile.uimx 4
2. Copy uimx_directory/config/Makefile.uimx to the file Make-
file in your working directory. Renaming the makefile allows you to
invoke make without specifying the name of the makefile.

3. Copy the file uimx_directory/config/uimx_main.cc to your work-
ing directory. Insert any required initialization code in uimx_main.cc.
The comments in uimx_main.cc indicate where such code should be
inserted.

4. Copy the source (or object) files you want to compile and link with
UIM/X to your working directory.

5. Modify the makefile macros described in the above table. Use the macros
to name the executable and to list the object file for each source file in
your working directory.

6. If you want to make an interface into an editor in UIM/X, compile the
interface’s generated code with the flag -DUIMX_INTERNAL.

To do this, add -DUIMX_INTERNAL to the EXTRA_CFLAGS macro
as follows:

EXTRA_CFLAGS = -DDESIGN_TIME -DUIMX_INTERNAL

7. Use touch to ensure that all the files the target depends on are more
recent than the target.

8. Invoke make. Use the value of the macro AUGEXEC to specify the target.

Using central.mk
The makefile uimx_directory/mkinclude/central.mk contains the rules
and additional macro definitions required to augment UIM/X. This makefile is
included by Makefile.uimx.

The target and rule lines in central.mk that build an augmented executable
are shown below:

$(AUGEXEC): $(APPL_OBJS) $(APPL_CPLUSOBJS)
$(UIMXOBJ) $(CPLUS)\ $(LDFLAGS)
$(EXTRA_LDFLAGS) -o $@ $(APPL_OBJS)\
$(APPL_CPLUSOBJS) $(UIMXOBJ) $(LIBS1)

The macros AUGEXEC, APPL_OBJS, APPL_CPLUSOBJS, and
EXTRA_LDFLAGS are defined in
uimx_directory/config/Makefile.uimx. See Augmenting UIM/X.
UIM/X Advanced Topics 99

BUILDING EXECUTABLES
Using central.mk 4
The other macros are defined in central.mk. The following table describes
some of the macros which you can edit to tailor the compilation and linkage of
an augmented executable.

Macro Name Definition

UIMXOBJ UIM/X’s object files and libraries.

LIBS1

X, Motif, and other libraries linked into an augmented
executable.

LIBS2

X, Motif, and other libraries linked into an application
executable.
100 UIM/X Advanced Topics

Compound Properties A
CanBeTopLevel

Determines whether the widget can be a top level widget.

CanHaveChildren

Determines whether the widget can have additional children. The widget will not
accept any more children after the property CanHaveChildren is set to false
and applied.

ClipboardOps

Determines whether the widget can be cut, copied, and pasted. Note that a widget
can only be cut if it is deletable.

CompoundEditorName

Determines the name of a compound widget’s specialized editor.

CompoundIcon

Determines the icon used to represent the compound widget. The value of this
property must be the name of the file containing the pixmap or bitmap of the icon.
Valid file formats are X11 bitmap and XPM.

CompoundName

Determines the name given to a compound widget. This name is displayed on the
palette.

CompoundResourceSet

Allows you to create design-time properties for the individual widgets in a
compound widget.
UIM/X Advanced Topics 101

A

CompoundSwidgetMethodSet

Allows you to create design-time swidget methods for the individual widgets in a
compound widget.

DragRecursion

Determines the direction in which UIM/X traverses the compound widget
hierarchy when looking for a dragable widget. UIM/X only checks the value of this
property if the region widget is not dragable.

Editor

Allows you to enter the callback which pops up the compound editor. This callback
function is called whenever you do one of the following:

• Create an instance of the compound widget.

• Double-click the Select mouse button on one of the widgets in the compound
widget.

• Select the Compound Editor item from a menu.

EditorClientData

Determines the client data to be passed to the callback function that pops up the
compound editor.

Note that when you install a compound editor, the value of the property
CompoundName identifies the compound editor on UIM/X’s menus. For
example, if you give the name Radio Box to a compound widget, the menu item
Compound Editor becomes Radio Box Editor for the compound widget.

IsAlignable

Determines whether the widget can be aligned with other widgets. If
IsAlignable is set to false for at least one of the selected widgets, the Align
menu is insensitive.

IsAreaSelectable

Determines whether the widget can be selected using range selection. If the widget
is included in a range of selected widgets, UIM/X will disallow the selection. A
widget is only area-selectable if it is selectable (see IsSelectable).
102 UIM/X Advanced Topics

A

IsArrangeable

Determines whether the widget can be arranged with other widgets. If
IsArrangeable is set to false for at least one of the selected widgets, the
Arrange menu is insensitive.

IsCompound

Determines whether the widget is a compound widget; used to set the top widget in
a compound.

IsDeletable

Determines whether the widget can be deleted. Note that a widget can only be cut if
it is deletable.

IsDraggable

Determines whether the widget can be dragged. Note that you can only move a
widget if it is draggable.

IsDuplicatable

Determines whether the widget can be duplicated.

IsInCompound

Determines whether the widget is part of a compound widget.

IsMovable

Determines whether the widget can be moved. A widget can be dragged even if it is
not movable. For example, you can drag and drop a widget in the Property Editor
even if its IsMovable property is set to false. See also IsReparentable.

IsNovice

Determines whether the widget is built for UIM/X Novice Mode.

IsRecreatable

Determines whether the widget is recreatable.
UIM/X Advanced Topics 103

A

IsRegion

Determines whether a widget is a region widget. UIM/X uses region widgets to
determine whether the Adjust button was pressed on a move or a resize region.

IsReorderable

Determines whether you can change the order of a generation of children. When
you view a widget tree in the Browser, a generation of children is ordered from top
to bottom. You reorder a generation of children as follows:

1. Drag and drop widgets in the Browser. When you drop a child on its parent, the
child goes to the bottom of the order.

2. Paste widgets in the Browser.

3. Use the exchange operations in the Menu Editor.

Note: Reordering changes the numeric order of a list of children. For example, the
numeric order of items on a menu corresponds to their relative position—the first
(or top) menu item, the second item, and so on. Adding a new menu item reorders
all menu items below it.

IsReparentable

Determines whether the widget can be given a new parent.

IsResizable

Determines whether the widget can be resized.

IsSelectable

Determines whether the widget can be selected. When this property is set to
false, you cannot select the widget. If a widget is not selectable, then it is not
area-selectable.

ResizeRecursion

Determines the direction in which UIM/X traverses the compound widget
hierarchy when looking for a resizable widget. UIM/X only checks the value of this
property if the region widget is not resizable.
104 UIM/X Advanced Topics

A

ShowInBrowser

Determines whether the widget is shown in the Browser. This property is typically
set to false when you want to make a widget an invisible part of a widget
hierarchy.

UsePropEditor

Determines whether the widget can be loaded into the Property Editor. Note that
once UsePropEditor is set to false and you remove the widget from the
Property Editor, you cannot load the widget back into the Property Editor.

You can override the UsePropEditor property with the toggle UxPEEditAny. Set
UxPEEditAny.set to true and either restart or reset UIM/X.
UIM/X Advanced Topics 105

A

106 UIM/X Advanced Topics

Interface File Format B
File Format Concepts

Object Instantiation

The first task that must be accomplished by the UIM/X Interface File Format (IFF)
is the task of instantiating an object, for example a pushbutton, and setting its
properties. The mechanism for this is to include a line of the following format:

*ObjectName.class: ObjectClass

and then set properties using the X Toolkit syntax for resource specifications:

*ObjectName.resource: value

Note: When the value of a resource requires more than one line, each line should
be terminated with the backslash ”\” character to indicate that the value continues
on the next line.

The acceptable values for value are defined using the standard resource
converters.

For example, to instantiate a pushButton and set some of its properties, the
following would be used:

*pushButton.class: pushButton

*pushButton.parent: myrowColumn

*pushButton.x: 100

*pushButton.y: 200

*pushButton.width: 500

*pushButton.height: 600

*pushButton.labelString: “Push Me”
UIM/X Advanced Topics 107

B

Instance-Specific and Proprietary Resources

Builders often have resources which are proprietary, or which only exist on specific
instances of a widget. Examples of the former are the createManaged resource
added to each widget to determine whether to create the widget managed or
unmanaged, and the allowShellResize resource that UIM/X adds to certain
types of managers to control resize behavior. An example of the latter is a
constraint resource, which only exists as a resource of the widget when the widget
is a child of, for example, a form widget.

Using the example above, to add a manage resource and a constraint resource to the
pushButton would result in the following:

*pushButton.class:pushButton

*pushButton.parent: myrowColumn

*pushButton.x:100

*pushButton.y: 200

*pushButton.width: 500

*pushButton.height: 600

*pushButton.labelString: “Push Me”

*pushButton.createManaged: “true”

*pushButton.leftAttachment: “attach_form”

Note: Most instance specific resources are found in the Constraint category of the
Property Editor.Most proprietary resources are found in the Compound and
Declaration categories of the Property Editor.

Facets
It is frequently required to specify attributes of resources. These “properties of
properties” are called facets.
108 UIM/X Advanced Topics

B

For genuine widget resources, the possible facet values for a resource are the
following:

• source facet

Indicates where the generated code is to be placed. Specifying the value pub-
lic indicates that the value is to be placed in a resource file. The value of the
callback represents an expression yielding a pointer to a callback function
(which may be external to the interface).

Omitting the value public specifies that the value of the resource represents
a body of code to be placed in a callback function to be generated.

• lock facet

Specifies whether the resource should be considered locked by UIM/X.

When a padlock symbol is displayed beside the text field where the user

would type in the property value, the text field cannot be edited.

Interface-Specific Resources
The following resources, found once in each .i file, represent information that is
global to the entire interface:

*. Used only when generating C++ code. Fields where this information is entered by
the user are in the class view page of the Declaration Editor.

class The class type of the object being described. It can be a
widget name, an instance, a connection_action, or a
connection_event, or a palette.

classconstructor *

The constructor code executed prior to creation of the
GUI
portions of the interface.

classdestructor *

The destructor code added after the interface GUI has
been
destroyed but before the class is destroyed.

classinc *

The declaration statements provided in the class
includes
fields of the class view of the Declarations editor.

classmembers * Class member variables and functions.
UIM/X Advanced Topics 109

B

classspec * User- supplied class names to also use as parent of
the interface class being defined.

defaultShell The type of shell to provide for this component if it is
to be created as a toplevel interface and the root of
the widget hierarchy is not itself a shell.

gbldecl The values as entered by the user in the global
properties of the Declaration Editor.

ispecdecl The declaration of the instance-specific variables as
declared by the user in the Declaration Editor.

ispeclist A comma-separated list of instance-specific variable
names.

ispeclist.ispecname For each variable name in ispeclist, a facet is
generated that contains the decomposition of the
variable’s name and type. The builder derives this
information from the source entered in ispeclist.
All comments and blanks are removed.

funcdecl The create/popup function declaration as entered
by the user in the Declaration Editor. Note that it is
legal for the user to include comments and
conditional compilation switches in this value. Note
also that the declaration of the interface function
can have either prototypes (as in C++ function
declarations) or a comma-separated list of
arguments (as in K&R C).

funcname The actual name of the interface function. The
builder extracts this value from the funcdecl
resource. This fields contains only an identifier. Any
comments found in funcdeclare removed.

funcdef A decomposition of the signature of the interface
function. The builder extracts this information from
funcdecl.
110 UIM/X Advanced Topics

B

Methods
Components are user-defined segments of GUIs that can be re-used, just as any
widget can be re-used. Their behavior, defined by the user, is provided to UIM/X in
the form of virtual methods.

These methods represent, not only behavior of the component, but also the
declaration of an interface to the component. These interfaces are declared by
defining a get and a set method.

argdecl A semicolon-separated list of interface function
arguments. This list is derived from funcdecl.
Comments surrounding the arguments are removed.

arglist A comma-separated list of the names of the
arguments of the interface function.

arglist.argname For each argument of the interface function, a
facet of the resource of arglist is created, defining
the argument’s name and type.

icode The initial code executed prior to the creation of the
GUI portion of the interface.

fcode The final code executed after the creation of the
interface.

auxdecl
Auxiliary functions supplied by the user.

ifacefunctype The type of the interface creation function. Can be
either createor popup.

methodType
The method return type as entered by
the user.

methodArgs
The arguments of the method as entered
by the user in the Method Editor.

methodBody The body of the function as entered by
the user.

methodSpec
The method specifier. Values can be
virtual or static. Used in C++ to
determine the kind of member function
to generate.

accessSpec The access specifier. Used in
C++-generated code, determines the
access to a method. Values are public,
protected, or private.
UIM/X Advanced Topics 111

B

Note that some method names have special meaning for both the builder and the
code generator (uxcgen):

_get_Property A Get method (as seen in the Method Editor).

_set_Property A Set method (as seen in the Method Editor).

AddCallbackProc A callback accessor method. UIM/X creates a callback
resource in instances of the component. The method is
expected to have a callback signature.

Connections
The Connection Editor simplifies the user’s task of specifying interface behavior
by providing pick-and-choose mechanisms. To accomplish this, UIM/X saves the
resulting information as objects, with the properties specifying individual aspects
of the connections.

These objects are of the connection_event class and are parented to the
source object of the connection. The source object indicates the presence of
connections on the specific callback of a particular widget.

For each connection belonging to a particular connection_event, an object
of connection_action is created. The resources of this object specify the
particulars of the method and the actual arguments to be used for the connection.

The resources of a connection_event are: class, name, parent, and
callback.

The following resources of the connection_action type are possible:

target The widget that is the target of the connection.

method The method to use for the particular connection

corba
Determines the CORBA support in force
for a particular method. Values are:
corba2(env as last argument),
corba1(env as second argument), and
none (no env argument).

argument A comma-separated list of the names of
the arguments of the method.

argname.def

A facet, named after a formal argument
of the method, defining the argument’s
name and type.
112 UIM/X Advanced Topics

B

argument.argname One facet, named after the formal argument it

represents, giving the actual argument to use for this
formal parameter.

Swidget Methods
The Connection Editor relies on the methods defined for a class (usually defined in
the Method Editor) to present a choice of methods for the connection. Although
this is suitable for classes built from UIM/X components, as the user will have
defined some methods, it is less appropriate for Motif widgets.

Swidget methods are provided as an alternative. They define the methods as objects
that supply small segments of code to be pasted into the generated callback code. In
this sense, they are similar to in-line member functions in C++ or their equivalent
macro-defined functions. Since the language options for code generation are not
known when the interface file is generated, code segments are generated for all
possible choices.

In the code segments, certain reserved words are replaced by the appropriate code
to reference either the source or target widget (or swidget). The following

table indicates how the search strings are replaced. “Target” is the action’s target
resource value and “return” is the action’s optional return resource value:

Note that there is no special keyword for the source of the connection. However in
a callback, the variable Ux can always be used to refer to the source. Since
connections are always expanded within a callback, UxThis is always available for
this purpose.

Note also that the value of the UxReturn resource does not have to appear on the
right-hand side of an assignment expression. UxReturn is expected to be an lvalue,
consequently its address can be passed to a function. This could be used, for
example, with XtGetValue in Xt code generation mode.

A swidget method can be used as many times as there are
connection_actions on an interface, but only one swidget method object is
written in the interface file. The swidget method object is shared among all
connection_actions.

Search String Ux Mode Xt Mode
UxTargetSwidget target target
UxTargetWidget UxGetWidget(target) target
UxReturn return return
UIM/X Advanced Topics 113

B

The following are resources specific to the swidgetmethod class object:

Loading Interface Files of an Earlier Version
In .i files of UIM/X version 2.9, private callbacks began with an open brace “{“
and ended with a corresponding closing brace “}”. These braces are no longer
required, and are removed by UIM/X when loading a version 2.9 interface file.

methodType The method return type.

methodArgs A semicolon-separated list of method arguments.

methodBody.Xt
The code body supplied for Xt code (C++, ANSI C,
K&R C).

methodBody.Ux
The code body supplied for Ux code (C++, ANSI C,
K&R C).

methodBody.C++
The code body supplied for C++ code with C++
bindings.

arguments
A comma-separated list of argument names of a
method.

argname.def
The decomposition of the argument’s name and it’s
type.
114 UIM/X Advanced Topics

Swidget Class Hierarchy C
Overview

The hierarchy of swidget classes generally parallels the hierarchy of Motif widget
classes. Figure C-1 indicates the depth of subclassing. For each swidget class, the
corresponding widget class and the swidget class’ private and public header files
are shown.
UIM/X Advanced Topics 115

C

Figure C-1 Swidget Class Hierarchy
116 UIM/X Advanced Topics

C

Swidget Class Widget Class
Private
Header

Public
Header

applicationShell applicationShellWidgetClass applSh.cl.h UxApplSh.h

arrowButton xmArrowButtonWidgetClass arrB.cl.h UxArrB.h

arrowButtonGadget xmArrowButtonGadgetClass arrBG.cl.h UxArrBG.h

bulletinBoard xmBulletinBoardWidgetClass bboard.cl.h UxBboard.h

bulletinBoardDialog xmBulletinBoardWidgetClass bbD.cl.h UxBbD.h

cascadeButton xmCascadeButtonWidgetClass cascB.cl.h UxCascB.h

cascadeButtonGadget xmCascadeButtonGadgetClass cascBG.cl.h UxCascBG.h

command xmCommandWidgetClass comm.cl.h UxComm.h

composite compositeWidgetClass comp.cl.h UxComp.h

Core widgetClass Core.cl.h UxCore.h

dialogShell xmDialogShellWidgetClass dialSh.cl.h UxDialSh.h

drawingArea xmDrawingAreaWidgetClass drArea.cl.h UxDrArea.h

drawnButton xmDrawnButtonWidgetClass drawnB.cl.h UxDrawnB.h

errorDialog xmMessageBoxWidgetClass errorD.cl.h UxErrorD.h

fileSelectionBox xmFileSelectionBoxWidgetClass fsBox.cl.h UxFsBox.h

fileSelectionBoxDialog xmFileSelectionBoxWidgetClass fsBD.cl.h UxFsBD.h

form xmFormWidgetClass form.cl.h UxForm.h

formDialog xmFormWidgetClass formD.cl.h UxFormD.h

frame xmFrameWidgetClass frame.cl.h UxFrame.h

gadget xmGadgetClass gadget.cl.h UxGadget.h

informationDialog xmMessageBoxWidgetClass infoD.cl.h UxInfoD.h

label xmLabelWidgetClass label.cl.h UxLabel.h

labelGadget xmLabelGadgetClass labelG.cl.h UxLabelG.h

list xmListWidgetClass list.cl.h UxList.h

mainWindow xmMainWindowWidgetClass mainW.cl.h UxMainW.h
UIM/X Advanced Topics 117

C

Swidget Class Widget Class
Private
Header

Public
Header

manager xmManagerWidgetClass mgr.cl.h UxMgr.h

menuShell xmMenuShellWidgetClass menuSh.cl.h UxMenuSh.h

messageBox xmMessageBoxWidgetClass msgBox.cl.h UxMsgBox.h

messageBoxDialog xmMessageBoxWidgetClass msgBD.cl.h UxMsgBD.h

nonVisualShell xmTopLevelShellWidgetClass nvSh.cl.h UxNvSh.h

overrideShell overrideShellWidgetClass overSh.cl.h UxOverSh.h

panedWindow xmPanedWindowWidgetClass paneW.cl.h UxPaneW.h

primitive xmPrimitiveWidgetClass prim.cl.h UxPrim.h

promptDialog xmSelectionBoxWidgetClass prompD.cl.h UxPrompD.h

pushButton xmPushButtonWidgetClass pushB.cl.h UxPushB.h

pushButtonGadget xmPushButtonGadgetClass pushBG.cl.h UxPushBG.h

questionDialog xmMessageBoxWidgetClass questD.cl.h UxQuestD.h

RectObject rectObjClass rectO.cl.h UxRectO.h

rowColumn xmRowColumnWidgetClass rowCol.cl.h UxRowCol.h

scale xmScaleWidgetClass scale.cl.h UxScale.h

scrollBar xmScrollBarWidgetClass scrBar.cl.h UxScrBar.h

scrolledList xmListWidgetClass scList.cl.h UxScList.h

scrolledText xmTextWidgetClass scText.cl.h UxScText.h

scrolledWindow
xmScrolledWindowWidgetClas
s scrW.cl.h UxScrW.h

selectionBox xmSelectionBoxWidgetClass selBox.cl.h UxSelBox.h

selectionBoxDialog xmSelectionBoxWidgetClass selBD.cl.h UxSelBD.h

separator xmSeparatorWidgetClass sep.cl.h UxSep.h

separatorGadget xmSeparatorGadgetClass sepG.cl.h UxSepG.h

shell shellWidgetClass shell.cl.h UxShell.h

templateDialog xmMessageBoxWidgetClass templD.cl.h UxTemplD.h

text xmTextWidgetClass text.cl.h UxText.h

textField xmTextFieldWidgetClass textF.cl.h UxTextF.h
118 UIM/X Advanced Topics

C

Swidget Class Widget Class
Private
Header

Public
Header

toggleButton xmToggleButtonWidgetClass togB.cl.h UxTogB.h

toggleButtonGadget xmToggleButtonGadgetClass togBG.cl.h UxTogBG.h

topLevelShell topLevelShellWidgetClass topSh.cl.h UxTopSh.h

transientShell transientShellWidgetClass tranSh.cl.h UxTranSh.h

vendorShell vendorShellWidgetClass vendSh.cl.h UxVendSh.h

Swidget Class Widget Class
Private
Header Public Header

warningDialog xmMessageBoxWidgetClass warnD.cl.h UxWarnD.h

wMShell wmShellWidgetClass wmSh.cl.h UxWmSh.h

workingDialog xmMessageBoxWidgetClass workD.cl.h UxWorkD.h
UIM/X Advanced Topics 119

C

120 UIM/X Advanced Topics

Resource Types D
Overview

In UIM/X, the values of most swidget properties are stored as integers and strings.
The actual data types required by the widgets, however, are not necessarily the
same as those used internally by UIM/X.

UIM/X provides a mechanism for converting between the different data types
expected by swidgets and widgets. The resource descriptor of a property identifies
the data type expected by the swidget, the data type expected by the widget, and the
function used to convert between the two types. As well, the resource descriptor
contains pointers to functions for validating and listing property values.

Utypes and xtypes are defined in

uimx_directory/custom/include/utype.h.
UIM/X Advanced Topics 121

D

Utypes
A utype is a data type used to hold the value of a swidget property. A utype ID is
stored in the resource descriptor of a swidget property. The following table lists the
utype IDs defined by UIM/X and the corresponding data types.

Xtypes
An xtype specifies the data type and possible values of a widget property. UIM/X
uses xtypes to describe the property values accepted by a widget. An xtype ID is
stored in the resource descriptor of a swidget property.

Enumerated Xtypes

An enumerated xtype is a data type with a list of possible values. For example, the
enumerated xtype UxXT_ArrowDirection describes a widget property whose
possible values are XmARROW_UP, XmARROW_DOWN, XmARROW_LEFT, or
XmARROW_RIGHT. UIM/X converts enumerated xtypes to either UxUT_string
or UxUT_int.

The following table lists the IDs of the enumerated xtype defined by UIM/X.

Type ID Data Type
UxUT_cardFunction Cardinal (*) ()

UxUT_char char

UxUT_float float

UxUT_int int

UxUT_long long

UxUT_short short

UxUT_string char*

UxUT_stringTable char**

UxUT_vhandle char*

UxUT_visualPointer Visual*

UxUT_voidFunction void (*)()

UxUT_XmTextSource XmTextSource
122 UIM/X Advanced Topics

D

Non-Enumerated Xtypes

Non-enumerated xtypes can take on any value that can be stored in the data type of
the widget property. The following table lists the non-enumerated xtypes defined
by UIM/X. As well, for each non-enumerated xtype, the table lists the utype used to
represent the property value. UIM/X installs converters for each xtype, utype pair
listed. If there is no utype listed, it is because no conversion is required—the xtype
and utype are the same data type.

Enumerated Xtype IDs
UxXT_Alignment UxXT_MessageDialogType
UxXT_ArrowDirection UxXT_MultiClick
UxXT_AudibleWarning UxXT_MwmInputMode
UxXT_AttachmentType UxXT_NavigationType
UxXT_Bool UxXT_Orientation
UxXT_Boolean UxXT_Packing
UxXT_ChildType UxXT_ProcessingDirection
UxXT_ChildPlacement UxXT_ResizePolicy
UxXT_ChildVerticalAlignment UxXT_RowColumnType
UxXT_CommandWindowLocation UxXT_ScrollBarDisplayPolicy
UxXT_EntryVerticalAlignment UxXT_ScrollBarPlacement
UxXT_DefaultButtonType UxXT_ScrollingPolicy
UxXT_DeleteResponse UxXT_SelectionPolicy
UxXT_DialogStyle UxXT_SelectionArray
UxXT_DialogType UxXT_SeparatorType
UxXT_EditMode UxXT_ShadowType
UxXT_FileTypeMask UxXT_StringDirection
UxXT_IndicatorType UxXT_TearOffModel
UxXT_InitialWindowState UxXT_UnitType
UxXT_KeyboardFocusPolicy UxXT_VisualPolicy
UxXT_LabelType UxXT_WinGravity
UxXT_ListSizePolicy

Xtype ID Utype Converted To
UxXT_Accelerators UxUT_string
UxXT_Atom UxUT_string
UxXT_bitmap UxUT_string
UxXT_BorderPixmap UxUT_string
UxXT_BottomShadowPixmap UxUT_string
UxXT_char —
UxXT_Colormap UxUT_long
UxXT_CreatePopupChildProc UxUT_voidFunction
UxXT_Dimension UxUT_int
UxXT_DirListItems UxUT_string
UxXT_DirSearchProc UxUT_voidFunction
UIM/X Advanced Topics 123

D

Validator And ValuesOf Functions
For each xtype defined by UIM/X, there is a ValuesOf function and a Validator
function:

• A ValuesOf function provides a textual description of the allowable property
values. UIM/X uses this text:

• To compose the error messages displayed in the Message Window when
an invalid property value is entered.

• To construct an option menu for the property in the Property Editor.

• A Validator function validates a property value.

The names of the ValuesOf and Validator functions are derived from the name of
the associated xtype. For example, the xtype UxXT_Alignment has the
associated functions UxValuesOfAlignment and UxValidateAlignment.

UxXT_FileListItems UxUT_string
UxXT_FileSearchProc UxUT_voidFunction
UxXT_FontStruct UxUT_string
UxXT_HighlightPixmap UxUT_string
UxXT_HistoryItems UxUT_string
UxXT_InsertPosition UxUT_cardFunction
UxXT_int UxUT_int
UxXT_Items UxUT_string
UxXT_KeySym UxUT_string
UxXT_ListItems UxUT_string
UxXT_Pixel UxUT_string
UxXT_Pixmap UxUT_string
UxXT_Position UxUT_int
UxXT_QualifySearchDataProc UxUT_voidFunction
UxXT_SelectedItems UxUT_string
UxXT_short UxUT_short
UxXT_String UxUT_string
UxXT_StringOrNull UxUT_string
UxXT_TopShadowPixmap UxUT_string

UxXT_Translations UxUT_string
UxXT_ValueWcs UxUT_string
UxXT_VisualPointer -
UxXT_Widget UxUT_string
UxXT_WidgetClass UxUT_string
UxXT_WidgetList UxUT_stringTable
UxXT_Window UxUT_string
UxXT_XID UxUT_string
UxXT_XmFontList UxUT_string
UxXT_XmString UxUT_string
UxXT_XmTextSource -

Xtype ID Utype Converted To
124 UIM/X Advanced Topics

D

The following table lists the Validator and ValuesOf functions defined by
UIM/X. The declarations for these functions are contained in the files
uimx_directory/custom/include/valuesOf.h and
uimx_directory/custom/include/validate.h.

Validator Function ValuesOf Function
UxValidateAccelerators UxValuesOfAccelerators
UxValidateAlignment UxValuesOfAlignment
UxValidateAny UxValuesOfAny
UxValidateArgc UxValuesOfArgc
UxValidateArgv UxValuesOfArgv
UxValidateArrowDirection UxValuesOfArrowDirection
UxValidateAtom UxValuesOfAtom
UxValidateAudibleWarning UxValuesOfAudibleWarning
UxValidateBitmap -
UxValidateBool UxValuesOfBool
UxValidateBoolean UxValuesOfBoolean
UxValidateBottomAttachment UxValuesOfAttachmentType
UxValidateBottomWidget UxValuesOfConstraintWidget
- UxValuesOfCallback
UxValidateCardFunction UxValuesOfCardFunction
UxValidateChar UxValuesOfChar
UxValidateChildPlacement UxValuesOfChildPlacement
UxValidateChildType UxValuesOfChildType

UxValidateChildVerticalAlignment
UxValuesOfChildVerticalAlign
ment

UxValidateChildrenList UxValuesOfChildrenList
UxValidateCmpndResSet UxValuesOfCmpndResSet

UxValidateCmpndSwidgetMethodSet
UxValuesOfCmpndSwidgetMethod
Set

UxValidateColormap UxValuesOfColormap

UxValidateCommandWindowLocation
UxValuesOfCommandWindowLocat
ion

UxValidateConstraintWidget UxValuesOfConstraintWidget
UxValidateDecimalPoints UxValuesOfDecimalPoints
UxValidateDefaultButtonType UxValuesOfDefaultButtonType
UxValidateDeleteResponse UxValuesOfDeleteResponse
UxValidateDescendantWidget UxValuesOfDescendantWidget
UxValidateDialogStyle UxValuesOfDialogStyle
UxValidateDialogType UxValuesOfDialogType
UxValidateDimension UxValuesOfDimension
UxValidateDirListItemCount UxValidateDirListItemCount
UxValidateDirListItems UxValuesOfXmStringTable
UxValidateDragRecursion UxValuesOfDragRecursion
UxValidateEditMode UxValuesOfEditMode
UxValidateEntryClass UxValuesOfEntryClass

UxValidateEntryVerticalAlignment
UxValuesOfEntryVerticalAlign
ment

UxValidateFileListItemCount UxValuesOfItemCount
UxValidateFileListItems UxValuesOfXmStringTable
UxValidateFileTypeMask UxValuesOfFileTypeMask
UxValidateFontStruct UxValuesOfFontStruct
UIM/X Advanced Topics 125

D

UxValidateGenericItemsOrItemCoun
t -
UxValidateGeometry UxValidateGeometry
UxValidateHistoryItemCount UxValuesOfItemCount
UxValidateHistoryItems UxValuesOfXmStringTable
UxValidateImage UxValuesOfImage
UxValidateIndicatorType UxValuesOfIndicatorType
UxValidateInitialWindowState UxValuesOfInitialWindowState
- UxValuesOfInput
UxValidateInt UxValuesOfInt
UxValidateIsHomogeneous UxValuesOfIsHomogeneous
UxValidateItemCount UxValuesOfItemCount
UxValidateItems UxValuesOfXmStringTable

UxValidateKeyboardFocusPolicy
UxValuesOfKeyboardFocusPolic
y

UxValidateKeysym UxValuesOfKeysym
UxValidateLabelType UxValuesOfLabelType
UxValidateLeftAttachment UxValuesOfAttachmentType
UxValidateLeftWidget UxValuesOfConstraintWidget
UxValidateListItemCount UxValuesOfItemCount
UxValidateListItems UxValuesOfXmStringTable
UxValidateListSizePolicy UxValuesOfListSizePolicy
UxValidateMaximum UxValuesOfScaleMinMaxValue
UxValidateMenuHistoryWidget UxValuesOfMenuHistoryWidget
UxValidateMenuPost UxValuesOfMenuPost
UxValidateMinimum UxValuesOfScaleMinMaxValue
UxValidateMsgDialogType UxValuesOfDialogType
UxValidateMultiClick UxValuesOfMultiClick
UxValidateMwmInputMode UxValuesOfMwmInputMode
UxValidateNavigationType UxValuesOfNavigationType
UxValidateNonnegativeInt UxValuesOfNonnegativeInt
UxValidateNonnegativeShort UxValuesOfNonnegativeShort
UxValidateOrientation UxValuesOfOrientation
UxValidatePacking UxValuesOfPacking
UxValidatePaneMaximum UxValuesOfPaneMaximum
UxValidatePaneMinimum UxValuesOfPaneMinimum
UxValidatePixel UxValuesOfPixel
UxValidatePixmap UxValuesOfPixmap
UxValidatePointer UxValuesOfPointer
UxValidatePosition UxValuesOfPosition
UxValidatePositionIndex UxValuesOfPositionIndex
UxValidatePositiveDimension UxValuesOfPositiveDimension
UxValidatePositiveInt UxValuesOfPositiveInt
UxValidatePositiveShort UxValuesOfPositiveShort

UxValidateProcessingDirection
UxValuesOfProcessingDirectio
n

UxValidateRadioBehavior UxValuesOfRadioBehavior
UxValidateResizePolicy UxValuesOfResizePolicy
UxValidateResizeRecursion UxValuesOfResizeRecursion
UxValidateRightAttachment UxValuesOfAttachmentType
UxValidateRightWidget UxValuesOfConstraintWidget
UxValidateRowColumnType UxValuesOfRowColumnType
- UxValuesOfScaleMinMaxValue
UxValidateScaleMultiple UxValuesOfScaleMultiple

Validator Function ValuesOf Function
126 UIM/X Advanced Topics

D

UxValidateScrollBarDisplayPolicy
UxValuesOfScrollBarDisplayPo
licy

UxValidateScrollBarPlacement UxValuesOfScrollBarPlacement
UxValidateScrollingPolicy UxValuesOfScrollingPolicy
UxValidateSelectedItemCount UxValuesOfItemCount
UxValidateSelectedItems UxValuesOfSelectedItems
UxValidateSelectionArray UxValuesOfSelectionArray

UxValidateSelectionArrayCount
UxValuesOfSelectionArrayCoun
t

UxValidateSelectionPolicy UxValuesOfSelectionPolicy
UxValidateSeparatorType UxValuesOfSeparatorType
UxValidateShadowThickness UxValuesOfShadowThickness
UxValidateShadowType UxValuesOfShadowType
UxValidateShort UxValuesOfShort
UxValidateShortDimension UxValuesOfShortDimension
UxValidateString UxValuesOfString
UxValidateStringDirection UxValuesOfStringDirection
UxValidateStringTable UxValuesOfStringTable
UxValidateTearOffModel UxValuesOfTearOffModel
UxValidateTopAttachment UxValuesOfAttachmentType
UxValidateTopWidget UxValuesOfConstraintWidget
UxValidateTopItemPosition UxValuesOfTopItemPosition

UxValidateTranslationString -
UxValidateTranslations UxValuesOfTranslations
UxValidateUnitType UxValuesOfUnitType
UxValidateUserData UxValuesOfUserData
UxValidateValue UxValuesOfSBMinMaxValue
UxValidateValueWcs UxValuesOfValueWcs
UxValidateVisualPointer UxValuesOfVisualPointer
UxValidateVisualPolicy UxValuesOfVisualPolicy
UxValidateVoidFunction UxValuesOfVoidFunction

UxValidateWhichButton -
UxValidateWidget UxValuesOfWidget
UxValidateWidgetClass UxValuesOfWidgetClass
UxValidateWinGravity UxValuesOfWinGravity
UxValidateWindow UxValuesOfWindow
UxValidateXID UxValuesOfXID
UxValidateXmFontList UxValuesOfXmFontList
UxValidateXmString UxValuesOfXmString
UxValidateXmStringTable UxValuesOfXmStringTable
UxValidateXmTextSource UxValuesOfXmTextSource

Validator Function ValuesOf Function
UIM/X Advanced Topics 127

D

128 UIM/X Advanced Topics

Class Methods E
Overview

This appendix contains the reference pages for the class methods used by UIM/X to
operate on widgets. These methods are defined in the swidget classes. For example,
when the user attempts to create a new widget as a child of an existing widget, a
method is called on the proposed parent to verify that it can accept such a child.
Some classes, such as drawingArea, accept most children. Other classes, such as
scrolledWindow, can have only a fixed number of children. Each class has its own
version of the method that implements the class-specific rules.

A swidget class inherits the methods of its superclasses. You can override these
inherited class methods. See Chapter 2, “Integrating Widgets.”
UIM/X Advanced Topics 129

initE
init
Initializes an instance of a swidget class.

Method ID UxM_init

Synopsis void init(swidget sw);

Arguments sw A swidget.

Return Value None.

Description The init method initializes the fields of a swidget’s instance structure.

Example /* macro to invoke method */

#define init(sw) UxVoid_get_op(sw, UxM_init)(sw);

See Also UxType_get_op in Appendix G, “Ux Builder Functions”
130 UIM/X Advanced Topics

UxApply E
UxApply
Recreates a swidget hierarchy and exposes the selected swidgets.

Method ID UxM_UxApply

Synopsis void UxApply (swidget sw);

Arguments sw A swidget.

Return Value None.

Description UxApply calls UxBuild and then redisplays (exposes) all selected swidgets.

The method is named UxApply because it is often the last thing done to a swidget
when an editor (such as the Property Editor) is applied.

Example swidget RadioBox;/* rowColumn swidget */

PList_c *buttons;/* list toggleButton children of
RadioBox. */

/* Build list of edited buttons */

UxReorder(buttons, RadioBox, 0);

UxApply(RadioBox);

See Also UxBuild, uimx_directory/contrib/BuilderEngine/radio.i for the
complete source for the above example.
UIM/X Advanced Topics 131

UxBuild E
UxBuild
Recreates a swidget hierarchy.

Method ID UxM_UxBuild

Synopsis void UxBuild(swidget sw, Boolean manage);

Arguments sw A swidget.

manage A flag indicating whether or not to pop-up any top-level swidgets
when they are recreated.

Return Value None.

Description UxBuild uses the method UxRecreateParentOrChild to determine which
swidget to recreate. Once the proper swidget has been found, UxBuild recreates
the swidget and its descendants:

• It unrealizes the swidget and its descendants.

• It evaluates the Expressions list and re-initializes the Values list of the swidget
and each of its descendants.

• It validates the properties of the swidget and its descendants (invalid property
values are not applied).

• It realizes the swidget and its descendants, and pops-up any top-level swidgets.

Note: Overridden subclass methods should always call this version of the method.
132 UIM/X Advanced Topics

UxCanLoseChild E
UxCanLoseChild
Invoked when a child of a swidget is about to be reparented or destroyed.

Method ID UxM_UxCanLoseChild

Synopsis int UxCanLoseChild(swidget parent, swidget child,
swidget newParent);

Arguments parent The parent swidget.

child A child swidget.

newParent The new parent swidget, if child is being reparented. NULL
otherwise.

Return Value UxCanLoseChild returns NO_ERROR to indicate that child can be reparented
or destroyed, ERROR otherwise.

Description Removing a child from a constraining parent may violate some cross-dependency.
For example, removing a child from a form may break attachment dependencies.

This method can be used to check with the user before removing a child from a
parent. As well, this method could be used to issue observer updates when a child is
removed.
UIM/X Advanced Topics 133

UxCheckChildrenE
UxCheckChildren
Determines whether an adapter swidget is a valid parent for a set of children.

Synopsis char *UxCheckChildren(swidget parent, Environment
*env, int numChildren, class_t *childClasses,
swidget *children);

Arguments parent The parent adapter swidget.

env A pointer to a CORBA-compliant Environment structure declared
in uimx_directory/include/UxCorba.h. You can pass
&UxEnvto all methods.

numChildren The number of children.

childClasses The class of each child.

children The children

Return Value UxCheckChildren returns an error message if the parent cannot accept one or
more of the proposed children, and NULL otherwise.

Description The adapter swidget always relays the UIM/X method
UxWidgetCannotAcceptChildren to the component by calling the method
UxCheckChildren on itself. The component can register the method
UxCheckChildren with its own class code if it wants to validate the interactive
reparenting and creation of children swidgets.

A convenient way to do this is to call UxAdapterDesignMethods. If no
method is registered, the adapter will accept any child as long as there is a
designated child site.
134 UIM/X Advanced Topics

UxChildAdded E
UxChildAdded
Invoked after a child is added to a swidget.

Method ID UxM_UxChildAdded

Synopsis void UxChildAdded(swidget parent, swidget child);

Arguments parent The parent swidget.

child A child swidget.

Return Value None.

Description UxChildAdded informs a parent swidget that a child is being added. This
method can be used to clean up (for example, to issue observer updates) when a
child is added.
UIM/X Advanced Topics 135

UxChildRemovedE
UxChildRemoved
Invoked when a child swidget is removed from its parent.

Method ID UxM_UxChildRemoved

Synopsis void UxChildRemoved(swidget parent, swidget child,

swidget newParent);

Arguments parent The parent swidget.

child A child swidget.

newParent The new parent swidget, if child is being reparented. NULL
otherwise.

Return Value None.

Description UxChildRemoved informs a parent swidget that a child has been removed. This
method can be used to clean up (for example, to issue observer updates) when a
child is removed.
136 UIM/X Advanced Topics

UxClassValidate E
UxClassValidate
Validates the property values of an instance of a swidget class.

Method ID UxM_UxClassValidate

Synopsis int UxClassValidate(swidget sw, Resource_t **res);

Arguments sw Swidget whose Values list is validated.

res Output parameter.

Return Value UxClassValidate exits and returns ERROR when it finds the first invalid
property value. A pointer to the invalid property’s resource descriptor is passed
back in res. The return value NO_ERROR indicates that all property values are
valid.

Description UxClassValidate sequences through sw’s Value list, applying to each
property value the Validator function found in the property’s resource descriptor.
The Declaration properties are skipped.

If UxClassValidate finds an invalid property value, it outputs a message
(using the property’s ValuesOf function) to the Message Area of the start-up
interface and returns.
UIM/X Advanced Topics 137

UxClearExpressions E
UxClearExpressions
Removes all initial value expressions from a swidget’s Expressions list.

Method ID UxM_UxClearExpressions

Synopsis void UxClearExpressions(swidget sw);

Arguments sw A swidget.

Return Value None.

Description UxClearExpressions clears a swidget’s Expressions list by destroying all
initial value expressions and removing their entries from the Expressions list.
138 UIM/X Advanced Topics

UxClearValues E
UxClearValues
Removes all entries from a swidget’s Values list.

Method ID UxM_UxClearValues

Synopsis void UxClearValues(swidget sw);

Arguments sw A swidget.

Return Value None.

Description UxClearValues clears the Values list of a swidget by destroying the associated
data structures and removing their entries from the Values list.
UIM/X Advanced Topics 139

UxDrawHandlesE
UxDrawHandles
Draws selection handles around a widget.

Method ID UxM_UxDrawHandles

Synopsis void UxDrawHandles(swidget sw);

Arguments sw A swidget.

Return Value None.

Description UxDrawHandles draws selection handles around the widget and any gadget
children that have swidgets in the selected list.
140 UIM/X Advanced Topics

UxDrawHandles E
UxDrawHandles
Draws selection handles around an adapter widget.

Synopsis void UxDrawHandles(swidget sw, Environment *env);

Arguments sw An adapter swidget.

env A pointer to a CORBA-compliant Environment structure declared in
uimx_directory/include/UxCorba.h. You can pass &UxEnvto all
methods.

Return Value None.

Description The adapter swidget relays the UIM/X method UxDrawHandles to the
component by calling the method of the same name on itself. The component can
register the method UxDrawHandles with its own class code if it has special
needs for its selection handles.
UIM/X Advanced Topics 141

UxHandlePostCreation E
UxHandlePostCreation
Invoked after a swidget is created.

Method ID UxM_UxHandlePostCreation

Synopsis void UxHandlePostCreation(swidget sw);

Arguments sw A swidget.

Return Value None.

Description UIM/X uses this method to ensure that the children of a MainWindow or
ScrolledWindow swidget are managed correctly. This method gets the children of
the swidget sw and ultimately calls either XmMainWindowSetAreas or
XmScrolledWindowSetArea.
142 UIM/X Advanced Topics

UxInteractiveChildCreate E
UxInteractiveChildCreate
Supplies an error message if the interactive creation of a child swidget is not
permitted.

Method ID UxM_UxInteractiveChildCreate

Synopsis char *InteractiveChildCreate(swidget sw);

Arguments sw The proposed parent swidget.

Return Value Returns NULL if the user is allowed to interactively create a child of sw. Otherwise,
the method returns an error message.

Description This method specifies whether or not a child can be interactively created for a given
swidget.
UIM/X Advanced Topics 143

UxInteractiveCreateAndApply E
UxInteractiveCreateAndApply
Creates and applies a new swidget after the user has dragged and released the
Select mouse button.

Method ID UxM_UxInteractiveCreateAndApply

Synopsis swidget InteractiveCreateAndApply(Class_t cl,
swidget parent, Position cx, Position cy,
Dimension dx, Dimension dy, int toplevel, Position
mx, Position my);

Arguments cl The class of swidget to create.

parent The parent of the swidget being created. This parameter is NULL if a
top-level swidget is being created.

cx, cy The coordinates of the mouse pointer when the Select button was
released.

dx, dy The differences between the mouse pointer coordinates mx and my
and the coordinates of the upper-left inner corner of the parent
swidget.

toplevel TRUE if a top-level swidget is to be created, FALSE otherwise.

mx, my The coordinates of the mouse pointer when the Select button was
pressed.

Return Value Returns the new swidget.

Description Creates an instance of the swidget class cl and sizes it according to the passed
coordinates. If parent is NULL, it is set to UxParent.
144 UIM/X Advanced Topics

UxMakeArglist E
UxMakeArglist
Creates an XtArglist from the swidget’s Values list.

Method ID UxM_UxMakeArglist

Synopsis int UxSwidgetMakeArglist(swidget sw, Arg a[], int
pass);

Arguments sw A swidget.

a A list of Arg structures.

pass UxPASS0, UxPASS1, or UxPASS2

Return Value UxMakeArglist returns the number of properties added to arglist.

Description UxMakeArglist creates an XtArglist from a swidget’s Values list by converting
the value in each entry.
UIM/X Advanced Topics 145

UxMenusMenuSensitivities E
UxMenusMenuSensitivities
Sets the sensitivities of the items on the Menus submenu.

Method ID UxM_UxMenusMenuSensitivities

Synopsis void UxMenusMenuSensitivities(swidget sw, int
*popup, int *pulldown, int *option);

Arguments sw A swidget.

popup Returns True or False to indicate whether or not sw can have a
popup menu as a child.

pulldown Returns True or False to indicate whether or not sw can have a
pulldown menu as a child.

option Returns True or False to indicate whether or not sw can have an
option menu as a child.

Return Value None.

Description UxMenusMenuSensitivities controls the sensitivities of the Popup,
Pulldown, and Option items on the Menus submenu of the Selected Objects popup
menu.
146 UIM/X Advanced Topics

UxObjectToRecreate E
UxObjectToRecreate
Determines whether to recreate an adapter swidget or one of its ancestors.

Synopsis UxObjectToRecreate(swidget child, Environment *env,
swidget parent);

Arguments child A child adapter swidget.

env A pointer to a CORBA-compliant Environment structure
declared in uimx_directory/include/UxCorba.h. You can pass
&UxEnvto all methods.

parent A parent swidget.

Return Value Returns the swidget to be recreated.

Description The adapter swidget relays the UIM/X methods UxRecreateParentOrChild
and UxRecreateSwidget to the component by calling the method
UxObjectToRecreate on itself. The component can register the method
UxObjectToRecreate with its own class code to determine which swidget to
recreate when the adapter swidget when the adapter swidget must be recreated. The
return value could be the adapter or one of its ancestors.

A convenient way is to call UxAdapterDesignMethods. If no method is
registered, the adapter will return the component.
UIM/X Advanced Topics 147

UxRealizeE
UxRealize
Realizes the swidget tree into an X widget tree.

Method ID UxM_UxRealize

Synopsis widget UxRealize(swidget sw)

Arguments sw A swidget

Return Value Returns the widget for swidget sw.

Description If the swidget has no X widget, UxRealize realizes the swidget tree into an X
widget tree, using all the values in the swidget’s Resources lists.
148 UIM/X Advanced Topics

UxRecreateParentOrChild E
UxRecreateParentOrChild
Determines whether to recreate a swidget or one of its ancestors.

Method ID UxM_UxRecreateParentOrChild

Synopsis swidget UxRecreateParentOrChild(swidget sw);

Arguments sw A swidget.

Return Value Returns the swidget to be recreated.

Description UxRecreateParentOrChild determines whether a swidget or one of its
ancestors must be recreated. This method tells you which swidget you must
recreate to ensure that the swidget sw is properly recreated.

Note: UIM/X recreates a swidget by first destroying (unrealizing) it and then
creating (realizing) it.
UIM/X Advanced Topics 149

UxRecreateSwidget E
UxRecreateSwidget
Determines whether a child or a parent swidget should be recreated.

Method ID UxM_UxRecreateSwidget

Synopsis swidget UxRecreateSwidget(swidget child, swidget
parent);

Arguments child A child swidget.

parent The parent swidget.

Return Value Returns child or parent, whichever should be recreated in response to a
geometry change to child.

Description UxRecreateSwidget determines whether or not you must recreate the parent to
properly recreate a child.
150 UIM/X Advanced Topics

UxSetNonarglist E
UxSetNonarglist
Sets a property value that cannot be set by XtSetValues.

Method ID UxM_UxSetNonarglist

Synopsis void UxSetNonarglist(swidget sw);

Arguments sw A swidget.

Return Value None.

Description UxSetNonarglist is called to set property values such as accelerators and
translations.
UIM/X Advanced Topics 151

UxUnrealizeE
UxUnrealize
Destroys the underlying widget.

Method ID UxM_UxUnrealize

Synopsis void UxUnrealize(swidget sw);

Arguments sw A swidget.

Return Value None.

Description UxUnrealize destroys the underlying widget.
152 UIM/X Advanced Topics

UxValidMoveOrResize E
UxValidMoveOrResize
Determines whether or not a valid move or resize operation is being
performed.

Method ID UxM_UxValidMoveOrResize

Synopsis char *UxValidMoveOrResize(swidget sw, int *action,
swidget *actual_sw);

Arguments sw The swidget being moved or resized.

action Either DO_MOVEor DO_RESIZE. The method may reset this value.

actual_sw Returns the actual swidget to move or resize.

Return Value UxValidMoveOrResize returns NULL if action can be performed on
actual_sw. Otherwise, an error message is returned.

Description UxValidMoveOrResize determines whether or not sw or some other swidget
(a parent or child) can be moved or resized. actual_sw always contains the
swidget to move or resize.

If the requested action is illegal, the method may permit the alternate action to be
performed. For example, if *action is DO_RESIZE and sw is a menu bar,
UxValidMoveOrResize sets *action to DO_MOVE and returns.
UIM/X Advanced Topics 153

UxWidgetCannotAcceptChildren E
UxWidgetCannotAcceptChildren
Determines whether or not a swidget is a valid parent for a set of children.

Method ID UxM_UxWidgetCannotAcceptChildren

Synopsis char *UxWidgetCannotAcceptChildren(swidget parent,
int numChildren, Class_t *childClasses, swidget
*children);

Arguments parent The parent swidget.

numChildren The number of children.

childClasses The class of each child.

children The children.

Return Value UxWidgetCannotAcceptChildren returns an error message if the parent
cannot accept one or more of the proposed children, and NULL otherwise.

Description UxWidgetCannotAcceptChildren is used to validate the interactive
reparenting and creation of swidgets.
154 UIM/X Advanced Topics

Resource Descriptors F
Overview

Every widget property in UIM/X is described by a data object called a resource
descriptor. This data object is defined in the header file
uimx_directory/custom/include/resource.h. It is a Resource_t
structure, with access macros defined for its fields.

Every swidget class holds two PLists of resource descriptors: the resource set and
the constraint set. The resource set is the list of resource descriptors for the
properties declared by the class. The constraint set is the list of resource descriptors
for the constraint properties of the class. You can use UxGetResourceSet and
UxGetConstraints to get these lists.

When you define new properties for widget classes, you use
UxDefineResource to create and initialize new resource descriptors. The
arguments to UxDefineResource are simply a list of values for the fields of the
resource descriptor, keyed with keys from the enumeration RD_Key_t, which is
also defined in uimx_directory/custom/include/resource.h.

For components, you use UxInstanceResource() and
UxGlobalInstanceResource().
UIM/X Advanced Topics 155

F

Resource Descriptor Fields

Field Description Default

Format
Format string for making C code from the
property value. For example, "\"%s\"". NULL1

UimxName

The name of the property for interface files and
UxGetand UxPut macros. For example,
"allowShellResize". None

UxXtName

The name used in XtSetValues,
XtGetValues, and XtAddCallback. For
example, "allowShellResize". UimxName

PrintName

The name used in the Property Editor and in
messages. For example,
"AllowShellResize".

UimxName with
the first letter
capitalized.

UType

The utype of the property. One of the UxUT_
constants from uimx_directory/custom/
include/utype.h. UxUT_int

XType

The xtype of the property (the type used in
XtGetValuesand XtSetValues). One of the
UxXT_ variables from uimx_directory/
custom/include/utype.h. UxXT_int

Division

The category in the Property Editor. Possible
values are UxCORE, UxSPECIFIC,
UxCONSTRAINT, UxBEHAVIOR, UxDECL, and
UxCOMPOUND. UxCORE

Toolkit
True or False indicating whether or not the
property value can be set with XtSetValues. True

Treatment

Indicates how the Interpreter treats the value.
Possible values are UxSTATEMENT (for
callbacks), UxEXPRESSION (for properties),
and UxLITERAL (for names). UxEXPRESSION2

Pass

Indicates when during widget creation the
property value is set: UxPASS0 - initial
creation UxPASS1 -just after creation UxPASS2
-after all widgets created

UxPASS0
156 UIM/X Advanced Topics

F

Field Description Default

ReadOnly

Controls the sensitivity of the property in the
Property Editor. If set to True, the property is
insensitive, and the lock pixmap is displayed
beside the property name. False

CanBePublic
True or False indicating whether or not the
property can be set in a resource file. True

Editable
True or False indicating whether or not the
property appears in the Property Editor. True

NoEditBtn

True or False indicating whether or not the
Editor pushButton is available for the property
in the Property Editor. False

ValuesOf
Pointer to a function that returns a description
of possible values of a property. NULL

Validator
Pointer to a function that validates an input
property value. NULL

GetFunction

Pointer to the function used to get the xtype
value from the widget and convert the result
into a utype value. Not used by callback
properties.

UIM/X installs
the appropriate
function based on
the value of the
UType field.

PutFunction

Pointer to the function that converts a utype
value to an xtype value and passes the result to
the widget. Not used by callback properties.

UIM/X installs
the appropriate
function based on
the value of the
UType field.

CopyFunction
Pointer to a function that makes a copy of a
utype value for storage in the swidget.

UxCopyString
if UType is
UxUT_string.
NULL otherwise.

FreeFunction
Pointer to a function that frees a copy of a value
made with CopyFunction.

UxFreeif UType
is UxUT_string.
NULL otherwise.

EditFunction
Pointer to a popup editor function for the
property. NULL

SaveFunction

Pointer to a function used to write a resource
specification to a file.

NULL3
UIM/X Advanced Topics 157

F

1. For callbacks, "{(void) %s (UxWidget, UxClientData,
UxCallbackArg);}".

For userData properties, "(XtPointer) 0x%1x".

For properties whose utype is UxUT_string, "\"%s\"".

Otherwise the default is NULL.

2. UIM/X sets Treatmentto UxSTATEMENTif Division is set to
UxBEHAVIOR.

3. If this field is NULL, UIM/X uses its own default functions for writing properties.
Most of these fields apply only to resource properties. A callback can be defined
simply by supplying a UimxName and specifying that the Division is
UxBEHAVIOR.

Field Description Default

UserDataRD

User data field for extending and customizing
UIM/X. Users can add their own property data
in this field. NULL
158 UIM/X Advanced Topics

Ux Builder Functions G
Overview

This appendix contains detailed descriptions of each of the Ux Builder Functions.
In a few cases, a group of functions are described on a single reference page (for
example, the UxType_get_op functions for looking up class methods) because
they perform similar or related operations.

Note: The functions described in this appendix are used to extend and customize
UIM/X. They are not for use in generated applications.
UIM/X Advanced Topics 159

UxAdapterDesignMethods() G
UxAdapterDesignMethods()
Registers design-time component methods.

Synopsis #include <UxLib.h>

void UxAdapterDesignMethods(int clsCode, void
*checkChildren, void *drawHandles, void
*objectToRecreate);

Arguments clsCode The class code for the component.

checkChildren Function pointer for the UxCheckChildren() method.

drawHandlesFunction pointer for the UxDrawHandles() method.

objectToRecreateFunction pointer for the UxObjectToRecreate() method.

Return Value None.

Description UxAdapterDesignMethods() is a convenience function for registering
design-time methods for a given component. You register a method by passing a
function pointer. You pass NULL if you don’t want to register a method.

Example #ifdef DESIGN_TIME

int UxComponent_UxCheckChildren_Id = -1;

char* UxComponent_UxCheckChildren_Name =
"UxCheckChildren";

static char* _Component_UxCheckChildren(swidget sw,

Environment *pEnv)

{

if (pEnv)

pEnv->major(CORBA::NO_EXCEPTION);

return "This component cannot have children.";

}

#endif

int create_Component_ClassId(void)

{

160 UIM/X Advanced Topics

UxAdapterDesignMethods() G

static int IfClassCode = -1;

if (IfClassCode == -1)

{

IfClassCode = UxNewInterfaceClassId();

…

#ifdef DESIGN_TIME

UxAdapterDesignMethods(IfClassCode,_Compone
nt_UxCheckChildren, NULL, NULL);

#endif

}
return(IfClassCode);

}

UIM/X Advanced Topics 161

UxAdapterSwidget() G
UxAdapterSwidget()
Creates an adapter swidget for a component.

Synopsis #ifdef XT_CODE

#include <UxXt.h>

#else
#include <UxLib.h>

#endif

swidget UxAdapterSwidget(Widget wid, swidget
parent, char *name, int clsCode, void* cmptRef,
void* context);

Arguments wid A widget. This widget must be the controlling widget from the
component.

parent The parent swidget of the widget. This value is passed to the
component’s constructor.

name The name given to the adapter swidget. You can simply pass
XtName(wid).

clsCode The class code for the component. This value is obtained from
UxNewInterfaceClassId() or UxNewSubclassId().

cmptRef The component reference (a pointer to the component). This value is
stored in the instance structure of the adapter swidget.

context A pointer to the context structure for the adapter swidget. This should
be NULL (or UxNO_CONTEXT) for the adapter swidget created in the
body of a GUI component’s constructor. If you create a separate
adapter swidget for a child site widget, pass the component’s context
(obtained by calling UxGetContext()).

Return Value Returns an adapter swidget.

Description UxAdapterSwidget() creates an adapter swidget used to represent a widget in
UIM/X. You use adapter swidgets to integrate components into UIM/X.

You use UxAdapterSwidget() to get a swidget that can be returned by a
component constructor (its Interface Function) or by a childSite() method.
162 UIM/X Advanced Topics

UxAdapterSwidget() G

To integrate a component into UIM/X, you write a constructor that returns an
adapter swidget. This adapter swidget is connected to the underlying component
through the UIM/X Method system.

You don’t have to destroy the adapter swidget. UxAdapterSwidget() adds a
destroy callback to the widget wid that destroys the swidget for you. You are
responsible, however, for destroying the component. You can do this by adding a
destroy callback to wid that destroys the component.

See Also UxAdapterDesignMethods(), UxGetComponentRef(), UxPutComponentRef()
UIM/X Advanced Topics 163

UxAddConv() G
UxAddConv()
Installs a type converter.

Synopsis #include <utype.h>

void UxAddConv(int utype, int xtype, int
(*conv_fcn)());

Arguments utype ID of the utype.

xtype ID of the xtype.

conv_fcn The converter function to be used.

Return Value None.

Description UxAddConv() installs conv_fcn as the converter to be used when converting
property values between the given utype and xtype. UIM/X stores the

converter functions in an internal table—the xtype and utype IDs are the indices to
the table.

The converter function should follow the following format:

int convert_A_B(swidget sw, utype *udata, xtype *xdata,int
flag, int xtype);

• sw is the swidget requiring the conversion.

• *udata is the UIM/X value, and *xdata is the Xt value.

• flag indicates the direction of conversion:

• TO_UIMX to convert *xdata to *udata.

• TO_X to convert *udata to *xdata.

• xtype is the ID of the property xtype.

If a converter has already been installed for this pair of types, an error message is
given.You should install a converter for a new xtype if the property values expected
by the widgets do not match those expected by the swidgets. This is done by calling
UxAddConv() from the function UxAddUserDefXtypes() in
uimx_directory/custom/src/user-xtype.c.
164 UIM/X Advanced Topics

UxAddConv() G

Example Widgets expect the values of some constraint properties to be widget pointers but

swidgets expect them to be swidget names. Thus, a converter is needed to switch
between widget pointers and swidget names. The following code outlines such a
converter:

int convert_name_Widget(swidget swgt, char
**ptr_name, Widget *ptr_wgt, int flag, int xtype)

{

int status = NO_ERROR;

if (flag == TO_UIMX)

{

if (*ptr_wgt != NULL)

*ptr_name = XtName(*ptr_wgt);

else

*ptr_name = "";

}

else

{

swidget named_swgt = UxNameToSwidget(swgt,
*ptr_name);

if (named_swgt == NULL)

*ptr_wgt = NULL;

else

*ptr_wgt = UxGetWidget(named_swgt);

if (*ptr_wgt == NULL)

status = ERROR;

}

return (status);

}

This converter would be installed by the following function call:

UxAddConv(UxUT_string, UxXT_Widget,
convert_name_Widget);
UIM/X Advanced Topics 165

UxAddConv() G
See Also Appendix D, “Resource Types,” for listings of the utype and xtype IDs defined by
UIM/X, UxAddEnumType(), UxAddXtype(), UxCallConverter()
166 UIM/X Advanced Topics

UxAddEnumType() G
UxAddEnumType()
Adds the definition of an enumerated xtype.

Synopsis #include <utype.h>

int UxAddEnumType(char* name, int xt_size,

unsigned char *xt_vals, char** uimx_vals, char**
xdef_vals, int num_vals, int (*converter)());

Arguments name The name of the xtype.

xt_size The size of the xtype.

xt_vals Array of Xt values.

uimx_vals Array of UIM/X values.

xdef_vals Array of Xt-defined constants.

num_vals The number of array elements.

converter The converter function. UIM/X supplies two pre-defined
conversion functions: UxStringToCharEnum and
UxStringToIntEnum.

Return Value UxAddEnumType() returns the ID of the new xtype. By convention, the
xtype IDs are stored in global variables named UxXT_xtype.

Description UxAddEnumType() installs the arrays of possible values and the converter for an
enumerated xtype. Xtypes describe the data type and possible values of a widget
property (as opposed to a swidget property, which is described by a utype). An
enumerated xtype is a data type with a fixed list of possible values.

UxAddEnumType() does its work by calling UxAddXtype() and
UxAddConv().

Note that most enumerated properties are of type unsigned char and use the
converter UxStringToCharEnum(). The exceptions are of type int and use
the converter UxStringToIntEnum().
UIM/X Advanced Topics 167

UxAddMweEditorSeparator() G
UxAddMweEditorSeparator()
Adds a separator to one of the option menus in the Main Window Editor.

Synopsis void UxAddMweEditorSeparator(void *ptr);

Arguments ptr An opaque pointer to an internal data structure used to manage
the Main Window Editor option menu. UIM/X passes the
appropriate pointer to UxCreateMweWorkArea and
UxCreateMweMsgWindow.

Return Value None.

Description The Work Area and Message Window option menus in the Main Window
Editor are defined by the functions UxCreateMweWorkArea and
UxCreateMweMsgWindow in uimx_directory/custom/src/cr-mwe.c.

To add a separator to the Work Area option menu, add a call to
UxAddMweEditorSeparator() in UxCreateMweWorkArea. To add a
separator to the Message Window option menu, add a call to
UxAddMweEditorSeparator() in UxCreateMweMsgWindow.

Example void UxCreateMweMsgWindow(ptr)

void *ptr;

{

extern Class_t UxC_separator,

UxC_label,

UxC_text,

UxC_textField;

UxAddToMweEditor(ptr, CGETS_MWE(NONE),
(Class_t)0);

UxAddMweEditorSeparator(ptr);

UxAddToMweEditor(ptr, CGETS_MWE(LABEL),
UxC_label);

UxAddToMweEditor(ptr, CGETS_MWE(TEXT),
UxC_text);

UxAddToMweEditor(ptr, CGETS_MWE(TEXTFIELD),
UxC_textField);

}

168 UIM/X Advanced Topics

UxAddMweEditorSeparator() G

See Also UxAddToMweEditor(), “Customizing the Main Window Editor’s Option Menus”

in Chapter 2, “Integrating Widgets”
UIM/X Advanced Topics 169

UxAddToCreateMenu() G
UxAddToCreateMenu()
Adds an item to a Create menu.

Synopsis swidget UxAddToCreateMenu(swidget rowcol_sw, char*
label,char* mnemonic, int toplevel_flag, void
(*before_func)(), Class_t cl, void
(*after_func)());

Arguments rowcol_sw Identifies the rowColumn swidget (the menu pane) of a Create menu.

label Specifies the label for the new menu item.

mnemonic Specifies the mnemonic for the menu item.

toplevel_flag TRUE if the menu item creates a top-level widget; FALSE if the menu
item creates a parented widget.

before_funcSpecifies the function called before the user interactively creates an
instance of the swidget class. before_func is called by the callback
function registered with the XmNactivateCallback property of the
pushButton.

The callback calls before_func with a single argument which is the
swidget under the mouse pointer when the user interactively creates a
new swidget.

cl Specifies the class of the swidget instances created by the menu item. If
clis NULL, there is no interactive creation and after_func is not
called. When clis NULL, before_func can be used to pop-up a
specialized editor for creating swidgets—for example, UIM/X’s Menu
Editor.

after_func Specifies the function called after the user interactively creates an
instance of the swidget class. after_func is called by the callback
function registered with the XmNactivateCallback property of the
pushbutton.

The callback calls after_func with a single argument which is the
new swidget.

Return Value UxAddToCreateMenu() returns the swidget variable of the new pushButton
swidget.
170 UIM/X Advanced Topics

UxAddToCreateMenu() G

Description UxAddToCreateMenu() adds a pushButton menu item to the menu pane

rowcol_sw. The pushButton is given the specified label and mnemonic. When
the user clicks on the pushButton:

• The callback registered with XmNactivateCallback calls before_func (if it
is not NULL). The callback passes a swidget variable to before_func:

• When the user creates a swidget from the Selected Widgets popup, the
swidget for which the menu was popped-up is passed to before_func.

• When the user creates a swidget from a Browser Create menu, the first
swidget in the list of selected swidgets is passed to before_func. If
there are no selected swidgets, the value NULL is passed to
before_func.

• When the user creates a swidget from a Project Window Create menu, the
value NULL is always passed to before_func. This is because the
Project Window Create menus create top-level swidgets that have no
parents.

• If cl is not NULL, the user then interactively creates an instance of the swidget
class. after_func (if it is not NULL) is called immediately after the
swidget is created. after_funccan be used to pop-up a specialized
editor—UIM/X’s Main Window Editor is popped-up by an after_func.

UIM/X’s Create menus are defined by functions in
uimx_directory/custom/src/cr-menus.c. For each Create menu, there is a
function containing a series of calls to UxAddToCreateMenu(). You can add
new items to these menus by adding calls to UxAddToCreateMenu() in the
appropriate function.

Example In uimx_directory/custom/src/cr-menus.c, the function
UxSpecifyTopCustomMenu() defines the Project Window’s Custom Create
menu. The call to UxAddToCreateMenu() shown below adds a menu item for
the Square widget class to that Create menu:

void UxSpecifyTopCustomMenu(casc_swgt, rowcol_swgt
)

swidget casc_swgt;

swidget rowcol_swgt;

{
extern Class_t UxC_square;

(void) UxAddToCreateMenu(rowcol_swgt,"Square",
UIM/X Advanced Topics 171

UxAddToCreateMenu() G
"q",

TRUE,

(void (*)()) NULL,

UxC_square,

(void (*)()) NULL);

}

See Also “Customizing UIM/X’s Create Menus” in Chapter 2, “Integrating Widgets”.
172 UIM/X Advanced Topics

UxAddToMweEditor() G
UxAddToMweEditor()
Adds a menu item to one of the Main Window Editor’s option menus.

Synopsis void UxAddToMweEditor(void *ptr, char* label,
Class_t cl);

Arguments ptr An opaque pointer to an internal data structure used to manage
the Main Window Editor option menu. UIM/X passes the
appropriate pointer to UxCreateMweWorkArea and
UxCreateMweMsgWindow.

label Specifies the label of the menu item.

cl Identifies the swidget class associated with the menu item.

Return Value None.

Description The Work Area and Message Window option menus in the Main Window Editor
are defined by the functions UxCreateMweWorkArea and
UxCreateMweMsgWindow in uimx_directory/custom/src/cr-mwe.c.

These functions contain a series of calls to UxAddToMweEditor(). Each call to
UxAddToMweEditor() adds a pushButton menu item to one of the option
menus in the Main Window Editor.

To add an item to the Work Area option menu, add a call to
UxAddToMweEditor() in UxCreateMweWorkArea. To add an item to the
Message Window option menu, add a call to UxAddToMweEditor() in
UxCreateMweMsgWindow.

Note: Passing UxC_separator (or UxC_separatorGadget) as the swidget
class ID (the cl parameter) adds a separator to the menu.

Items on the Work Area option menu must be subclasses of the manager swidget
class (UxC_manager). Items on the Message Window option menu must be
subclasses of the primitive swidget class (UxC_primitive).

Example void UxCreateMweWorkArea(ptr)

void *ptr;

{

externClass_t UxC_separator,

UxC_bulletinBoard,
UIM/X Advanced Topics 173

UxAddToMweEditor()G
UxC_drawingArea,

UxC_fileSelectionBox,

UxC_form,

UxC_frame,

UxC_mainWindow,

UxC_messageBox,

UxC_panedWindow,

UxC_rowColumn,

UxC_scale,

UxC_scrolledWindow,

UxC_selectionBox,

UxC_square;

UxAddToMweEditor(ptr, CGETS_MWE(NONE),
(Class_t)0);

UxAddMweEditorSeparator(ptr);

UxAddToMweEditor(ptr, CGETS_MWE(BULLTNBRD),

UxC_bulletinBoard);

UxAddToMweEditor(ptr, CGETS_MWE(DRWGAREA),
UxC_drawingArea);

UxAddToMweEditor(ptr, CGETS_MWE(FILESELBOX),

UxC_fileSelectionBox);

UxAddToMweEditor(ptr, CGETS_MWE(FORM),
UxC_form);

UxAddToMweEditor(ptr, CGETS_MWE(FRAME),
UxC_frame);

UxAddToMweEditor(ptr, CGETS_MWE(MAINWND),
UxC_mainWindow);

UxAddToMweEditor(ptr, CGETS_MWE(MSGBOX),
UxC_messageBox);

UxAddToMweEditor(ptr, CGETS_MWE(PANEDWND),
UxC_panedWindow);

UxAddToMweEditor(ptr, CGETS_MWE(ROWCOLUMN),
174 UIM/X Advanced Topics

UxAddToMweEditor() G

UxC_rowColumn);

UxAddToMweEditor(ptr, CGETS_MWE(SCALE),
UxC_scale);

UxAddToMweEditor(ptr, CGETS_MWE(SCRLWND),
UxC_scrolledWindow);

UxAddToMweEditor(ptr, CGETS_MWE(SELBOX),
UxC_selectionBox);

UxAddToMweEditor(ptr, “Square”, UxC_square);

}

See Also UxAddMweEditorSeparator(), “Customizing the Main Window Editor’s Option
Menus” in Chapter 2, “Integrating Widgets”
UIM/X Advanced Topics 175

UxAddXtype() G
UxAddXtype()
Adds a new xtype definition.

Synopsis #include <utype.h>

int UxAddXtype(char *name, int size);

Arguments name The name of the xtype.

size The size of the new type.

Return Value UxAddXtype() returns the ID the new xtype. By convention, the xtype IDs are
stored in global variables named UxXT_xtype.

Description UxAddXtype() adds an xtype for a new data type of an Xt property. If you add a
new swidget class that has a property for which the values expected by the widget
are of a different data type or have a different set of permissible values than any of
the existing properties, you must add a new xtype. You do this by adding a call to
UxAddXtype() in the function UxAddUserDefXtypes in
uimx_directory/custom/src/user-xtype.c.

UxAddConv() registers a function to be used to convert between the new xtype
and a given utype.

Example int UxXT_Widget = UxAddXtype("Widget",
sizeof(Widget));

See Also “Defining New Xtypes” in Chapter 2, “Integrating Widgets” , UxAddConv(),
UxAddEnumType()
176 UIM/X Advanced Topics

UxCallConverter() G
UxCallConverter()
Calls the function that converts between a given utype and a given xtype.

Synopsis #include <utype.h>

int UxCallConverter(swidget sw, int utype, char
**udata, int xtype, char* xdata, int flag);

Arguments sw Swidget whose property value is being converted.

utype A utype ID (a UxUT_variable).

udata The UIM/X data.

xtype An xtype ID (a UxXT_variable).

xdata The X data.

flag Flag indicating the direction of conversion. TO_X converts udatato
xdata. TO_UIMX converts xdatato udata.

Return Value If a converter function exists for xtype and utype, UxCallConverter()
returns the value returned by the converter function. Otherwise
UxCallConverter() outputs an error message to stderr and returns
ERROR.

Description UxCallConverter() looks-up and calls the converter function registered (by
UxAddConv()) for a specific utype, xtype pair.

Examples #include <utype.h>

swidget sw;

Resource_t *res;

…

UxCallConverter (sw, (int)(res->XType), uvalue,
(int)(res->UType), xvalue, TO_UIMX);

See Also UxAddConv(), UxAddEnumType()
UIM/X Advanced Topics 177

UxCreateMethodSignature() G
UxCreateMethodSignature()
Creates a method signature from a description of the method arguments.

Synopsis #include <uxmethod.h>

struct Method_t *UxCreateMethodSignature(char
*mname, VTCorbaSupport corba, char *rettype,
...);

Arguments mname The method name.

corba The kind of CORBA support. This determines the presence and position
of the CORBA environment in the method arguments.

rettype The return type of the method.

... A possibly empty, NULL-terminated list of resource descriptors
describing the method arguments.

Return Value Returns the method signature.

Description A method signature is the description of the arguments of a method and its return
type. The builder needs this information at design time to determine how to call
compiled-in methods and how to display them in the Connection Editor.

UxCreateMethodSignature () creates the signature that you register with
UxMethodSignatureRegister(). For backward compatibility, if you do not
register a signature, the builder will assume it is a CORBA 1 method, and it will not
be available in the Connection Editor.

You use enumerated values to specify the presence and position of the CORBA
environment in the method arguments. Use Corba1 if the environment is the
second argument. Use Corba2 if the environment is the last argument. Use
CorbaNONE if there is no environment.

The value of rettype should be NULL if the method returns void, otherwise
rettype is the type as it appears in the source code, surrounded by double quotes.
For example, use “int” for a method returning int.

The following arguments are a list of Resource_t* describing the method
arguments in the same order as they appear in the method. The target swidget that
appears as the first argument in C is omitted. The function
UxEnvArgResource() returns the Resource_t* needed to specify the
CORBA environment. The Resource_t* for other arguments is obtained by
calling UxGetArgResource(). See that reference page for details.
178 UIM/X Advanced Topics

UxCreateMethodSignature() G

The list must be NULL-terminated.

Example UxCreateMethodSignature(“_set_height”, Corba1, NULL,
UxEnvArgResource(),

UxGetArgResource(“height”, UxUT_int,
“0”,UxValidateInt, UxValuesOfInt),

NULL);

See Also UxEnvArgResource(), UxGetArgResource(), UxMethodSignatureLookup(),
UxMethodSignatureRegister()
UIM/X Advanced Topics 179

UxDDGetProp() G
UxDDGetProp()
Gets the value of a swidget property.

Synopsis #include <UxLib.h>

XtArgVal UxDDGetProp(swidget sw, char* name);

Arguments sw A swidget.

name The name of the property (an XmNor XtN constant).

Return Value UxDDGetProp() returns the specified property value if successful, and 0
otherwise.

Description UxDDGetProp() is part of the Ux Convenience Library. This function is used to
define the run-time versions of the UxGetProperty macros (in the swidget class
public header files).

UxDDGetProp() is used when run-time conversion of property values is
required. Run-time conversion is required when the data type of the values
expected by the swidget and a widget are not the same. Note that any such property
should be installed in the Ux Convenience Library using UxDDInstall().

UxGetProp() is used to define run-time UxGetProperty macros for properties
that do not require run-time conversion.

Example #define UxGetSelectColor(o) \

(char *)UxDDGetProp(o, XmNselectColor)

See Also UxDDInstall(), UxDDPutProp(), UxGetProp(), UxPutProp()
180 UIM/X Advanced Topics

UxDDInstall() G
UxDDInstall()
Registers a property for run-time conversion.

Synopsis #include <UxLib.h>

#include <utype.h>

void UxDDInstall(char *name, int utype, int xtype);

Arguments name The name of the property.

utype The ID of the utype (one of the UxUT variables declared in
uimx_directory/custom/include/utype.h).

xtype The ID of the xtype (one of the UxXT variables declared in
uimx_directory/custom/include/utype.h).

Return Value None.

Description UxDDInstall() registers a property needing conversion with the Ux
Convenience Library. A property needs conversion when the values expected by
the swidget do not match those expected by the widget.

Example UxDDInstall(XmNalignment, UxUT_string,
UxXT_Alignment);

See Also UxDDGetProp()
UIM/X Advanced Topics 181

UxDDPutProp() G
UxDDPutProp()
Sets the current value of a swidget property.

Synopsis #include <UxLib.h>

int UxDDPutProp(swidget sw, char *name, XtArgVal
value);

Arguments sw A swidget.

name The name of the property (an XmNor XtN constant).

value The property value.

Return Value UxDDPutProp() returns NO_ERROR if successful, ERROR otherwise.

Description UxDDPutProp() is part of the Ux Convenience Library. This function is used to
define the run-time versions of the UxPutProperty macros (in the swidget class
public header files).

UxDDPutProp() is used when run-time conversion of property values is
required. Run-time conversion is required when the data type of the values
expected by the swidget and a widget are not the same. Note that any such property
should be installed in the Ux Convenience Library using

UxDDInstall().
UxPutProp() is used to define run-time UxPutProperty macros for properties
that do not require run-time conversion.

Example #define UxPutWinGravity(o, v) \

UxDDPutProp(o, XmNwinGravity, ((XtArgVal)(v))

See Also UxDDGetProp(), UxDDInstall(), UxGetProp(), UxPutProp()
182 UIM/X Advanced Topics

UxDefineResource() G
UxDefineResource()
Creates and initializes a new resource descriptor.

Synopsis #include <resource.h>

Resource_t *UxDefineResource([name, value,]… RD_END
);

Arguments name One of values of the enumerated type RD_key_t. These values
identify the fields in the resource descriptor structure. The
value RD_END terminates the argument list.

value The value to be stored in a field of the resource descriptor

Return Value Returns a pointer to a new resource descriptor. The return value is usually passed as
the third parameter in a call to UxPutClassResource.

Description UxDefineResource() allocates a resource descriptor (a Resource_t
structure) and initializes its fields according the name/value pairs in the argument
list.

Example #include <resource.h>

#include <label.cl.h>

/* for UxC_label, UxP_LabelRD_alignment */

#include <swidget.h>

/* for UxPutClassResource */

#include <valuesOf.h>

/* for UxValuesOf, UxValidate functions */

/* and UxUT, UxXT variables */

UxPutClassResource(UxC_label,

UxP_LabelRD_alignment,

UxDefineResource(

RD_NAME, "alignment", /* You must supply a name.
*/

RD_UTYPE, UxUT_string,

RD_XTYPE, UxXT_Alignment,

RD_DIVISION, UxSPECIFIC,
UIM/X Advanced Topics 183

UxDefineResource()G
RD_VALIDATOR, UxValidateAlignment,

RD_VALUESOF, UxValuesOfAlignment,

RD_END));

Types The resource descriptor is a Resource_t structure. This structure is defined in
uimx_directory/custom/include/resource.h. The RD_key_t
enumeration is

also defined in resource.h.

Key Field/Purpose Type
RD_END

Terminates the argument list. None
RD_EXAMPLE Gets a copy of the specified

resource descriptor. Resource_t*
RD_NAME

UimxName char*
RD_UTYPE

UType short
RD_XTYPE

XType short
RD_XTNAME

UxXtName char*
RD_PRINTNAME

PrintName char*
RD_UIMXNAME

UimxName char*
RD_VALIDATOR

Validator int (*)()
RD_VALUESOF

ValuesOf int (*)()
RD_PUTFUNCTION

PutFunction int(*)()
RD_GETFUNCTION

GetFunction int(*)()
RD_TOOLKIT

Toolkit Boolean
RD_PASS

Pass Pass_t (see below)
RD_DIVISION

Division
Division_t (see
below)

RD_READONLY
ReadOnly Boolean

RD_CANBEPUBLIC
CanBePublic Boolean

RD_EDITABLE
Editable short

RD_NOEDITBTN NoEditBtn Boolean
RD_COPYFUNCTION

CopyFunction XtArgVal (*)()
RD_FREEFUNCTION

FreeFunction void (*)()
184 UIM/X Advanced Topics

UxDefineResource() G
The following enumerated types are also used to initialize a resource descriptor:

typedef enum {

UxPASS0 = 0, /* Widget creation argument list. */

UxPASS1 = 1, /* Design time: creation arg list. */

UxPASS2 = 2 /* XtSetValues after interface tree
exists. */

} Pass_t;

typedef enum {

UxCORE = 0,

UxSPECIFIC = 1,

UxBEHAVIOR = 2,

UxCONSTRAINT = 3,

UxDECL = 4, /* Widget declaration properties */

UxCOMPOUND = 5 /* UIM/X internal compound props */

} Division_t;

typedef enum { /* How does the interpreter see it?
/UxLITERAL, / For name, other variable names
/UxEXPRESSION, / For resources */UxSTATEMENT /*
For callbacks */

} ExprTreatment_t;

See Also UxPutClassResource(), Appendix F, “Resource Descriptors,” for a description of
the fields in the resource descriptor.

Key Field/Purpose Type
RD_EDITFUNCTION

EditFunction void (*)()
RD_FORMAT

Format char*
RD_TREATMENT

Treatment
ExprTreatment_t (see
below)

RD_SAVEFUNCTION
SaveFunction void (*)()

RD_USERDATARD UserDataRD XtPointer
UIM/X Advanced Topics 185

UxEnvArgResource()G
UxEnvArgResource()

Returns a resource descriptor for the CORBA environment.

Synopsis #include <uxmethod.h>

Resource_t *UxEnvArgResource(void);

Arguments None.

Return Value Returns a resource descriptor for the CORBA environment.

Description UxEnvArgResource() returns the resource descriptor for the CORBA
environment that is needed by UxCreateMethodSignature() when
creating the signature for Corba1 or Corba2 methods. The resource
descriptor is stored in a static variable. The same one is returned for every
call. The caller should not free the return value.

See Also UxCreateMethodSignature(), UxGetArgResource()
186 UIM/X Advanced Topics

UxFixed_class_method() G
UxFixed_class_method()
Adds a new class method for the specified swidget class.

Synopsis #include <veos.h>

binptr UxFixed_class_method(char *name, Class_t cl,
int data_type, int offset);

Arguments name Name of the method.

cl Swidget class being initialized.

data_type ID of data type.

offset Offset of the method-handle within the class structure

Return Value The return value is the id of the new method and should be stored in the
UxM_MethodName global variable.

Example UxM_UxWidgetCannotAcceptChildren =
UxFixed_class_method(

"UxWidgetCannotAcceptChildren",

UxC_RectObject,

T_PNTR,

Offset(UxRectObjectClass,

RectObject._UxWidgetCannotAcceptChildren));

See Also UxInit_method()
UIM/X Advanced Topics 187

UxFixed_class_prop()G
UxFixed_class_prop()
Registers a new class property for a swidget class.

Synopsis #include <veos.h>

binptr UxFixed_class_prop(char *name, Class_t cl,
int data_type, int offset);

Arguments name The name of the property.

cl The swidget class for which the property is being registered.

data_type Identifies the data type of the property. For properties, this parameter
is always T_PNTR, since the actual field in the class structure is a
Resource_t*pointer. The T_ types are defined in
uimx_directory/custom/include/vtypes.h.

offset Offset of the property within the class structure.

Return Value Returns the ID of the new property. This value should be stored in a
UxP_PropertyName global variable.

Example UxP_CoreRD_background =

UxFixed_class_prop("RD_background",

UxC_Core,

T_PNTR,

Offset(UxCoreClass,

Core.RD_background));

See Also UxPutClassResource()
188 UIM/X Advanced Topics

UxGET_type() G
UxGET_����()
These functions are only used in defining the DESIGN_TIME versions of the
UxGet macros in the swidget class public header file.

Synopsis #include <stdgetput.h>

type UxGET_type(swidget swgt, binptr bp, char *name);

Arguments swgt Swidget to get value from.

bp ID of property.

name Name of property (used in error message if the property does not exist
for the swidget class).

Description The UxGET_type() functions call the "get_function’ for the specified property to
get the current property value from the specified swidget. UIM/X displays an error
dialog box (by calling UxGUIError) if the property does not exist for the swidget
class of the specified swidget.

One UxGET_type() function exists for each utype:

Example alignment = UxGET_string(swgt,
UxP_LabelRD_alignment, "alignment");

See Also UxDefineResource(), UxPUT_type()

Function Name Utype Return Value
UxGET_int UxUT_int int

UxGET_float UxUT_float float

UxGET_short UxUT_short short

UxGET_long UxUT_long long

UxGET_string UxUT_string char *

UxGET_char UxUT_char char

UxGET_voidFunction UxUT_voidFunction void (*)()

UxGET_cardFunction UxUT_cardFunction Cardinal
(*)()

UxGET_visualPointer UxUT_visualPointer Visual *

UxGET_stringTable UxUT_stringTable char **

UxGET_XmTextSource UxUT_XmTextSource XmTextSource
UIM/X Advanced Topics 189

UxGetArgResource() G
UxGetArgResource()
Creates a resource descriptor for an argument in a method signature.

Synopsis #include <uxmethod.h>

Resource_t *UxGetArgResource(char *name, int utype,
char *defvalue, void *validator, void *valuesof);

Arguments name The argument name as it appears in the Connection Editor.

utype The utype of the argument.

defvalue The default value in the Connection Editor.

validator The Validator function.

valuesof The ValuesOf function.

Return Value Returns the resource descriptor for the argument.

Description UxGetArgResource() is a convenience function that creates a resource
descriptor tailored to the needs of a method signature. UxGetArgResource()
can create a resource descriptor and initialize the necessary fields for one argument
in a call to UxCreateMethodSignature().

The return value should never be freed. It is the responsibility of the caller to
supply a “name” argument that will be valid until the termination of the executable.

See Also UxDefineResource() , UxEnvArgResource()
190 UIM/X Advanced Topics

UxGetComponentRef() G
UxGetComponentRef()
Retrieves the component reference from an adapter swidget.

Synopsis #ifdef XT_CODE

#include <UxXt.h>

#else

#include <UxLib.h>

#endif

void* UxGetComponentRef(swidget sw);

Arguments sw An adapter swidget.

Return Value A pointer to the external component. UxGetComponentRef() returns
NULL if the swidget is not a subclass of the adapter swidget class.

Description UxGetComponentRef() and UxPutComponentRef() are accessors for the
component reference field of an adapter swidget. UxAdapterSwidget() sets
the component reference field when it creates the adapter swidget.

The component reference field stores a pointer to an external component (a
third-party object) integrated with UIM/X.

Example The wrapper methods for the components use UxGetComponentRef() to get
the component from an adapter swidget:

static int _CheckBox__set_Alignment(swidget UxThis,
Environment *pEnv, int val)

{

VwCheck *pCmpnt =
(VwCheck*)UxGetComponentRef(UxThis);

if (pEnv)

pEnv->major(CORBA::NO_EXCEPTION);

if (pCmpnt) {

return((int) pCmpnt->PutAlignment(

(VwToggleAlignment)val));

}
return ERROR;
UIM/X Advanced Topics 191

UxGetComponentRef()G
}

See Also UxPutComponentRef()
192 UIM/X Advanced Topics

UxGetProp() G
UxGetProp()

Gets the current value of a swidget property.

Synopsis #include <UxLib.h>

XtArgVal UxGetProp(swidget sw, char *name);

Arguments sw A swidget.

name The name of the property (an XmNor XtN constant).

Return Value UxGetProp() returns the requested property value if successful, and 0
otherwise.

Description UxGetProp() is part of the Ux Convenience Library. This function is used
to define the run-time versions of the UxGetProperty macros (in the
swidget class public header files).

UxGetProp() is used when run-time conversion of property values is not
required. Run-time conversion is required when the data type of the values
expected by the swidget and a widget are not the same. UxDDGetProp() is
used to define run-time UxGetPropert()y macros for properties that require
run-time conversion.

Example #define UxGetTitle(o) (char *)UxGetProp(o, XmNtitle)

See Also UxDDGetProp(), UxDDPutProp(),UxPutProp(), “Run-Time Macros” in Chapter 2,
“Integrating Widgets”
UIM/X Advanced Topics 193

UxGetResourceSet() G
UxGetResourceSet()
Gets the list of resource descriptors defined for a swidget class.

Synopsis #include <plist.h>

#include <swidget.h>

PList_c* UxGetResourceSet(object* obj);

Arguments obj An instance of a swidget class (a swidget type variable) or a swidget
class ID (a Class_t type variable).

Return Value UxGetResourceSet() returns a pointer to the swidget class’ PList of resource
descriptors.

Description Each swidget class has a PList of resource descriptors named ResourceSet.
This function returns that PList of Resource_t* pointers. The entries in the
resource set are the defined properties for the swidget class.

The entries correspond to the properties that appear in the Property Editor for an
instance of the swidget class, with the exception of the Constraints properties.

The order of the resource set is undefined.
194 UIM/X Advanced Topics

UxGlobalInstanceResource() G
UxGlobalInstanceResource()
Registers a global resource descriptor for a component property.

Synopsis #include <resource.h>

void UxGlobalInstanceResource(char *propname, Resource_t *res);

Arguments propname The property name.

res A resource descriptor.

Return Value None.

Description UxGlobalInstanceResource() registers a global resource descriptor for a
component property. The registration is global because it applies to a property of
that name in any component.

You can create component properties by adding arguments to the component
constructor. These properties will appear in the Core category of the Property
Editor.

You can also create get and set property accessor methods in the Method Editor.
These properties will appear in the Specific category of the Property Editor.

For example, suppose you have built a set of components, each of which declares
an interface function with an argument named textBackground. All instances
of these components have a textBackground property. You can register a
resource descriptor for this common property with a single call to
UxGlobalInstanceResource() (otherwise UxInstanceResource()
would have to be called once for each Component).

Note: Note that it is the name of the property textBackground that is common
to all instances. The type of the argument is not necessarily the same in each
component constructor. You are responsible for ensuring that the type of the
component property matches the type of value expected by the Validator function
(if any) in the resource descriptor.

By registering resource descriptors for the properties of instances, you can install
specialized popup editors (such as the Color Viewer), option menus, and input
validation routines. By default, the Property Editor only allows you to use the Text
Editor to set the initial values of the properties of an instance.

When you load an instance into the Property Editor, UIM/X tries to find a
registered resource descriptor for each of the properties of the instance.
UIM/X Advanced Topics 195

UxGlobalInstanceResource()G
For example, suppose you load an instance of a component named formField
into the Property Editor, and that the instance has a property named
textBackground (which appears in the Property Editor as TextBackground).

First, UIM/X tries to find a resource descriptor registered under the names
formField and textBackground by UxInstanceResource(). If no such
resource descriptor is found, UIM/X then tries to find a global resource descriptor
registered under the name textBackground by
UxGlobalInstanceResource().

Note: Resource descriptors registered with UxInstanceResource() take
precedence over those registered with UxGlobalInstanceResource().

If UIM/X finds a registered resource descriptor, it copies the ValuesOf,
Validator, and EditFunction fields of the registered resource descriptor
into the actual resource descriptor used by the property:

The EditFunction field specifies a function that pops up a specialized editor.

The ValuesOf field can be used to install an option menu.

The Validatorfield specifies the input validation routine for the property.

Typically, you would use UxDefineResource to create and initialize the
resource descriptors that you register. To register an existing resource descriptor,
you would use one of the UxGetRD_property macros.

Note: You must register a resource descriptor for a component argument before
you create the component.

Example This example registers a resource descriptor for the property named
textBackground. The code that does this is placed in a function called
SetupInstanceResources.

#include <resource.h>

#include <uxgui.h>

#include <textF.cl.h>

/* It is assumed that these functions have been
written. */

extern int ValuesOfTextBackground();
196 UIM/X Advanced Topics

UxGlobalInstanceResource() G

extern int ValidateTextBackground();

void SetupInstanceResources()
{

/*
* Install the Color Viewer,
ValuesOfTextBackground, and
* ValidateTextBackground as the defaults for the
* textBackground property of all Instances.

*
* UxInstanceResource can be used to replace these
defaults
* for instances of a given Component.
*/

Resource_t *res = UxDefineResource(

/* You must supply a name. */

RD_NAME, "TextBackground",

RD_EDITFUNCTION, (void (*)())
UxGUIPopupColorView,

RD_VALUESOF, ValuesOfTextBackground,

RD_VALIDATOR, ValidateTextBackground,RD_END);

UxGlobalInstanceResource("textBackground", res
);

}

See Also UxDefineResource(), UxInstanceResource(), UxValuesOfXtype(),
UxValidateXtype()
UIM/X Advanced Topics 197

UxInheritedMethodUnregister()G
UxInheritedMethodUnregister()

Unregisters a method you inherit from one of your base classes.

Synopsis #include <uxmethod.h>

void UxInheritedMethodUnregister(int clsCode, char
*mname);

Arguments clsCode A class code obtained from UxNewSubclassId().

mname The method name.

Return Value None.

Description Usually, a method implemented by a base class is inherited by all its derived
classes. You might find cases where you would like to implement a method in a
base class, but it should not be inherited by all its derived classes. At design time,
you can turn off inheritance of the method by calling
UxInheritedMethodUnregister() with the derived class code and method
name.

The Connection Editor builds its list of methods by searching for all registered
method signatures on the target class and all its base classes. If it finds that a
method was unregistered, it will remove it from the list.

See Also UxMethodRegister(), UxMethodSignatureRegister()
198 UIM/X Advanced Topics

UxInheritResources() G
UxInheritResources()
Gives a swidget class the properties defined by its superclasses.

Synopsis #include <swidget.h>

void UxInheritResources(Class_t cl);

Arguments cl A swidget class ID.

Return Value None.

Description UxInheritResources() initializes the swidget class’ PLists of resource
descriptors. A swidget class has two PLists of resource descriptors: its resource set
and its constraint set. UxInheritResources() gives a swidget class its own
copies of the superclass’ resource and constraint sets. The actual resource
descriptors, however, are shared by the classes.

UxInheritResources() must be called when you register a new swidget
class. Until UxInheritResources() is called, a class and its superclass also
share the same copy of the resource and constraint sets.

Note: After UxInheritResources() has been called,
UxPutClassResource() can be used to give a derived class its own resource
descriptor for an inherited property.

See Also “Defining New Xtypes” in Chapter 2, “Integrating Widgets”,
UxPutClassResource()
UIM/X Advanced Topics 199

UxInit_method()G
UxInit_method()
Installs a function as a class method for a swidget class.

Synopsis #include <veos.h>

void UxInit_method(Class_t cl, binptr method_id,
void (*fcn)());

Arguments cl Swidget class being initialized.

method_id ID of method (the return value from UxFixed_class_method).

fcn Function to be used.

Example UxInit_method(UxC_label, UxM_Init, init_label);

See Also UxFixed_class_method()
200 UIM/X Advanced Topics

UxInstanceResource() G
UxInstanceResource()
Registers a resource descriptor for a property of a given component.

Synopsis #include <resource.h>

void UxInstanceResource(char *component, char
*propname, Resource_t *res);

Arguments component The name of the Component.

propname The property name.

res A resource descriptor.

Return Value None.

Description UxInstanceResource() registers a resource descriptor for a property of a
given component. The descriptor will apply to all instances of that component.

You can create component properties by adding arguments to the component
constructor. These properties will appear in the Core category of the Property
Editor.

You can also create get and set property accessor methods in the Method Editor.
These properties will appear in the Specific category of the Property Editor.

By registering resource descriptors for the properties of instances, you can install
specialized popup editors (such as the Color Viewer), option menus, and input
validation routines. The Property Editor only allows you to use the Text Editor to
set the initial values of these properties.

When you load an Instance into the Property Editor, UIM/X tries to find a
registered resource descriptor for each of the properties of the instance.

For example, suppose you load an instance of a component named formField into
the Property Editor, and that the Instance has a Specific property named
textBackground (which appears in the Property Editor as TextBackground).

First, UIM/X tries to find a resource descriptor registered under the names
formField and textBackground by UxInstanceResource(). If no such
resource descriptor is found, UIM/X then tries to find a global resource descriptor
registered under the name textBackgroundby
UxGlobalInstanceResource().

Note: Resource descriptors registered with UxInstanceResource() take
precedence over those registered with UxGlobalInstanceResource().
UIM/X Advanced Topics 201

UxInstanceResource() G
If UIM/X finds a registered resource descriptor, it copies the ValuesOf,
Validator, and EditFunction fields of the registered resource descriptor
into the actual resource descriptor used by the property:

• The EditFunction field specifies a function that pops up a specialized
editor.

• The ValuesOf field can be used to install an option menu.

• The Validatorfield specifies the input validation routine for the property.

Typically, you would use UxDefineResource() to create and initialize the
resource descriptors that you register. To register an existing resource descriptor,
you would use one of the UxGet_RD macros.

Note: You must register a resource descriptor for a Component argument before
you create the Component.

Example This example registers resource descriptors for two of the properties of a
Component named formField. The code that does this is placed in a function called
SetupInstanceResources.

#include <resource.h>

#include <textF.cl.h>

static int ValuesOfLabels();

void SetupInstanceResources()

{

/* Install the Color Viewer for the textColor
argument

* of the formField Component. The EditFunction
field of the

* resource descriptor returned by
UxGetRD_background holds

* the popup function for the Color Viewer.
*
* The Validator and ValuesOf fields of the
background
* property are appropriate for our textBackground
202 UIM/X Advanced Topics

UxInstanceResource() G

property
* as well, so we’ll use the background resource
descriptor.
 */

Resource_t *res = UxGetRD_background(
UxC_textField);

UxInstanceResource("formField",
"textBackground", res);

/* Install an option menu for the labelString
argument. */

res = UxDefineResource(

/* You must supply a name. */

RD_NAME, "labelString",

RD_VALUESOF, ValuesOfLabels,RD_END);

UxInstanceResource("formField", "labelString", res
);

}

static int ValuesOfLabels(char *** menuItems, int*
numItems)

{

static char *Items[] = { "Name", "Date", "Phone"
};

*menuItems = Items;

*numItems = XtNumber(Items);

return *numItems;

}

See Also UxDefineResource(), UxGlobalInstanceResource(), UxValuesOfXtype(),
UxValidateXtype()
UIM/X Advanced Topics 203

UxIsInterface() G
UxIsInterface()
This function detects top-level swidgets.

Synopsis #include <swidget.h>

int UxIsInterface (swidget sw);

Arguments sw An adapter swidget.

Return Value This function returns true if sw is the top-level swidget in an interface;
false otherwise.

Description A swidget is the top-level swidget in an interface if it is one of the following:

• a subclass of Shell

• a convenience dialog created from the Dialog creation menu

• a manager with an implicit shell supplied by UIM/X

The USER widgets for which UxIsInterface() returns true correspond to
the interfaces shown in the project window; the name of the shell swidget is the
name of the interface window; the name of top-level swidget appears on the
interface icon.

See Also UxGetParent in the UIM/X Reference Manual
204 UIM/X Advanced Topics

UxIsSubclass() G
UxIsSubclass()
This function determines if an object is an instance of a given class or a subclass of
that class.

Synopsis #include <veos.h>

int UxIsSubclass (object* obj, Class_t cl);

Description This function returns true if the argument is an instance of the class cl or a
class derived from cl; false otherwise.

Example UxIsSubclass (sw, UxC_manager);

returns true if and only if the given swidget sw is an instance of any manager class
(such as bulletinBoard, form, or fileSelectionBox).
UIM/X Advanced Topics 205

UxLoadGlobalInclude()G
UxLoadGlobalInclude()
Load an include file into the global reference environment.

Synopsis #include <UxLib.h>

void UxLoadGlobalInclude(char *include_file);

Arguments include_fileThe name of the include file.

Return Value None.

Description UxLoadGlobalInclude() includes a file in the reference translation unit,
which is a collection of definitions shared by all translation units. UIM/X uses the
reference translation unit to include the standard UIM/X, Motif, Xt, X, and system
header files for use in all translation units.

Example #ifdef DESIGN_TIME

UxLoadGlobalInclude("xkcheck.h");

#endif
206 UIM/X Advanced Topics

UxMethodLookup() G
UxMethodLookup()
Retrieves the implementation of a method for a given class.

Synopsis #ifdef XT_CODE

#include <UxXt.h>

#else

#include <UxLib.h>

#endif

void* UxMethodLookup(swidget sw, int mid, char
*mname);

Arguments sw A swidget.

mid A method ID obtained from UxMethodRegister().

mname The method name.

Return Value Returns the function pointer for the method implementation registered for the
swidget’s interface class.

If the lookup fails at run time, UxMethodLookup()returns a pointer to a
function that always returns 0. If the lookup fails at design time,
UxMethodLookup() returns 0.

Description UxMethodLookup() finds the implementation of a method for a given class.
The class is obtained from the swidget sw, which is typically the top-level swidget
of an interface.

If there is no entry in the method table for the given class, UxMethodLookup()
searches the method table for a superclass version of the method.

Note that you can call UxMethodLookup()without a method ID. If you pass -1
as the method ID, UxMethodLookup() searches an internal table of method
names for the method ID corresponding to mname.

Example Generated C code defines method invocation macros that use
UxMethodLookup():

#ifndef bulletinBoard1__set_Background

#define bulletinBoard1__set_Background(UxThis,
pEnv, color) \

((int(*)())UxMethodLookup(UxThis, \
UIM/X Advanced Topics 207

UxMethodLookup() G
UxbulletinBoard1__set_Background_Id,\

UxbulletinBoard1__set_Background_Name)) \

(UxThis, pEnv, color)

#endif

See Also UxMethodRegister(), UxNewInterfaceClassId(), UxNewSubclassId()
208 UIM/X Advanced Topics

UxMethodRegister() G
UxMethodRegister()
Registers a method for a given class.

Synopsis #ifdef XT_CODE

#include <UxXt.h>
#else

#include <UxLib.h>
#endif

int* UxMethodRegister(int clsCode, char *mname,

void (*function)());

Arguments clsCode A class code obtained from UxNewInterfaceClassId()or
UxNewSubclassId().

mname The method name.

function The method implementation.

Return Value Returns a unique ID.

Description UxMethodRegister() registers a method by storing the function pointer in a
method table. This table is indexed by class code and method ID.

UxMethodRegister() maps each method name to a unique method ID. So
when you register the same method for different classes (for example, when you
override an inherited method), UxMethodRegister() returns the same method
ID.

Note that UxMethodRegister() stores the method names in an internal table,
and uses the method ID as an index into the table.

Example In generated C code, the source file defines two variables for each method:

int UxbulletinBoard1__set_Background_Id = -1;

char* UxbulletinBoard1__set_Background_Name =
"_set_Background";

The Id variable holds the ID returned by UxMethodRegister(), and the
Name variable holds the method name. The method is actually registered in the
interface’s generated Interface Function:

static int _UxIfClassId;
UIM/X Advanced Topics 209

UxMethodRegister() G
swidget create_bulletinBoard1(swidget _UxUxParent)

{

swidget rtrn;

_UxCbulletinBoard1 *UxContext;

static int _Uxinit = 0;

UxBulletinBoard1Context = UxContext =

(_UxCbulletinBoard1 *) UxNewContext(

sizeof(_UxCbulletinBoard1), False);

UxParent = _UxUxParent;

if (! _Uxinit)

{

_UxIfClassId = UxNewInterfaceClassId();

UxbulletinBoard1__set_Background_Id =
UxMethodRegister(

_UxIfClassId,UxbulletinBoard1__set_Background_
Name,(void(*)())_bulletinBoard1__set_Backgroun
d);

_Uxinit = 1;

}

rtrn = _Uxbuild_bulletinBoard1();

return(rtrn);

}

Note: The method is registered in a one-time only block of code.Note also that
method registration is not performed in generated C++ code, as method lookups are
not necessary in C++.

See Also UxInheritedMethodUnregister(), UxMethodLookup(), UxNewInterfaceClassId(),
UxNewSubclassId()
210 UIM/X Advanced Topics

UxMethodSignatureRegister() G
UxMethodSignatureRegister()
Registers the signature for a method.

Synopsis #include “uxmethod.h”

int UxMethodSignatureRegister(int clsCode, char
*mname,struct Method_t *signature);

Arguments clsCode A class code obtained from UxNewInterfaceClassId()or
UxNewSubclassId().

mname The method name.

signature The method signature.

Return Value Returns the method ID.

Description A method signature is the description of the arguments of a method and its return
type. The builder needs this information at design time to determine how to call
compiled-in methods and how to display them in the Connection Editor.

UxMethodSignatureRegister() registers the signature that you obtain from
UxCreateMethodSignature(). This is usually done immediately after you
register the method with UxMethodRegister(). For backward compatibility, if
you do not register a signature, the builder will assume it is a CORBA 1 method,
and it will not be available in the Connection Editor.

The builder can automatically generate calls to
UxMethodSignatureRegister if you generate Ux Integration Code. You
might have to edit the generated code if you need your own validators and
ValuesOf functions for the method arguments. See UxGetArgResource() for
details.

Example int cid, mid;

cid = UxNewClassId();

mid = UxMethodRegister(cid, “_set_height”,
_set_height);

UxMethodSignatureRegister(cid, “_set_height”,

 UxCreateMethodSignature(“_set_height”, Corba1,
NULL,

 UxEnvArgResource(),

UxGetArgResource(“height”, UxUT_int, “0”,
UIM/X Advanced Topics 211

UxMethodSignatureRegister() G
UxValidateInt, UxValuesOfInt),

NULL);

See Also UxCreateMethodSignature(), UxEnvArgResource(), UxGetArgResource(),
UxMethodRegister()
212 UIM/X Advanced Topics

UxNewInterfaceClassId() G
UxNewInterfaceClassId()
Registers a new interface class.

Synopsis #ifdef XT_CODE

#include <UxXt.h>

#else #

include <UxLib.h>

#endif

int UxNewInterfaceClassId(void);

Arguments None.

Return Value Returns the class code.

Description UxNewInterfaceClassId() registers an interface class as a subclass of the
abstract base class UxVisualInterface (sometimes referred to as the Interface
class). Every interface class and component in UIM/X is a subclass of

UxVisualInterface.

UxNewInterfaceClassId() registers the methods of the Interface class:

• Default versions of standard accessor methods for x, y, width, and height.

• A default UxManage() method.

Example In generated C code, the Interface Function for an interface class calls
UxNewInterfaceClassId() to get a class code, which it then uses to register
methods:

_UxIfClassId = UxNewInterfaceClassId();

UxbulletinBoard1__set_Background_Id =
UxMethodRegister(

_UxIfClassId,

UxbulletinBoard1__set_Background_Name,

_bulletinBoard1__set_Background);

See Also UxMethodLookup(), UxMethodRegister(), UxNewSubclassId()
UIM/X Advanced Topics 213

UxNewSubclassId() G
UxNewSubclassId()
Registers a new class as a subclass of an existing class.

Synopsis #ifdef XT_CODE

#include <UxXt.h>

#else

#include <UxLib.h>

#endif

int UxNewSubclassId(int super);

Arguments super The class code for the superclass of the new subclass.

Return Value Returns the class code for the new subclass.

Description You use UxNewSubclassId() to register a class as a subclass of another class.
The subclass inherits the methods of its superclass.

This means that if you pass an instance of the new subclass to
UxMethodLookup(), UIM/X invokes the superclass’ version of the method.

See Also UxNewInterfaceClassId()
214 UIM/X Advanced Topics

UxPUT_type() G
UxPUT_����()
These functions are only used in defining the DESIGN_TIMEversions of the
UxPut macros in the swidget class public header file.

Synopsis #include <stdgetput.h>

int UxPUT_type (swidget sw, binptr bp, char* name, type
value);

Arguments sw Swidget to put value on.

bp ID of property.

name Name of property. Used in error message if the property does not exist
for the swidget class.

value Value to put.

Return Value UxPUT_type()returns NO_ERROR if successful, ERROR otherwise.

Description The UxPUT_type() functions call the put_function for the specified
property to put the current property value from the specified swidget.
UIM/X displays an error dialog box (by calling UxGUIError) if the
property does not exist for the swidget class of the specified swidget.

One UxPUT_type() function exists for each utype:

Function Name Utype Value Type
UxPUT_int UxUT_int int

UxPUT_float UxUT_float float

UxPUT_short UxUT_short short

UxPUT_long UxUT_long long

UxPUT_string UxUT_string char *

UxPUT_char UxUT_char char

UxPUT_voidFunction UxUT_voidFunction void (*)()

UxPUT_cardFunction UxUT_cardFunction Cardinal
(*)()

UxPUT_visualPointer UxUT_visualPointer Visual *

UxPUT_stringTable UxUT_stringTable char **

UxPUT_XmTextSource UxUT_XmTextSource XmTextSource
UIM/X Advanced Topics 215

UxPUT_type()G
Example status = UxPUT_string(swgt, UxP_LabelRD_alignment,
“alignment", "alignment_end");

See Also UxDefineResource(), UxGET_type()
216 UIM/X Advanced Topics

UxPutClassResource() G
UxPutClassResource()
Installs a resource descriptor for a swidget class property.

Synopsis #include <swidget.h>

void UxPutClassResource(Class_t cl, binptr bp,
Resource_t *res);

Arguments cl Swidget class ID.

bp ID of the class property.

res Resource descriptor to install.

Return Value None.

Description UxPutClassResource()installs a resource descriptor as a class property of
the swidget class cl. Existing resource descriptors—for example, the resource
descriptors of inherited properties—are replaced for the specified class.

UxPutClassResource() should be called once for each resource during class
initialization.

Example The following code installs a new ValuesOf function for all pushButtons:

#include <pushB.cl.h>

extern int ValuesOfBackgroundColor (char ***values,
int *nentries);

UxPutClassResource(UxC_pushButton,
UxP_CoreRD_background,

UxDefineResource(

RD_EXAMPLE, UxGetRD_background(UxC_pushButton
),

RD_VALUESOF, ValuesOfBackgroundColor,

RD_END));
UIM/X Advanced Topics 217

UxPutComponentRef() G
UxPutComponentRef()
Sets the component reference for an adapter swidget.

Synopsis #ifdef XT_CODE

#include <UxXt.h>

#else

#include <UxLib.h>

#endif

void UxPutComponentRef(swidget sw, void *ref);

Arguments sw An adapter swidget.

ref The component reference.

Return Value None.

Description UxGetComponentRef() and UxPutComponentRef()are accessors for the
component reference field of an adapter swidget. UxAdapterSwidget()sets
the component reference field when it creates the adapter swidget.

See Also UxGetComponentRef()
218 UIM/X Advanced Topics

UxPutIconBitmap() G
UxPutIconBitmap()
The macro UxPutIconBitmap() specifies the name of the bitmap file to
be used to represent a swidget class. It should be called once at class
initialization.

Synopsis #include <swidget.cl.h>

void UxPutIconBitmap(Class_t cl, char* bitmap_file);

Arguments cl Swidget class being initialized.

bitmap_fileName of bitmap file.

Return Value None.

Example UxPutIconBitmap(UxC_label, "stext.bm");
UIM/X Advanced Topics 219

UxPutProp()G
UxPutProp()
Sets the current value of a swidget property.

Synopsis #include <UxLib.h>

int UxPutProp(swidget sw, char *prop, XtArgVal
value);

Arguments sw A swidget.

prop The name of the property (an XmNor XtN constant).

value The property value.

Return Value Returns NO_ERROR if successful, ERROR otherwise.

Description UxPutProp()is part of the Ux Convenience Library. This function is used to
define the run-time versions of the UxPutProperty() macros (in the swidget class
public header files).

UxPutProp()is used when run-time conversion of property values is not
required. Run-time conversion is required when the data type of the values
expected by the swidget and a widget are not the same. UxDDPutProp() is used
to define run-time UxPutProperty() macros for properties that require run-time
conversion.

Example #define UxPutIconY(o, v) \

UxPutProp(o, XmNiconY, ((XtArgVal)(v)))

See Also UxDDGetProp(), UxDDPutProp(), UxGetProp(), “Run-TimeMacros” in Chapter 2,
“Integrating Widgets”
220 UIM/X Advanced Topics

UxPutToolKitClass() G
UxPutToolKitClass()
Specifies the widget class that corresponds to a swidget class.

Synopsis #include <swidget.cl.h>

void UxPutToolKitClass(Class_t cl, WidgetClass
wgt_class);

Arguments cl swidget class being initialized

wgt_class corresponding widget class

Return Value None.

Description The macro UxPutToolKitClass() specifies the widget class that
corresponds to a swidget class.

Example UxPutToolKitClass(UxC_label, XmLabelWidgetClass);
UIM/X Advanced Topics 221

UxPutUxFilename() G
UxPutUxFilename()
Sets the name of the public header file for a swidget class.

Synopsis #include <veos.h>

void UxPutUxFilename(Class_t cl, char *filename);

Arguments cl The class ID of a swidget class.

filename The name of the swidget class’ public header file.

Return Value None.

Description UxPutUxFilename() sets the class property that specifies the name of the
public header file for the swidget class. This function must be called in the function
which registers and initializes the swidget class.

Example UxPutUxFilename(UxC_label, "<UxLabel.h>");

See Also “The Class Structure” in Chapter 2, “Integrating Widgets”
222 UIM/X Advanced Topics

UxRegister_class() G
UxRegister_class()
Registers a new swidget class.

Synopsis #include <veos.h>

Class_t UxRegister_class(char *name, Class_t
superclass, int instance_size, int class_size);

Arguments name Name of swidget class.

superclass Swidget superclass.

instance_size Size of instance structure in bytes.

class_size Size of class structure in bytes.

Return Value Returns the swidget class ID.

Description Registers a swidget class. If a class already exists with the same name, superclass,
instance size, and class size, the class is considered to already be registered.

Example UxC_label = UxRegister_class("label", UxC_primitive,
sizeof(label), sizeof(UxlabelClass));
UIM/X Advanced Topics 223

UxType_get_op()G
Ux����_get_op()
Looks up a swidget class method and returns a function pointer.

Synopsis #include <veos_d.h>

void (*UxVoid_get_op(Object_t cl, binptr
method_id))(void);

int (*UxInt_get_op(Object_t cl, binptr
method_id))(void);

char* (*UxPNTR_get_op(Object_t cl, binptr
method_id))(void);

Arguments obj Class or swidget whose method is to be retrieved.

method_id ID of method.

Description The UxType_get_op() functions look up the function that was previously
installed for a given method and return a pointer to a function returning type.

Examples swidget swgt;

UxVoid_get_op(UxC_label, UxM_Init) (swgt);

char *msg = UxPNTR_get_op

(UxC_form, UxM_InteractiveChildCreate) (swgt);

swidget swgt_to_recreate =

(swidget) UxPNTR_get_op

(UxC_label, UxM_RecreateParentOrChild) (swgt);

See Also UxFixed_class_method(), UxInit_method()
224 UIM/X Advanced Topics

UxValidateXtype() G
UxValidateXtype()
Validates a property value of a specific xtype.

Synopsis #include <valuesOf.h>

int UxValidateXtype(swidget swgt, type value);

Arguments swgt A swidget.

value A property value.

Return Value Returns NO_ERROR if valueis valid, and ERROR otherwise.

Description Validation functions are used by UIM/X to check that the values given when setting
a property on a swidget instance are valid values. Validation functions are specified
(with RD_VALIDATOR) when a resource descriptor is defined by
UxDefineResource(). The name of the validation function is conventionally
UxValidateXtype() where Xtype is the name of the property xtype being
validated. All validation functions should follow the format shown above.

Example int UxValidatePositiveInt(swidget swgt, int value)

{

if (value <= 0)

return (ERROR);

else

return (NO_ERROR);

}

See Also UxDefineResource(), UxValuesOfXtype()
UIM/X Advanced Topics 225

UxValuesOfXtype() G
UxValuesOfXtype()
Describes the allowable values for a property of a given xtype.

Synopsis #include <valuesOf.h>

int UxValuesOfXtype(char ***values, int* num_strings);

Arguments values Array of permissible values or a description of permissible values.

num_strings Number of strings in the array values.

Return Value If the array values holds a list of permissible values (as it should for an
enumerated type property), the return value should be the number of permissible
values. Note that the list of permissible values may be followed by other strings
holding additional descriptive information, so that the return value is not
necessarily equal to ‘*num_strings’.

If the valuesarray holds strings that describe the permissible values, the return
value should be 0.

Description ValuesOf functions are used by UIM/X when a description of the permissible
values for a property is needed. For enumerated type properties, the ValuesOf
function is used to supply the list of choices that appears in the Property Editor.
ValuesOf functions are specified (with RD_VALUESOF) when a resource
descriptor is defined by UxDefineResource(). The name of the ValuesOf
function is conventionally UxValuesOfXtype() where Xtype is the name of the
property xtype. All ValuesOf functions should follow the format shown above.

Examples int UxValuesOfPositiveInt(char ***vals, int *n)

{

**vals = "<positive integer>";

*n = 1;

return (0);

}

int UxValuesOfBoolean(char ***vals, int *n)

{

static char *boolean_values[] = {"true", "false"};

*vals = boolean_values;
226 UIM/X Advanced Topics

UxValuesOfXtype() G

*n = XtNumber(boolean_values);

return (*n);

}

See Also UxDefineResource, UxValidateXtype
UIM/X Advanced Topics 227

UxValuesOfXtype() G
228 UIM/X Advanced Topics

Index
Index

A
accessor methods

callback accessors
naming convention 57

property accessors
inherited from Interface 70
naming convention 73

adapter swidgets
child site 54
component reference 191, 218
creating 53, 162
defined 53
returned by constructor 54

AddEventNameProc() 58
adjust button

on compound widgets 2
allows 9
application defaults viii
ArgDefinition property 84

B
bindings, C and C++ 52

C
Callback Editor 57
callbacks

component properties 58
compound editors 9
passing arguments 60
structure, defining 60

CanBeTopLevel property 101
CanHaveChildren property 101
child site 54

childSite() 54, 56
class methods 129–154

init 130
UxApply 131
UxBuild 132
UxCanLoseChild 133
UxChildAdded 135
UxChildRemoved 136
UxClassValidate 137
UxClearExpressions 138
UxClearValues 139
UxDrawHandles 140, 141
UxHandlePostCreation 142
UxInteractiveChildCreate 143
UxInteractiveCreateAndApply 144
UxMakeArglist 145
UxMenusMenuSensitivities 146
UxObjectToRecreate 147
UxRealize 148
UxRecreateParentOrChild 149
UxRecreateSwidget 150
UxSetNonarglist 151
UxUnrealize 152
UxValidMoveOrResize 153
UxWidgetCannotAcceptChildren 154

class structure fields 14, 16
classes

derived wrapper class 71
hierarchy

swidgets 12
Interface base class 52, 69
pointer to, XkThisComponent 69
registering 214
root class, hierarchy of 80
swidget

defining 19
229

Index
initializing 20
registering 20
structure 14–17

wrapper class constructor 74
ClipboardOps property 101
code, generated

integration with UIM/X 62
linking with UIM/X 64

compilation flags 83
-DDESIGN_TIME 26, 64
-DEXTERN_C_WRAPPERS 64
-DPRIVATE_SWIDGET 95
-DUX_C 64

compiling
conditional compilation 76

Component property 84
components

and compound widgets 1
archiving in run-time library 90
child site 54
compiled into UIM/X 82
constructors 70, 74
destroying 65
instances, creating 54
integrating 49–85
integrating with UIM/X 62
methods, registering 79
Motif elements, connecting 53
pointer to 191, 218
recreating 56
source files, writing 71
stub context structure 68
subclassing 68
UIM/X, integrating with 57
wrapper methods 50, 65

compound editors
installing 8

compound properties and compound widgets
CompoundIcon 8
CompoundName 8, 9
DragRecursion 5
Editor 9

EditorClientData 9
IsCompound 2
IsInCompound 2
IsRegion 3
ResizeRecursion 4

compound widgets
icon 8
in palettes 8
name 8
top widget 8

CompoundEditor, See Editor
CompoundEditorName property 101
CompoundIcon property 8, 85, 101
CompoundName property 8, 85, 101
CompoundResourceSet property 101
CompoundSwidgetMethodSet property 102
connection_action 112
connection_event class 112
constraint set

initialization 199
Constructor property 76
constructors

adapter swidgets 162
C wrapper 76
C++ wrapper 74
declaring 71

context manager, X 60
Context Structure 68
conventions

naming viii
symbolic viii

converter functions 39

D
-DDESIGN_TIME constant 64
Declaration properties 84

Constructor 76
HeaderFIle 65

DESIGN_TIME constant 26
design-time 25
DragRecursion property 5, 102
230 UIM/X Advanced Topics

Index
E
Editor property 9, 102
EditorClientData property 9, 102
enumerated xtypes 122
Environment pointer 70
event procedures

as properties 57
defining 58
PropDefinition property 84
registering 57
wrapper event, writing 60

EXTERN 64
EXTERN_C_WRAPPERS constant 64

F
facets 108

lock 109
of resources 109
source 109

files
loading into Interpreter 81, 206
source, for components 71

flags 83
flags, See compilation flags
functions

registering with Interpreter 81, 96

G
geometry of instances 56
global variables

registering with Interpreter 97

H
header files

loading into Interpreter 81, 206
HeaderFile property 65, 84
hierarchy of swidget classes 115

I
icons

palette 85
implicit shell 75

init 130
installing compound editors 8
Instance Structure 17
instances

adapter swidgets 53
ArgDefinition property 84
Component property 84
components 54, 83
Constructor property 76
Declaration properties 84
geometry 56
HeaderFile property 65, 84
managing 53
palettes, storing in 83–85
PropDefinition property 84

instance-specific resources 108
instantiating an object 107
integration code

components 64
defined 50

Interface base class 69
defined 52
geometry, handling 56
registering subclasses 213

interface files
format 107
loading earlier versions 114
object instantiation in 107

Interface-Specific Resources 109
Interpreter

access to compiled functions 94
header files, loading 81
registering functions 81, 96
registering globals 97

IsAlignable property 102
IsAreaSelectable property 102
IsArrangeable property 103
IsCompound property 2, 103
IsDeletable property 103
IsDraggable property 103
IsDuplicatable property 103
IsInCompound property 2, 103
UIM/X Advanced Topics 231

Index
IsMovable property 103
IsNovice property 103
IsRecreatable property 103
IsRegion property 3, 104
IsReorderable property 104
IsReparentable property 104
IsResizable property 104
IsSelectable property 104

L
libraries

linking with UIM/X 83
registering functions 96
registering global variables 97

libuxbuild.a
recompiling 92

libuxcustom.a
recompiling 88

linkage 71
linker flags
lock facet 109

M
macros

C bindings 66
EXTERNC 67
UX_C 66

Makefile.uimx 64, 82
makefiles

augmenting UIM/X 82
build/src/Makefile 92–94
custom/src/Makefile 88–92
mkinclude/central.mk 99

methods
and class structure 16
childSite() 54, 56
design-time 55, 160
inherited, overriding 52
overriding 43
property values 50
registering 79, 209
registration 20

retrieving function pointer 207
UxAdapterDesignMethods() 56
UxCanBeAnInstance() 54
UxCheckChildren() 56
UxDrawHandles() 56
UxObjectToRecreate() 56
VisualInterface_Manage() 53
wrappers 66
See also accessor methods

N
names 8

palette 85
naming conventions viii
non-enumerated xtypes 123

O
objects

instantiating 107
option menus

external components 82

P
palettes

putting compound widgets in 8
storing instances 83–85

PLists
or resource descriptors 199

PropDefinition property 84
properties

ArgDefinition 84
CanBeTopLevel 101
CanHaveChildren 101
ClipboardOps 101
CompoundEditorName 101
CompoundIcon 8, 85, 101
CompoundName 8, 85, 101
CompoundResourceSet 101
CompoundSwidgetMethodSet 102
Constructor 76
DragRecursion 5, 102
Editor 9
232 UIM/X Advanced Topics

Index

EditorClientData 9, 102
HeaderFile 65, 84
inherited 199
IsAlignable 102
IsAreaSelectable 102
IsArrangeable 103
IsCompound 2, 103
IsDeletable 103
IsDraggable 103
IsDuplicatable 103
IsInCompound 2, 103
IsMovable 103
IsNovice 103
IsRecreatable 103
IsRegion 3, 104
IsReorderable 104
IsReparentable 104
IsResizable 104
IsSelectable 104
new data types (xtypes) 38–42
PropDefinition 84
ResizeRecursion 4, 104
resource descriptors 21–23
run-time conversion 47
ShowInBrowser 105
UsePropEditor 105
UxPut and UxGet macros 25–31
xtypes, utypes 42

Property Editor
option menus 82
resource editors 82

proprietary resources 108

R
RD_EXAMPLE 23
reference environment, Interpreter 206
region widget 4, 104
ResizeRecursion property 4, 104
resource descriptors 155–158

and inherited properties 199
class structure fields 14
initialization 21–23

resource editors 82
resource set

initialization 199
resource types 121
resources

facets of 108
instance-specific 108
interface-specific 109
proprietary 108
setting viii
shortPalIconNames 85
splitPalIconNames 85
UxPrjOptionsCGenGenCWrappers 63
UxPrjOptionsCGenGenUxIntCode 63

run-time library
See Ux Convenience Library

S
selection handles, drawing 56
shortPalIconNames resource 85
ShowInBrowser property 105
signature

event procedure 60
Xt callback, event procedures 57

source facet 109
splitPalIconNames resource 85
structures 16
subclasses

components 68
registering 214

swidget class hierarchy 115
swidget methods 113
swidgetmethod class 114
swidgets

adapter swidget 71
Class Editor 21
class icon 21
class ID 19
class structure 14–17
compiling & linking new classes 88–92
component, instance of 52
constraint sets 199
UIM/X Advanced Topics 233

Index
defined 12, 50
instance structure 17
private header file 14–18
public header file 25–31
resource descriptors 21–23
resource sets 199
source file 18–25

T
Toolkit 11
top-level

defined 78

U
UIM/X

augmenting 82–83
components, connecting Motif elements 53
generated code 51
linking with integration code 64

uimx_main.cc 83
UsePropEditor property 105
user-xtype.c 39–42
Using 88
utypes 38, 122
Ux 66
Ux builder functions 160, 160–227
Ux Convenience Library 66

extending 47
UX_C constant 64
UxAdapterDesignMethods() 56, 160
UxAdapterSwidget() 53, 77, 162
UxAddConv() 42, 164
UxAddEnumType 42
UxAddEnumType() 167
UxAddMweEditorSeparator() 168
UxAddToCreateMenu() 170
UxAddToMweEditor() 173
UxAddXtype 42
UxAddXtype() 176
UxApply 131
UxBuild 132
UxCallConverter() 177

UxCanBeAnInstance() 54, 77
UxCanLoseChild 133
uxcgen

recompiling 88
UxCheckChildren() 55, 134
UxChildAdded 135
UxChildRemoved 136
UxClassValidate 137
UxClearExpressions 138
UxClearValues 139
UxCreateMethodSignature() 178
UxCreateSwidget 28
UxDDGetProp() 29, 180
UxDDInstall() 47, 181
UxDDPutProp() 29, 182
UxDefineResource() 183
UxDrawHandles() 55, 140, 141
UxEnvArgResource() 186
UxFixed_class_method() 23, 187
UxFixed_class_prop() 188
UxGet 25
UxGet_int 27
UxGET_string 27
UxGET_type() 27, 189
UxGetArgResource() 190
UxGetComponentRef() 191
UxGetProp() 28, 193
UxGetResourceSet() 194
UxGlobalInstanceResource() 82, 195
UxHandlePostCreation 142
UxInheritedMethodUnregister() 198
UxInheritResources() 21, 199
UxInit_method() 23, 43, 200
UxInstanceResource() 82, 201
UxInteractiveChildCreate 143
UxInteractiveCreateAndApply 144
UxIsInterface() 204
UxIsSubclass() 205
UxLib.h 66
UxLoadGlobalInclude() 81, 206
UxMakeArglist 145
UxMenusMenuSensitivities 146
234 UIM/X Advanced Topics

Index

UxMethodLookup() 53, 66, 207
UxMethodRegister() 52, 67, 72, 209
UxMethodSignatureRegister() 211
UxNewInterfaceClassId() 52, 53, 213
UxNewSubclassId() 52, 214
UxObjectToRecreate() 55, 147
UxPrjOptionsCGenGenCWrappers 63
UxPrjOptionsCGenGenUxIntCode 63
UxPut 25
UxPut_int 27
UxPUT_string 27
UxPUT_type() 27, 215
UxPutClassResource() 21, 217
UxPutComponentRef() 218
UxPutIconBitmap() 219
UxPutProp() 28, 220
UxPutToolKitClass() 20, 221
UxPutUxFilename() 20, 222
uxreaduil

recompiling 88
UxRealize 148
UxRecreateParentOrChild 149
UxRecreateSwidget 150
UxRegister_class() 19, 223
UxRegisterFunction() 82
UxRegisterFunctions 96
UxRegisterGlobals 97
UxSetNonarglist 151
UxThis 71, 77
UxType_get_op() 24, 224
UxUnrealize 152
UxValidateXtype() 225
UxValidMoveOrResize 153
UxValuesOfXtype() 226
UxVisualInterface base class inheritance for com-

ponents 53
UxWidgetCannotAcceptChildren 154
UxXt.h 66

V
Validator functions 39
ValuesOf functions 39

variables
See global variables

veos.h 72
vhandle type 16
VisualInterface_Manage() 53

W
widgets

compiling & linking new classes 88–92
region 104
selection handles 56

wrapper 71
wrappers

C and C++ 50
constructors 74
derived wrapper class 71
event procedure 61
methods, writing 72
pointer, XtCallbackProc 57

X
X context manager 60
X Toolkit, See toolkit
XkAdapter() 77
XkCreateImplicitShell() 75
XkThisComponent 69
xNewSubclassId() 53
XtCallbackProc 58, 59, 60
XtDestroyWidget() 65
xtypes 122

defining new 38–42
enumerated 39, 122
non-enumerated 123
UIM/X Advanced Topics 235

Index
236 UIM/X Advanced Topics

	Preface
	Overview
	Who Should Use this Guide
	Before You Read this Guide
	Related Books
	How this Guide Is Organized
	Conventions Used in this Guide
	Setting Application Defaults

	Compound Widgets 1
	Overview
	Specifying the Widgets in a Compound
	The Adjust Button and Compound Widgets
	Finding a Region
	Finding a Resizable Widget
	Finding a Draggable Widget

	Creating Compound Properties and Swidget Methods
	Putting a Compound Widget in a Palette
	Installing Compound Editors

	Integrating Widgets 2
	Overview
	Getting Started
	Swidget Class Source Files
	Writing the Private Header File
	The Class Structure
	The Instance Structure
	Global Variables
	Summary

	Writing the Swidget Class Source File
	Include Files
	Global Variable Definitions
	Defining the Swidget Class
	Summary

	Writing the Public Header File
	Design-Time Macros
	Design-Time C++ Member Functions
	Run-Time Macros
	Run-Time C++ Member Functions
	Summary

	Building UIM/X
	Creating Widgets from UIM/X’s Menus
	Customizing UIM/X’s Create Menus
	Customizing the Browser’s New Option
	Customizing the Main Window Editor’s Option Menus
	Defining New Xtypes
	Enumerated Xtypes
	Non-Enumerated Xtypes

	Overriding Inherited Class Methods
	Generating Code and Reading UIL
	Building uxcgen
	Building uxreaduil

	Extending the Ux Convenience Library
	Building the Ux Convenience Library

	Summary of Naming Conventions

	Integrating Components 3
	Overview
	Understanding What to Do
	Wrapping Components
	Creating Adapter Swidgets
	Managing Instances
	Designating a Child Site
	Creating Instances of your Components
	Defining Design-Time Methods

	Overriding the Geometry-Handling Methods
	Adding Event Procedures

	Generating Integration Code
	Writing the Integration Code
	Writing the Header File
	Including the Required Files
	Defining the C and C++ Bindings
	Defining the Context Structure
	Defining the C++ Wrapper Class
	Declaring the C Wrapper Constructor

	Writing the Source File
	Including the Required Files
	Writing the Wrapper Methods
	Understanding the Wrapper Constructors
	Writing the C++ Wrapper Constructor
	Writing the C Wrapper Constructor
	Wrapping UxAdapterSwidget()
	Registering the Methods

	Writing Initialization Code for UIM/X
	Loading Header Files
	Registering Functions
	Installing Option Menus and Resource Editors

	Augmenting UIM/X
	Building a Palette
	Creating Instances
	Putting Instances in the Palette

	Building Executables 4
	Overview
	Using the Custom Makefile
	Custom Makefile Macros
	Invoking Make on the Custom Makefile
	General Procedure for Using the Custom Makefile

	Using the Build Makefile
	Build Makefile Macros
	Invoking Make on the Build Makefile
	General Procedure for Using the Build Makefile

	Augmenting UIM/X
	Registering Functions
	Registering Globals
	Conditional Compilation in Generated Code
	Using Makefile.uimx

	Using central.mk

	Compound Properties A
	CanBeTopLevel
	CanHaveChildren
	ClipboardOps
	CompoundEditorName
	CompoundIcon
	CompoundName
	CompoundResourceSet
	CompoundSwidgetMethodSet
	DragRecursion
	Editor
	EditorClientData
	IsAlignable
	IsAreaSelectable
	IsArrangeable
	IsCompound
	IsDeletable
	IsDraggable
	IsDuplicatable
	IsInCompound
	IsMovable
	IsNovice
	IsRecreatable
	IsRegion
	IsReorderable
	IsReparentable
	IsResizable
	IsSelectable
	ResizeRecursion
	ShowInBrowser
	UsePropEditor

	Interface File Format B
	File Format Concepts
	Object Instantiation
	Instance-Specific and Proprietary Resources

	Facets
	Interface-Specific Resources
	Methods
	Connections
	Swidget Methods
	Loading Interface Files of an Earlier Version

	Swidget Class Hierarchy C
	Overview

	Resource Types D
	Overview
	Utypes
	Xtypes
	Enumerated Xtypes
	Non-Enumerated Xtypes

	Validator And ValuesOf Functions

	Class Methods E
	Overview
	init
	UxApply
	UxBuild
	UxCanLoseChild
	UxCheckChildren
	UxChildAdded
	UxChildRemoved
	UxClassValidate
	UxClearExpressions
	UxClearValues
	UxDrawHandles
	UxDrawHandles
	UxHandlePostCreation
	UxInteractiveChildCreate
	UxInteractiveCreateAndApply
	UxMakeArglist
	UxMenusMenuSensitivities
	UxObjectToRecreate
	UxRealize
	UxRecreateParentOrChild
	UxRecreateSwidget
	UxSetNonarglist
	UxUnrealize
	UxValidMoveOrResize
	UxWidgetCannotAcceptChildren

	Resource Descriptors F
	Overview
	Resource Descriptor Fields

	Ux Builder Functions G
	Overview
	UxAdapterDesignMethods()
	UxAdapterSwidget()
	UxAddConv()
	UxAddEnumType()
	UxAddMweEditorSeparator()
	UxAddToCreateMenu()
	UxAddToMweEditor()
	UxAddXtype()
	UxCallConverter()
	UxCreateMethodSignature()
	UxDDGetProp()
	UxDDInstall()
	UxDDPutProp()
	UxDefineResource()
	UxEnvArgResource()
	UxFixed_class_method()
	UxFixed_class_prop()
	UxGET_type()
	UxGetArgResource()
	UxGetComponentRef()
	UxGetProp()
	UxGetResourceSet()
	UxGlobalInstanceResource()
	UxInheritedMethodUnregister()
	UxInheritResources()
	UxInit_method()
	UxInstanceResource()
	UxIsInterface()
	UxIsSubclass()
	UxLoadGlobalInclude()
	UxMethodLookup()
	UxMethodRegister()
	UxMethodSignatureRegister()
	UxNewInterfaceClassId()
	UxNewSubclassId()
	UxPUT_type()
	UxPutClassResource()
	UxPutComponentRef()
	UxPutIconBitmap()
	UxPutProp()
	UxPutToolKitClass()
	UxPutUxFilename()
	UxRegister_class()
	UxType_get_op()
	UxValidateXtype()
	UxValuesOfXtype()

	Index

